Transverse geometry

The 'space of leaves' of a foliation (V, \mathcal{F}) can be described in terms of (M, Γ) , with M =*complete transversal* and $\Gamma =$ *holonomy pseudogroup*. The 'natural' 'transverse coordinates' form the crossed product algebra

$$\mathcal{A}_M^{\mathsf{\Gamma}} := C_c^{\infty}(M) \rtimes \mathsf{\Gamma} \,,$$

consisting of finite sums of monomials of the form

$$\sum f U_{\phi}^*, \quad f \in C_c^{\infty}(FM), \, \phi \in \Gamma,$$

with the product

$$f U_{\phi}^* \cdot g U_{\psi}^* = (f \cdot g | \phi) U_{\psi \phi}^*.$$

How to find a geometric structure = spectral triple that is 'invariant' under the holonomy ? D cannot be taken elliptic, unless the foliation admits a transverse Riemannian structure.

Transversals

 A. Connes & H.M., *The local index formula in noncommutative geometry*, Geom. Funct. Anal. **5** (1995), Part I

$Diff^+(M)$ -invariant structure

First, one replaces M by $PM = F^+M/SO(n)$, where $F^+M = J^1(M) = GL^+(n,\mathbb{R})$ -principal bundle of oriented frames on M. The sections of $\pi : PM \to M$ are precisely the Riemannian metrics on M.

Canonical structure on PM: the vertical subbundle $\mathcal{V} \subset T(PM)$, $\mathcal{V} = \text{Ker }\pi_*$, has $GL^+(n, \mathbb{R})$ invariant Riemannian metric, since its fibers \cong $GL^+(n, \mathbb{R})/SO(n)$. The bundle $\mathcal{N} = T(PM)/\mathcal{V}$ has tautological Riemannian structure: every point $q \in PM$ is an Euclidean structure on $T_{\pi(q)}(M) \cong \mathcal{N}_q$ via π_* .

Hypoelliptic signature operator

The hypoelliptic signature operator D on PM is uniquely determined by Q = D|D|,

 $Q = (d_V^* d_V - d_V d_V^*) \oplus \gamma_V (d_H + d_H^*),$

acting on $\mathcal{H}_{PM} = L^2(\wedge \mathcal{V}^* \otimes \wedge \mathcal{N}^*, \operatorname{vol}_{PM});$ $d_V = \operatorname{vertical} \operatorname{exterior} \operatorname{derivative},$ $\gamma_V = \operatorname{grading}$ for the vertical signature, $d_H = \operatorname{horizontal} \operatorname{exterior} \operatorname{differentiation} \operatorname{with} \operatorname{respect}$ to a torsion-free connection, $\operatorname{vol}_{PM} = \operatorname{Diff}^+(M)$ -invariant volume form.

*If $n \equiv 1 \text{ or } 2 \pmod{4}$, one takes $PM \times S^1$ so that the dimension of the vertical fiber be even.

Theorem 1. The operator Q is selfadjoint and so is D defined by Q = D|D|. Moreover, $(\mathcal{A}_{PM}^{\Gamma}, \mathcal{H}_{PM}, D)$ is a (nonunital) spectral triple with simple dimension spectrum $\Sigma_P = \{k \in \mathbb{Z}^+, k \leq p := \frac{n(n+1)}{2} + 2n\}.$

Proof – By means of adapted pseudodifferential calculus = a version of ΨDO for Heisenberg manifolds:

 $\begin{aligned} \lambda \cdot \xi &= (\lambda \ \xi_v, \lambda^2 \ \xi_n), \qquad \xi &= (\xi_v, \xi_n) \ , \ \lambda \in \mathbb{R}^*_+ \ , \\ &\|\xi\|' &= \left(\|\xi_v\|^4 + \|\xi_n\|^2\right)^{1/4} \ , \\ \sigma'(x, \lambda \cdot \xi) &= \lambda^q \ \sigma'(x, \xi), \quad \sigma' &= q - \text{homogeneus.} \end{aligned}$

In particular, the residue density of $R \in \Psi' DO$

$$= \frac{1}{(2\pi)^{p-n}} \int_{\|\xi\|'=1} \sigma'_{-p}(R)(q,\xi) \, d\xi \, dq \, .$$

Example (codimension 1): $S^1/\text{Diff}(S^1)$

$$\mathcal{H} = L^2(FS^1 \times S^1, ds \, d\theta \, d\alpha) \otimes \mathbb{C}^2$$

 $Q = -2\partial_s \partial_\alpha \gamma_1 + \frac{1}{i} e^{-s} \partial_\theta \gamma_2 + \left(\partial_s^2 - \partial_\alpha^2 - \frac{1}{4}\right) \gamma_3,$

where $\gamma_1, \gamma_2, \gamma_3$ are the Pauli matrices

$$\gamma_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
, $\gamma_2 = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$, $\gamma_2 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$;

the dimension spectrum is $\Sigma = \{0, 1, 2, 3, 4\}$. The components of the Chern character are $\{\varphi_1, \varphi_3\}$ and are given by:

$$\begin{split} \varphi_1(a^0, a^1) &= \Gamma\left(\frac{1}{2}\right) \oint (a^0[Q, a^1](Q^2)^{-1/2}) \\ &- \frac{1}{2!} \Gamma\left(\frac{3}{2}\right) \oint (a^0 \nabla[Q, a^1](Q^2)^{-3/2}) \\ &+ \frac{1}{3!} \Gamma\left(\frac{5}{2}\right) \oint (a^0 \nabla^2[Q, a^1](Q^2)^{-5/2}) \\ &- \frac{1}{4!} \Gamma\left(\frac{7}{2}\right) \oint (a^0 \nabla^3[Q, a^1](Q^2)^{-7/2}) \end{split}$$

$$\begin{split} \varphi_{3}(a^{0}, a^{1}, a^{2}, a^{3}) &= \\ &\frac{1}{3i} \Gamma\left(\frac{3}{2}\right) \oint (a^{0}[Q, a^{1}][Q, a] \cdots [Q, a^{3}](Q^{2})^{-3/2}) \\ &- \frac{1}{4!} \Gamma\left(\frac{5}{2}\right) \oint (a^{0} \nabla [Q, a^{1}][Q, a^{2}] \cdots [Q, a^{3}](Q^{2})^{-5/2}) \\ &- \frac{1}{3 \cdot 4} \Gamma\left(\frac{5}{2}\right) \oint (a^{0}[Q, a^{1}] \nabla ([Q, a^{2}][Q, a^{3}](Q^{2})^{-5/2}) \\ &- \frac{1}{2 \cdot 4} \Gamma\left(\frac{5}{2}\right) \oint (a^{0}[Q, a^{1}][Q, a^{2}] \nabla [Q, a^{3}](Q^{2})^{-5/2}) \,. \end{split}$$

The computation is purely symbolical, but requires the symbol σ'_{-4} , hence about 10^3 terms! It eventually yields the following result:

 $(\varphi_1)_{(1)}(a^1, a^1) = 0, \qquad \forall a^0, a^1 \in \mathcal{A};$

in fact, each of the 4 terms turns out to be 0; on the other hand

$$(\varphi_3)_{(1)} = \frac{1}{12 \pi^{3/2}} (\tilde{\mu} + b\psi),$$

where

$$\widetilde{\mu}(f^0 U_{\varphi_0}, f^1 U_{\varphi_1}, \dots, f^3 U_{\varphi_3}) = 0, \quad \varphi_0 \varphi_1 \varphi_2 \varphi_3 \neq 1$$
$$= \int f^0 \varphi_0^* (df^1) \wedge (\varphi_0 \varphi_1)^* (df^2) \wedge (\varphi_0 \varphi_1 \varphi_2)^* (df^3).$$

Underlying algebraic structure

W.l.o.g. can assume $M = \mathbb{R}^n$, with the flat connection; $\{X_k; 1 \le k \le n\}, \{Y_i^j; 1 \le i, j \le n\}$ horizontal, resp. vertical vector fields. The operator Q is built of these vector fields, and the cocycle involves iterated commutators of them acting on $\mathcal{A}_{FM}^{\Gamma}$.

E.g. in case
$$n = 1$$
,

$$Y = y \frac{\partial}{\partial y}$$
 and $X = y \frac{\partial}{\partial x}$,

acting as

$$Y(f U_{\varphi}) = Y(f) U_{\varphi}, \quad X(f U_{\varphi}) = X(f) U_{\varphi}.$$

However, while Y acts as derivation

 $Y(ab) = Y(a) b + a Y(b), \qquad a, b \in \mathcal{A}^{\Gamma}.$

X satisfies instead

$$X(ab) = X(a) b + a X(b) + \delta_1(a) Y(b).$$

$$\delta_1(f U_{\varphi^{-1}}) = y \frac{d}{dx} \left(\log \frac{d\varphi}{dx} \right) f U_{\varphi^{-1}}.$$

 δ_1 is a derivation,

$$\delta_1(ab) = \delta_1(a) b + a \,\delta_1(b) \,,$$

but its higher commutators with \boldsymbol{X}

$$\delta_n(f U_{\varphi^{-1}}) = y^n \frac{d^n}{dx^n} \left(\log \frac{d\varphi}{dx} \right) f U_{\varphi^{-1}}, \qquad \forall n \ge 1,$$

satisfy more complicated Leibniz rules.

All this information can be encoded in a Hopf algebra \mathcal{H}_1 . As algebra = universal enveloping algebra of the Lie algebra with presentation

$$[Y, X] = X, \qquad [Y, \delta_n] = n \,\delta_n,$$
$$[X, \delta_n] = \delta_{n+1}, \qquad [\delta_k, \delta_\ell] = 0, \qquad n, k, \ell \ge 1.$$

The coproduct is determined by

$$\Delta Y = Y \otimes 1 + 1 \otimes Y,$$

$$\Delta X = X \otimes 1 + 1 \otimes X + \delta_1 \otimes Y$$

$$\Delta \delta_1 = \delta_1 \otimes 1 + 1 \otimes \delta_1,$$

$$\Delta(\delta_3) = \delta_3 \otimes 1 + 1 \otimes \delta_3 + \frac{1}{2} \otimes \delta_1 + 3\delta_1 \otimes \delta_2 + \delta_1^2 \otimes \delta_1;$$

the antipode is determined by

 $S(Y) = -Y, S(X) = -X + \delta_1 Y, S(\delta_1) = -\delta_1$ and the counit is

 $\varepsilon(h) = \text{constant term of} \quad h \in \mathcal{H}_1$. The canonical trace τ_{Γ} on \mathcal{A}^{Γ} satisfies

 $\tau_{\Gamma}(h(a)) = \delta(h) \tau_{\Gamma}(a), \quad \forall h \in \mathcal{H}_1, a \in \mathcal{A}.$ where $\delta \in \mathcal{H}_1^*$ is the character

$$\delta(Y) = 1, \quad \delta(X) = 0, \quad \delta(\delta_n) = 0.$$

While $S^2 \neq Id$, the δ -twisted antipode,

$$\widetilde{S}(h) = \delta(h_{(1)}) S(h_{(2)}),$$

is involutive: $\widetilde{S}^2 = \operatorname{Id}$.

Finally, the cochains $\{\varphi_1, \varphi_3\}$ can be recognized as belonging to the range of a certain cohomological characteristic map.

More precisely, requiring the assignment

$$\chi_{\Gamma}(h^1 \otimes \ldots \otimes h^n)(a^0, \ldots, a^n) \\= \tau_{\Gamma}(a^0 h^1(a^1) \ldots h^n(a^n)),$$

to induce a characteristic homomorphism

$$\chi_{\Gamma}^*$$
: $HC_{\mathsf{Hopf}}^*(\mathcal{H}_1) \to HC^*(\mathcal{A}_{\Gamma})$,

practically dictates the definition of the Hopf cyclic cohomology.

[A. Connes & H.M., *Hopf algebras, cyclic Cohomology and the transverse index theorem*, Commun. Math. Phys. **198** (1998)] $\mathcal{H} =$ Hopf algebra over a field k containing \mathbb{Q} , $(\delta, \sigma) =$ modular pair: $\delta \in \mathcal{H}^*$ character, and $\sigma \in \mathcal{H}, \ \Delta(\sigma) = \sigma \otimes \sigma, \ \varepsilon(\sigma) = 1$, with $\delta(\sigma) = 1$. One also requires $\tilde{S}^2 =$ Id.

Then the following is a (co)cyclic structure:

$$\mathcal{H}_{(\delta,\sigma)}^{\natural} = \mathbb{C} \oplus \bigoplus_{n \ge 1} \mathcal{H}^{\otimes^{n}} :$$

$$\delta_{0}(h^{1} \otimes \ldots \otimes h^{n-1}) = 1 \otimes h^{1} \otimes \ldots \otimes h^{n-1}$$

$$\delta_{j}(h^{1} \otimes \ldots \otimes h^{n-1}) = h^{1} \otimes \ldots \otimes \Delta h^{j} \otimes \ldots \otimes h^{n-1}$$

$$1 \le j \le n-1$$

$$\delta_{n}(h^{1} \otimes \ldots \otimes h^{n-1}) = h^{1} \otimes \ldots \otimes h^{n-1} \otimes \sigma$$

$$\sigma_{i}(h^{1} \otimes \ldots \otimes h^{n+1}) = h^{1} \otimes \ldots \otimes \varepsilon(h^{i+1}) \otimes \ldots \otimes h^{n+1}$$

$$0 \le i \le n$$

$$\tau_{n}(h^{1} \otimes \ldots \otimes h^{n}) = \widetilde{S}(h^{1}) \cdot (h^{2} \otimes \ldots \otimes h^{n} \otimes \sigma).$$

Equivalence of characteristic maps

[Gelfand-Fuchs-Bott-Haefliger] \implies Hopf

 $J^{\infty}M := \{j_0^{\infty}(\psi); \psi : \mathbb{R}^n \to M\},\ \pi_1 : J^{\infty}M \to J^1M = FM$ projection with cross-section

 $\sigma_{\nabla}(u) = j_0^{\infty}(\exp_x^{\nabla} \circ u) , \qquad u \in F_x M$ given by connection ∇ ; $\forall a \in \operatorname{GL}_n(\mathbb{R}), \forall \varphi \in \Gamma$ $\sigma_{\nabla} \circ R_a = R_a \circ \sigma_{\nabla} \quad \text{and} \quad \sigma_{\nabla^{\varphi}} = \tilde{\varphi}^{-1} \circ \sigma_{\nabla} \circ \tilde{\varphi}.$ Define $\sigma_{\nabla}(\varphi_0, \dots, \varphi_p) : \Delta^p \times FM \to J^{\infty}M$ by

$$\sigma_{\nabla}(\varphi_0,\ldots,\varphi_p)(t,u) = \sigma_{\nabla(\varphi_0,\ldots,\varphi_p;t)}(u),$$

where
$$\nabla(\varphi_0, \dots, \varphi_p; t) = \sum_{0}^{p} t_i \nabla^{\varphi_i};$$

 $\sigma_{\nabla}(\varphi_0 \varphi, \ldots, \varphi_p \varphi)(t, u) = \widetilde{\varphi}^{-1} \sigma_{\nabla}(\varphi_0, \ldots, \varphi_p)(t, \widetilde{\varphi}(u)).$

 $C^*(\mathfrak{a}_n) = Gelfand$ -Fuchs Lie algebra cohomology complex of $\mathfrak{a}_n =$ Lie algebra of formal vector fields on \mathbb{R}^n .

For
$$\varpi \in C^{q}(\mathfrak{a}_{n})$$
, define $\forall \eta \in \Omega_{c}^{m}(FM)$,
 $\langle C_{p,m}(\varpi)(\varphi_{0}, \dots, \varphi_{p}), \eta \rangle =$
 $(-1)^{\frac{m(m+1)}{2}} \int_{\Delta^{p} \times FM} \eta \wedge \sigma_{\nabla}(\varphi_{0}, \dots, \varphi_{p})^{*}(\widetilde{\varpi})$

$$C_{\nabla}(\varpi) = \sum C_{p,m}(\varpi) : C^*(\mathfrak{a}_n) \to C^*(\Gamma; \Omega^*_c(FM));$$

defines a map of (total) complexes,

$$C_{\nabla}(d\varpi) = (\delta + \partial)C_{\nabla}(\varpi).$$

For the relative (to SO_n) cohomology, one constructs similarly a homomorphism

 $H^*(\mathfrak{a}_n, SO_n) \to H^*(\Gamma; \Omega^*_c(PM)),$

which can be followed by Connes' map $\Phi^{\Gamma}_*: H^*_{\Gamma}(PM) \to HC^*(\mathcal{A}^{\Gamma}_{PM})$, yielding

 $\chi_{GF}^{\mathsf{\Gamma}}: H^*(\mathfrak{a}_n, SO_n) \longrightarrow HC^*(\mathcal{A}_{PM}^{\mathsf{\Gamma}}).$

Composing χ_{GF}^{Γ} with the natural restriction

one recovers the Pontryagin classes of M as images of the universal Chern classes

 $c_{2i_1}\cdots c_{2i_k}\in H^*(\mathfrak{a}_n,SO_n), \quad 2i_1+\ldots+2i_k\leq n.$

From Hopf cyclic to cyclic : $M = \mathbb{R}^n$ $\chi_{\tau}(h^1 \otimes \ldots \otimes h^n)(a^0, \ldots, a^n) = \tau(a^0 h^1(a^1) \ldots h^n(a^n)),$ inducing characteristic homomorphism $\chi_{Hopf}^{\Gamma} : HC^*_{Hopf}(\mathcal{H}_n, SO_n) \to HC^*(\mathcal{A}_{PM}^{\Gamma})(1).$

Theorem 2. There is a canonical isomorphism $\kappa_n^* : H^*(\mathfrak{a}_n, SO_n) \xrightarrow{\simeq} PHC^*_{\mathsf{Hopf}}(\mathcal{H}_n, SO_n),$ such that $\chi_{Hopf}^{\Gamma} \circ \kappa_n^* = \chi_{GF}^{\Gamma}$.

Summary: Transverse Index Theorem

Theorem 3. There are canonical constructions for the following entities:

• a Hopf algebra \mathcal{H}_n with modular character δ , and with $(\delta, 1)$ modular pair in involution;

- a co-cyclic structure for any Hopf algebra with a modular pair in involution (δ, σ) ;
- an isomorphism κ_n^* between the Gelfand-Fuks cohomology $H^*_{\mathsf{GF}}(\mathfrak{a}_n)$, resp. $H^*_{\mathsf{GF}}(\mathfrak{a}_n, SO_n)$, and $HP^*(\mathcal{H}_n; \mathbb{C}_{\delta})$, resp. $HP^*(\mathcal{H}_n, SO_n; \mathbb{C}_{\delta})$;
- an action of \mathcal{H}_n on $\mathcal{A}_{\Gamma}(F\mathbb{R}^n)$, inducing a characteristic map χ^*_{Γ} : $HP^*(\mathcal{H}_n, SO_n; \mathbb{C}_{\delta}) \rightarrow HP^*_{(1)}(\mathcal{A}_{\Gamma}(P\mathbb{R}^n)) \cong H_*(P\mathbb{R}^n \times_{\Gamma} E\Gamma);$

• a class $\mathcal{L}_n \in H^*_{\mathsf{GF}}(\mathfrak{a}_n, SO_n)$, such that $ch_*(\mathcal{A}_{\Gamma}(P\mathbb{R}^n), \mathcal{H}(P\mathbb{R}^n), D)_{(1)} = (\chi^*_{\Gamma} \circ \kappa^*_n)(\mathcal{L}_n).$