Transverse geometry

The 'space of leaves' of a foliation (V, \mathcal{F}) can be described in terms of (M, Γ), with $M=$ complete transversal and $\Gamma=$ holonomy pseudogroup. The 'natural' 'transverse coordinates' form the crossed product algebra

$$
\mathcal{A}_{M}^{\Gamma}:=C_{c}^{\infty}(M) \rtimes \Gamma,
$$

consisting of finite sums of monomials of the form

$$
\sum f U_{\phi}^{*}, \quad f \in C_{c}^{\infty}(F M), \phi \in \Gamma,
$$

with the product

$$
f U_{\phi}^{*} \cdot g U_{\psi}^{*}=(f \cdot g \mid \phi) U_{\psi \phi}^{*} .
$$

How to find a geometric structure $=$ spectral triple that is 'invariant' under the holonomy ? D cannot be taken elliptic, unless the foliation admits a transverse Riemannian structure.

Foliation

Transversals
A. Connes \& H.M., The local index formula in noncommutative geometry, Geom. Funct. Anal. 5 (1995), Part I

Diff ${ }^{+}(M)$-invariant structure

First, one replaces M by $P M=F^{+} M / S O(n)$, where $F^{+} M=J^{1}(M)=\mathrm{GL}^{+}(n, \mathbb{R})$-principal bundle of oriented frames on M. The sections of $\pi: P M \rightarrow M$ are precisely the Riemannian metrics on M.

Canonical structure on $P M$: the vertical subbundle $\mathcal{V} \subset T(P M), \mathcal{V}=\operatorname{Ker} \pi_{*}$, has $G L^{+}(n, \mathbb{R})$ invariant Riemannian metric, since its fibers \cong $G L^{+}(n, \mathbb{R}) / S O(n)$. The bundle $\mathcal{N}=T(P M) / \mathcal{V}$ has tautological Riemannian structure: every point $q \in P M$ is an Euclidean structure on $T_{\pi(q)}(M) \cong \mathcal{N}_{q}$ via π_{*}.

Hypoelliptic signature operator

The hypoelliptic signature operator D on $P M$ is uniquely determined by $Q=D|D|$,

$$
Q=\left(d_{V}^{*} d_{V}-d_{V} d_{V}^{*}\right) \oplus \gamma_{V}\left(d_{H}+d_{H}^{*}\right),
$$

acting on $\mathcal{H}_{P M}=L^{2}\left(\wedge \cdot \mathcal{V}^{*} \otimes \wedge \cdot \mathcal{N}^{*}, \operatorname{vol}_{P M}\right)$; $d_{V}=$ vertical exterior derivative, $\gamma_{V}=$ grading for the vertical signature, $d_{H}=$ horizontal exterior differentiation with respect to a torsion-free connection, vol $_{P M}=\operatorname{Diff}^{+}(M)$-invariant volume form.
*If $n \equiv 1$ or $2(\bmod 4)$, one takes $P M \times S^{1}$ so that the dimension of the vertical fiber be even.

Theorem 1. The operator Q is selfadjoint and so is D defined by $Q=D|D|$. Moreover, $\left(\mathcal{A}_{P M}^{\ulcorner }, \mathcal{H}_{P M}, D\right)$ is a (nonunital) spectral triple with simple dimension spectrum
$\Sigma_{P}=\left\{k \in \mathbb{Z}^{+}, \quad k \leqq p:=\frac{n(n+1)}{2}+2 n\right\}$.
Proof - By means of adapted pseudodifferential calculus $=$ a version of $\Psi D O$ for Heisenberg manifolds:

$$
\begin{gathered}
\lambda \cdot \xi=\left(\lambda \xi_{v}, \lambda^{2} \xi_{n}\right), \quad \xi=\left(\xi_{v}, \xi_{n}\right), \lambda \in \mathbb{R}_{+}^{*} \\
\|\xi\|^{\prime}=\left(\left\|\xi_{v}\right\|^{4}+\left\|\xi_{n}\right\|^{2}\right)^{1 / 4} \\
\sigma^{\prime}(x, \lambda \cdot \xi)=\lambda^{q} \sigma^{\prime}(x, \xi), \quad \sigma^{\prime}=q-\text { homogeneus. }
\end{gathered}
$$

In particular, the residue density of $R \in \Psi^{\prime} D O$

$$
=\frac{1}{(2 \pi)^{p-n}} \int_{\|\xi\|^{\prime}=1} \sigma_{-p}^{\prime}(R)(q, \xi) d \xi d q .
$$

Example (codimension 1): $S^{1} / \operatorname{Diff}\left(S^{1}\right)$

$$
\begin{gathered}
\mathcal{H}=L^{2}\left(F S^{1} \times S^{1}, d s d \theta d \alpha\right) \otimes \mathbb{C}^{2} \\
Q=-2 \partial_{s} \partial_{\alpha} \gamma_{1}+\frac{1}{i} e^{-s} \partial_{\theta} \gamma_{2}+\left(\partial_{s}^{2}-\partial_{\alpha}^{2}-\frac{1}{4}\right) \gamma_{3},
\end{gathered}
$$

where $\gamma_{1}, \gamma_{2}, \gamma_{3}$ are the Pauli matrices

$$
\gamma_{1}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \gamma_{2}=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right] \gamma_{2}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] ;
$$

the dimension spectrum is $\Sigma=\{0,1,2,3,4\}$.
The components of the Cher character are $\left\{\varphi_{1}, \varphi_{3}\right\}$ and are given by:

$$
\begin{aligned}
\varphi_{1}\left(a^{0}, a^{1}\right) & =\left\ulcorner\left(\frac{1}{2}\right) f\left(a^{0}\left[Q, a^{1}\right]\left(Q^{2}\right)^{-1 / 2}\right)\right. \\
& -\frac{1}{2!}\left\ulcorner\left(\frac{3}{2}\right) f\left(a^{0} \nabla\left[Q, a^{1}\right]\left(Q^{2}\right)^{-3 / 2}\right)\right. \\
& +\frac{1}{3!}\left\ulcorner\left(\frac{5}{2}\right) f\left(a^{0} \nabla^{2}\left[Q, a^{1}\right]\left(Q^{2}\right)^{-5 / 2}\right)\right. \\
& -\frac{1}{4!}\left\ulcorner\left(\frac{7}{2}\right) f\left(a^{0} \nabla^{3}\left[Q, a^{1}\right]\left(Q^{2}\right)^{-7 / 2}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \varphi_{3}\left(a^{0}, a^{1}, a^{2}, a^{3}\right)= \\
& \frac{1}{3 i} \Gamma\left(\frac{3}{2}\right) f\left(a^{0}\left[Q, a^{1}\right][Q, a] \cdots\left[Q, a^{3}\right]\left(Q^{2}\right)^{-3 / 2}\right) \\
- & \frac{1}{4!} \Gamma\left(\frac{5}{2}\right) f\left(a^{0} \nabla\left[Q, a^{1}\right]\left[Q, a^{2}\right] \cdots\left[Q, a^{3}\right]\left(Q^{2}\right)^{-5 / 2}\right) \\
- & \frac{1}{3 \cdot 4}\left\ulcorner(\frac { 5 } { 2 }) f \left(a ^ { 0 } [Q , a ^ { 1 }] \nabla \left(\left[Q, a^{2}\right]\left[Q, a^{3}\right]\left(Q^{2}\right)^{-5 / 2}\right.\right.\right. \\
- & \frac{1}{2 \cdot 4} \Gamma\left(\frac{5}{2}\right) f\left(a^{0}\left[Q, a^{1}\right]\left[Q, a^{2}\right] \nabla\left[Q, a^{3}\right]\left(Q^{2}\right)^{-5 / 2}\right) .
\end{aligned}
$$

The computation is purely symbolical, but requires the symbol σ_{-4}^{\prime}, hence about 10^{3} terms! It eventually yields the following result:

$$
\left(\varphi_{1}\right)_{(1)}\left(a^{1}, a^{1}\right)=0, \quad \forall a^{0}, a^{1} \in \mathcal{A} ;
$$

in fact, each of the 4 terms turns out to be 0; on the other hand

$$
\left(\varphi_{3}\right)_{(1)}=\frac{1}{12 \pi^{3 / 2}}(\tilde{\mu}+b \psi)
$$

where

$$
\begin{aligned}
& \widetilde{\mu}\left(f^{0} U_{\varphi_{0}}, f^{1} U_{\varphi_{1}}, \ldots, f^{3} U_{\varphi_{3}}\right)=0, \quad \varphi_{0} \varphi_{1} \varphi_{2} \varphi_{3} \neq 1 \\
& =\int f^{0} \varphi_{0}^{*}\left(d f^{1}\right) \wedge\left(\varphi_{0} \varphi_{1}\right)^{*}\left(d f^{2}\right) \wedge\left(\varphi_{0} \varphi_{1} \varphi_{2}\right)^{*}\left(d f^{3}\right) .
\end{aligned}
$$

Underlying algebraic structure

W.l.o.g. can assume $M=\mathbb{R}^{n}$, with the flat connection; $\left\{X_{k} ; 1 \leq k \leq n\right\},\left\{Y_{i}^{j} ; 1 \leq i, j \leq n\right\}$ horizontal, resp. vertical vector fields. The operator Q is built of these vector fields, and the cocycle involves iterated commutators of them acting on $\mathcal{A}_{F M}^{\Gamma}$.
E.g. in case $n=1$,

$$
Y=y \frac{\partial}{\partial y} \quad \text { and } \quad X=y \frac{\partial}{\partial x}
$$

acting as

$$
Y\left(f U_{\varphi}\right)=Y(f) U_{\varphi}, \quad X\left(f U_{\varphi}\right)=X(f) U_{\varphi} .
$$

However, while Y acts as derivation

$$
Y(a b)=Y(a) b+a Y(b), \quad a, b \in \mathcal{A}^{\ulcorner } .
$$

X satisfies instead

$$
X(a b)=X(a) b+a X(b)+\delta_{1}(a) Y(b)
$$

$$
\delta_{1}\left(f U_{\varphi^{-1}}\right)=y \frac{d}{d x}\left(\log \frac{d \varphi}{d x}\right) f U_{\varphi^{-1}}
$$

δ_{1} is a derivation,

$$
\delta_{1}(a b)=\delta_{1}(a) b+a \delta_{1}(b)
$$

but its higher commutators with X

$$
\delta_{n}\left(f U_{\varphi^{-1}}\right)=y^{n} \frac{d^{n}}{d x^{n}}\left(\log \frac{d \varphi}{d x}\right) f U_{\varphi^{-1}}, \quad \forall n \geq 1
$$

satisfy more complicated Leibniz rules.

All this information can be encoded in a Hopf algebra \mathcal{H}_{1}. As algebra $=$ universal enveloping algebra of the Lie algebra with presentation

$$
\begin{gathered}
{[Y, X]=X, \quad\left[Y, \delta_{n}\right]=n \delta_{n}} \\
{\left[X, \delta_{n}\right]=\delta_{n+1}, \quad\left[\delta_{k}, \delta_{\ell}\right]=0, \quad n, k, \ell \geq 1}
\end{gathered}
$$

The coproduct is determined by

$$
\begin{aligned}
\Delta Y & =Y \otimes 1+1 \otimes Y \\
\Delta X & =X \otimes 1+1 \otimes X+\delta_{1} \otimes Y \\
\Delta \delta_{1} & =\delta_{1} \otimes 1+1 \otimes \delta_{1} \\
\Delta\left(\delta_{3}\right) & =\delta_{3} \otimes 1+1 \otimes \delta_{3}+ \\
& +\delta_{2} \otimes \delta_{1}+3 \delta_{1} \otimes \delta_{2}+\delta_{1}^{2} \otimes \delta_{1}
\end{aligned}
$$

the antipode is determined by

$$
S(Y)=-Y, S(X)=-X+\delta_{1} Y, S\left(\delta_{1}\right)=-\delta_{1}
$$

and the counit is

$$
\varepsilon(h)=\text { constant term of } \quad h \in \mathcal{H}_{1} .
$$

The canonical trace τ_{Γ} on $\mathcal{A}\ulcorner$ satisfies

$$
\tau_{\Gamma}(h(a))=\delta(h) \tau_{\Gamma}(a), \quad \forall h \in \mathcal{H}_{1}, a \in \mathcal{A} .
$$

where $\delta \in \mathcal{H}_{1}^{*}$ is the character

$$
\delta(Y)=1, \quad \delta(X)=0, \quad \delta\left(\delta_{n}\right)=0
$$

While $S^{2} \neq$ Id, the δ-twisted antipode,

$$
\widetilde{S}(h)=\delta\left(h_{(1)}\right) S\left(h_{(2)}\right),
$$

is involutive: $\widetilde{S}^{2}=\mathrm{Id}$.

Finally, the cochains $\left\{\varphi_{1}, \varphi_{3}\right\}$ can be recognized as belonging to the range of a certain cohomological characteristic map.

More precisely, requiring the assignment

$$
\begin{aligned}
& \chi_{\Gamma}\left(h^{1} \otimes \ldots \otimes h^{n}\right)\left(a^{0}, \ldots, a^{n}\right) \\
& \quad=\tau_{\Gamma}\left(a^{0} h^{1}\left(a^{1}\right) \ldots h^{n}\left(a^{n}\right)\right),
\end{aligned}
$$

to induce a characteristic homomorphism

$$
\chi_{\Gamma}^{*}: H C_{\mathrm{Hopf}}^{*}\left(\mathcal{H}_{1}\right) \rightarrow H C^{*}\left(\mathcal{A}_{\Gamma}\right),
$$

practically dictates the definition of the Hopf cyclic cohomology.
[A. Connes \& H.M., Hopf algebras, cyclic Cohomology and the transverse index theorem, Commun. Math. Phys. 198 (1998)]
$\mathcal{H}=$ Hopf algebra over a field k containing \mathbb{Q}, $(\delta, \sigma)=$ modular pair: $\delta \in \mathcal{H}^{*}$ character, and $\sigma \in \mathcal{H}, \Delta(\sigma)=\sigma \otimes \sigma, \varepsilon(\sigma)=1$, with $\delta(\sigma)=1$. One also requires $\widetilde{S}^{2}=$ Id.

Then the following is a (co)cyclic structure:

$$
\begin{aligned}
\mathcal{H}_{(\delta, \sigma)}^{\natural}= & \mathbb{C} \oplus \bigoplus_{n \geq 1} \mathcal{H}^{\otimes^{n}}: \\
\delta_{0}\left(h^{1} \otimes \ldots \otimes h^{n-1}\right)= & 1 \otimes h^{1} \otimes \ldots \otimes h^{n-1} \\
\delta_{j}\left(h^{1} \otimes \ldots \otimes h^{n-1}\right)= & h^{1} \otimes \ldots \otimes \Delta h^{j} \otimes \ldots \otimes h^{n-1} \\
& 1 \leq j \leq n-1 \\
\delta_{n}\left(h^{1} \otimes \ldots \otimes h^{n-1}\right)= & h^{1} \otimes \ldots \otimes h^{n-1} \otimes \sigma \\
\sigma_{i}\left(h^{1} \otimes \ldots \otimes h^{n+1}\right)= & h^{1} \otimes \ldots \otimes \varepsilon\left(h^{i+1}\right) \otimes \ldots \otimes h^{n+1} \\
& 0 \leq i \leq n \\
\tau_{n}\left(h^{1} \otimes \ldots \otimes h^{n}\right)= & \widetilde{S}\left(h^{1}\right) \cdot\left(h^{2} \otimes \ldots \otimes h^{n} \otimes \sigma\right) .
\end{aligned}
$$

Equivalence of characteristic maps

[Gelfand-Fuchs-Bott-Haefliger] \Longrightarrow Hopf
$J^{\infty} M:=\left\{j_{0}^{\infty}(\psi) ; \psi: \mathbb{R}^{n} \rightarrow M\right\}$,
$\pi_{1}: J^{\infty} M \rightarrow J^{1} M=F M$ projection
with cross-section

$$
\sigma_{\nabla}(u)=j_{0}^{\infty}\left(\exp _{x}^{\nabla} \circ u\right), \quad u \in F_{x} M
$$

given by connection $\nabla ; \forall a \in \mathrm{GL}_{n}(\mathbb{R}), \forall \varphi \in \Gamma$ $\sigma_{\nabla} \circ R_{a}=R_{a} \circ \sigma_{\nabla} \quad$ and $\quad \sigma_{\nabla^{\varphi}}=\widetilde{\varphi}^{-1} \circ \sigma_{\nabla} \circ \widetilde{\varphi}$.
Define $\quad \sigma_{\nabla}\left(\varphi_{0}, \ldots, \varphi_{p}\right): \Delta^{p} \times F M \rightarrow J^{\infty} M$ by

$$
\begin{gathered}
\sigma_{\nabla}\left(\varphi_{0}, \ldots, \varphi_{p}\right)(t, u)=\sigma_{\nabla\left(\varphi_{0}, \ldots, \varphi_{p} ; t\right)}(u), \\
\text { where } \quad \nabla\left(\varphi_{0}, \ldots, \varphi_{p} ; t\right)=\sum_{0}^{p} t_{i} \nabla^{\varphi_{i}} ; \\
\sigma_{\nabla}\left(\varphi_{0} \varphi, \ldots, \varphi_{p} \varphi\right)(t, u)=\tilde{\varphi}^{-1} \sigma_{\nabla}\left(\varphi_{0}, \ldots, \varphi_{p}\right)(t, \widetilde{\varphi}(u)) .
\end{gathered}
$$

$C^{*}\left(\mathfrak{a}_{n}\right)=$ Gelfand-Fuchs Lie algebra cohomology complex of $\mathfrak{a}_{n}=$ Lie algebra of formal vector fields on \mathbb{R}^{n}.

For $\varpi \in C^{q}\left(\mathfrak{a}_{n}\right)$, define $\forall \eta \in \Omega_{c}^{m}(F M)$,

$$
\begin{aligned}
& \left\langle C_{p, m}(\varpi)\left(\varphi_{0}, \ldots, \varphi_{p}\right), \eta\right\rangle= \\
& (-1)^{\frac{m(m+1)}{2}} \int_{\Delta^{p} \times F M} \eta \wedge \sigma_{\nabla}\left(\varphi_{0}, \ldots, \varphi_{p}\right)^{*}(\widetilde{\varpi})
\end{aligned}
$$

$C_{\nabla}(\varpi)=\sum C_{p, m}(\varpi): C^{*}\left(\mathfrak{a}_{n}\right) \rightarrow C^{*}\left(\Gamma ; \Omega_{c}^{*}(F M)\right) ;$ defines a map of (total) complexes,

$$
C_{\nabla}(d \varpi)=(\delta+\partial) C_{\nabla}(\varpi)
$$

For the relative (to $S O_{n}$) cohomology, one constructs similarly a homomorphism

$$
H^{*}\left(\mathfrak{a}_{n}, S O_{n}\right) \rightarrow H^{*}\left(\left\ulcorner; \Omega_{c}^{*}(P M)\right),\right.
$$

which can be followed by Connes' map $\Phi_{*}^{\Gamma}: H_{\Gamma}^{*}(P M) \rightarrow H C^{*}\left(\mathcal{A}_{P M}^{\ulcorner }\right)$, yielding

$$
\chi_{G F}^{\ulcorner }: H^{*}\left(\mathfrak{a}_{n}, S O_{n}\right) \longrightarrow H C^{*}\left(\mathcal{A}_{P M}^{\ulcorner }\right) .
$$

Composing $\chi_{G F}^{\ulcorner }$with the natural restriction

$$
P H C^{*}\left(\mathcal{A}_{P M}^{\ulcorner }\right) \rightarrow P H C^{*}\left(C_{c}^{\infty}(P M)\right.
$$

one recovers the Pontryagin classes of M as images of the universal Chern classes
$c_{2 i_{1}} \cdots c_{2 i_{k}} \in H^{*}\left(\mathfrak{a}_{n}, S O_{n}\right), \quad 2 i_{1}+\ldots+2 i_{k} \leq n$.

From Hopf cyclic to cyclic: $\quad M=\mathbb{R}^{n}$
$\chi_{\tau}\left(h^{1} \otimes \ldots \otimes h^{n}\right)\left(a^{0}, \ldots, a^{n}\right)=\tau\left(a^{0} h^{1}\left(a^{1}\right) \ldots h^{n}\left(a^{n}\right)\right)$, inducing characteristic homomorphism
$\chi_{\text {Hopf }}^{\ulcorner }: H C_{\text {Hopf }}^{*}\left(\mathcal{H}_{n}, S O_{n}\right) \rightarrow H C^{*}\left(\mathcal{A}_{P M}^{\Gamma}\right)_{(1)}$.

Theorem 2. There is a canonical isomorphism

$$
\kappa_{n}^{*}: H^{*}\left(\mathfrak{a}_{n}, S O_{n}\right) \xrightarrow{\simeq} P H C_{\mathrm{Hopf}}^{*}\left(\mathcal{H}_{n}, S O_{n}\right),
$$

such that $\quad \chi_{H o p f}^{\Gamma} \circ \kappa_{n}^{*}=\chi_{G F}^{\Gamma}$.

Summary: Transverse Index Theorem

Theorem 3. There are canonical constructions

 for the following entities:- a Hopf algebra \mathcal{H}_{n} with modular character δ, and with $(\delta, 1)$ modular pair in involution;
- a co-cyclic structure for any Hopf algebra with a modular pair in involution (δ, σ);
- an isomorphism κ_{n}^{*} between the Gelfand-Fuks cohomology $H_{\mathrm{GF}}^{*}\left(\mathfrak{a}_{n}\right)$, resp. $H_{\mathrm{GF}}^{*}\left(\mathfrak{a}_{n}, S O_{n}\right)$, and $H P^{*}\left(\mathcal{H}_{n} ; \mathbb{C}_{\delta}\right)$, resp. $H P^{*}\left(\mathcal{H}_{n}, S O_{n} ; \mathbb{C}_{\delta}\right)$;
- an action of \mathcal{H}_{n} on $\mathcal{A}_{\Gamma}\left(F \mathbb{R}^{n}\right)$, inducing a characteristic map $\chi_{\Gamma}^{*}: H P^{*}\left(\mathcal{H}_{n}, S O_{n} ; \mathbb{C}_{\delta}\right) \rightarrow$ $H P_{(1)}^{*}\left(\mathcal{A}_{\Gamma}\left(P \mathbb{R}^{n}\right)\right) \cong H_{*}\left(P \mathbb{R}^{n} \times_{\Gamma} E \Gamma\right)$;
- a class $\mathcal{L}_{n} \in H_{\mathrm{GF}}^{*}\left(\mathfrak{a}_{n}, S O_{n}\right)$, such that $c h_{*}\left(\mathcal{A}_{\Gamma}\left(P \mathbb{R}^{n}\right), \mathcal{H}\left(P \mathbb{R}^{n}\right), D\right)_{(1)}=\left(\chi_{\Gamma}^{*} \circ \kappa_{n}^{*}\right)\left(\mathcal{L}_{n}\right)$.

