
Transverse geometry

The ‘space of leaves’ of a foliation (V,F) can

be described in terms of (M,Γ) , with M =

complete transversal and Γ = holonomy pseu-

dogroup. The ‘natural’ ‘transverse coordinates’

form the crossed product algebra

AΓ
M := C∞c (M) o Γ ,

consisting of finite sums of monomials of the

form ∑
f U∗φ , f ∈ C∞c (FM) , φ ∈ Γ ,

with the product

f U∗φ · g U
∗
ψ = (f · g|φ) U∗ψ φ .

How to find a geometric structure = spectral

triple that is ‘invariant’ under the holonomy ?

D cannot be taken elliptic, unless the foliation

admits a transverse Riemannian structure.
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Diff+(M)-invariant structure

First, one replaces M by PM = F+M/SO(n),

where F+M = J1(M) = GL+(n,R)–principal

bundle of oriented frames on M . The sections

of π : PM → M are precisely the Riemannian

metrics on M .

Canonical structure on PM : the vertical sub-

bundle V ⊂ T (PM), V = Ker π∗, has GL+(n,R)-

invariant Riemannian metric, since its fibers ∼=
GL+(n,R)/SO(n). The bundle N = T (PM)/V
has tautological Riemannian structure: every

point q ∈ PM is an Euclidean structure on

Tπ(q)(M) ∼= Nq via π∗.



Hypoelliptic signature operator

The hypoelliptic signature operator D on PM

is uniquely determined by Q = D|D|,

Q = (d∗V dV − dV d
∗
V )⊕ γV (dH + d∗H) ,

acting on HPM = L2(∧·V∗ ⊗ ∧·N ∗, volPM) ;

dV = vertical exterior derivative,

γV = grading for the vertical signature,

dH = horizontal exterior differentiation with re-

spect to a torsion-free connection,

volPM = Diff+(M)-invariant volume form.

∗If n ≡ 1 or 2 (mod 4), one takes PM × S1 so that the
dimension of the vertical fiber be even.



Theorem 1. The operator Q is selfadjoint and

so is D defined by Q = D|D| . Moreover,

(AΓ
PM ,HPM , D) is a (nonunital) spectral triple

with simple dimension spectrum

ΣP = {k ∈ Z+, k 5 p := n(n+1)
2 + 2n}.

Proof – By means of adapted pseudodifferen-

tial calculus = a version of ΨDO for Heisen-

berg manifolds:

λ · ξ = (λ ξv, λ
2 ξn), ξ = (ξv, ξn) , λ ∈ R∗+ ,

‖ξ‖′ =
(
‖ξv‖4 + ‖ξn‖2

)1/4
,

σ′(x, λ ·ξ) = λq σ′(x, ξ), σ′ = q−homogeneus.

In particular, the residue density of R ∈ Ψ′DO

=
1

(2π)p−n

∫
‖ξ‖′=1

σ′−p(R)(q, ξ) d−ξ dq .



Example (codimension 1): S1/Diff(S1)

H = L2(FS1 × S1, ds dθ dα)⊗ C2

Q = −2∂s∂αγ1 +
1

i
e−s∂θγ2 +

(
∂2
s − ∂2

α −
1

4

)
γ3 ,

where γ1, γ2, γ3 are the Pauli matrices

γ1 =

[
0 1
1 0

]
, γ2 =

[
0 −i
i 0

]
γ2 =

[
1 0
0 −1

]
;

the dimension spectrum is Σ = {0,1,2,3,4}.
The components of the Chern character are

{ϕ1, ϕ3} and are given by:

ϕ1(a0, a1) = Γ
(

1

2

) ∫
−(a0[Q, a1](Q2)−1/2)

−
1

2!
Γ
(

3

2

) ∫
−(a0∇[Q, a1](Q2)−3/2)

+
1

3!
Γ
(

5

2

) ∫
−(a0∇2[Q, a1](Q2)−5/2)

−
1

4!
Γ
(

7

2

) ∫
−(a0∇3[Q, a1](Q2)−7/2)



ϕ3(a0, a1, a2, a3) =
1

3i
Γ
(

3

2

) ∫
−(a0[Q, a1][Q, a] · · · [Q, a3](Q2)−3/2)

−
1

4!
Γ
(

5

2

) ∫
−(a0∇[Q, a1][Q, a2] · · · [Q, a3](Q2)−5/2)

−
1

3 · 4
Γ
(

5

2

) ∫
−(a0[Q, a1]∇([Q, a2][Q, a3](Q2)−5/2

−
1

2 · 4
Γ
(

5

2

) ∫
−(a0[Q, a1][Q, a2]∇[Q, a3](Q2)−5/2) .

The computation is purely symbolical, but re-
quires the symbol σ′−4, hence about 103 terms!
It eventually yields the following result:

(ϕ1)(1)(a1, a1) = 0, ∀ a0, a1 ∈ A;

in fact, each of the 4 terms turns out to be 0;
on the other hand

(ϕ3)(1) =
1

12π3/2
(µ̃+ bψ),

where

µ̃(f0Uϕ0, f
1Uϕ1, . . . , f

3Uϕ3) = 0, ϕ0ϕ1ϕ2ϕ3 6= 1

=
∫
f0ϕ∗0(df1) ∧ (ϕ0ϕ1)∗(df2) ∧ (ϕ0ϕ1ϕ2)∗(df3).



Underlying algebraic structure

W.l.o.g. can assume M = Rn, with the flat

connection; {Xk; 1 ≤ k ≤ n}, {Y ji ; 1 ≤ i, j ≤ n}
horizontal, resp. vertical vector fields. The

operator Q is built of these vector fields, and

the cocycle involves iterated commutators of

them acting on AΓ
FM .

E.g. in case n = 1,

Y = y
∂

∂y
and X = y

∂

∂x
,

acting as

Y (f Uϕ) = Y (f)Uϕ , X(f Uϕ) = X(f)Uϕ .

However, while Y acts as derivation

Y (ab) = Y (a) b+ aY (b) , a, b ∈ AΓ .

X satisfies instead

X(ab) = X(a) b + aX(b) + δ1(a)Y (b) .



δ1(f Uϕ−1) = y
d

dx

(
log

dϕ

dx

)
fUϕ−1 .

δ1 is a derivation,

δ1(ab) = δ1(a) b+ a δ1(b) ,

but its higher commutators with X

δn(f Uϕ−1) = yn
dn

dxn

(
log

dϕ

dx

)
fUϕ−1 , ∀n ≥ 1 ,

satisfy more complicated Leibniz rules.

All this information can be encoded in a Hopf

algebra H1. As algebra = universal enveloping

algebra of the Lie algebra with presentation

[Y,X] = X , [Y, δn] = n δn ,

[X, δn] = δn+1 , [δk, δ`] = 0 , n, k, ` ≥ 1 .



The coproduct is determined by

∆Y = Y ⊗ 1 + 1⊗ Y ,
∆X = X ⊗ 1 + 1⊗X + δ1 ⊗ Y
∆ δ1 = δ1 ⊗ 1 + 1⊗ δ1,

∆(δ3) = δ3 ⊗ 1 + 1⊗ δ3 +

+ δ2 ⊗ δ1 + 3δ1 ⊗ δ2 + δ2
1 ⊗ δ1;

the antipode is determined by

S(Y ) = −Y , S(X) = −X + δ1Y , S(δ1) = −δ1

and the counit is

ε(h) = constant term of h ∈ H1 .

The canonical trace τΓ on AΓ satisfies

τΓ(h(a)) = δ(h) τΓ(a) , ∀h ∈ H1 , a ∈ A.

where δ ∈ H∗1 is the character

δ(Y ) = 1, δ(X) = 0, δ(δn) = 0 .



While S2 6= Id, the δ-twisted antipode,

S̃(h) = δ(h(1))S(h(2)) ,

is involutive: S̃2 = Id .

Finally, the cochains {ϕ1, ϕ3} can be recog-
nized as belonging to the range of a certain
cohomological characteristic map.

More precisely, requiring the assignment

χΓ(h1 ⊗ . . .⊗ hn)(a0, . . . , an)

= τΓ(a0 h1(a1) . . . hn(an)) ,

to induce a characteristic homomorphism

χ∗Γ : HC∗Hopf (H1) → HC∗(AΓ) ,

practically dictates the definition of the
Hopf cyclic cohomology.

[ A. Connes & H.M., Hopf algebras, cyclic Co-
homology and the transverse index theorem,
Commun. Math. Phys. 198 (1998)]



H = Hopf algebra over a field k containing Q,

(δ, σ) =modular pair: δ ∈ H∗ character , and

σ ∈ H, ∆(σ) = σ⊗σ , ε(σ) = 1 , with δ(σ) = 1.

One also requires S̃2 = Id.

Then the following is a (co)cyclic structure:

H\(δ,σ) = C⊕
⊕
n≥1

H⊗
n

:

δ0(h1 ⊗ . . .⊗ hn−1) = 1⊗ h1 ⊗ . . .⊗ hn−1

δj(h
1 ⊗ . . .⊗ hn−1) = h1 ⊗ . . .⊗∆hj ⊗ . . .⊗ hn−1

1 ≤ j ≤ n− 1

δn(h1 ⊗ . . .⊗ hn−1) = h1 ⊗ . . .⊗ hn−1 ⊗ σ
σi(h

1 ⊗ . . .⊗ hn+1) = h1 ⊗ . . .⊗ ε(hi+1)⊗ . . .⊗ hn+1

0 ≤ i ≤ n
τn(h1 ⊗ . . .⊗ hn) = S̃(h1) · (h2 ⊗ . . .⊗ hn ⊗ σ).



Equivalence of characteristic maps

[Gelfand-Fuchs-Bott-Haefliger] =⇒ Hopf

J∞M := {j∞0 (ψ); ψ : Rn →M },
π1 : J∞M → J1M = FM projection

with cross-section

σ∇(u) = j∞0 (exp∇x ◦u) , u ∈ FxM

given by connection ∇; ∀a ∈ GLn(R), ∀ϕ ∈ Γ

σ∇ ◦Ra = Ra ◦ σ∇ and σ∇ϕ = ϕ̃−1 ◦ σ∇ ◦ ϕ̃.

Define σ∇(ϕ0, . . . , ϕp) : ∆p × FM → J∞M
by

σ∇(ϕ0, . . . , ϕp)(t, u) = σ∇(ϕ0,...,ϕp;t)
(u) ,

where ∇(ϕ0, . . . , ϕp; t) =
p∑
0

ti∇ϕi;

σ∇(ϕ0ϕ, . . . , ϕpϕ)(t, u) = ϕ̃−1σ∇(ϕ0, . . . , ϕp)(t, ϕ̃(u)).



C∗(an) = Gelfand-Fuchs Lie algebra cohomol-

ogy complex of an = Lie algebra of formal vec-

tor fields on Rn.

For $ ∈ Cq(an), define ∀η ∈ Ωm
c (FM),

〈Cp,m($)(ϕ0, . . . , ϕp), η〉 =

(−1)
m(m+1)

2

∫
∆p×FM

η ∧ σ∇(ϕ0, . . . , ϕp)
∗($̃)

C∇($) =
∑

Cp,m($) : C∗(an)→ C∗
(
Γ; Ω∗c(FM)

)
;

defines a map of (total) complexes,

C∇(d$) = (δ + ∂)C∇($).

For the relative (to SOn) cohomology, one con-

structs similarly a homomorphism

H∗(an, SOn)→ H∗
(
Γ; Ω∗c(PM)

)
,

which can be followed by Connes’ map

ΦΓ
∗ : H∗Γ(PM) → HC∗(AΓ

PM), yielding

χΓ
GF : H∗(an, SOn) −→ HC∗(AΓ

PM) .



Composing χΓ
GF with the natural restriction

PHC∗(AΓ
PM)→ PHC∗(C∞c (PM)

one recovers the Pontryagin classes of M as

images of the universal Chern classes

c2i1 · · · c2ik ∈ H
∗(an, SOn), 2i1 + . . .+ 2ik ≤ n.

From Hopf cyclic to cyclic : M = Rn

χτ(h1⊗. . .⊗hn)(a0, . . . , an) = τ(a0 h1(a1) . . . hn(an)) ,

inducing characteristic homomorphism

χΓ
Hopf : HC∗Hopf (Hn, SOn) → HC∗ (AΓ

PM)(1) .

Theorem 2. There is a canonical isomorphism

κ∗n : H∗(an, SOn)
'−→ PHC∗Hopf (Hn, SOn) ,

such that χΓ
Hopf ◦ κ

∗
n = χΓ

GF .



Summary: Transverse Index Theorem

Theorem 3. There are canonical constructions

for the following entities:

• a Hopf algebra Hn with modular character δ,

and with (δ,1) modular pair in involution;

• a co-cyclic structure for any Hopf algebra

with a modular pair in involution (δ, σ);

• an isomorphism κ∗n between the Gelfand-Fuks

cohomology H∗GF(an), resp. H∗GF(an, SOn), and

HP ∗(Hn; Cδ), resp. HP ∗(Hn, SOn; Cδ);

• an action of Hn on AΓ(FRn), inducing a

characteristic map χ∗Γ : HP ∗(Hn, SOn; Cδ) →
HP ∗(1)(AΓ(PRn)) ∼= H∗(PRn ×Γ EΓ);

• a class Ln ∈ H∗GF(an, SOn), such that

ch∗(AΓ(PRn),H(PRn), D)(1) = (χ∗Γ ◦ κ
∗
n)(Ln).


