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Abstract

A partially hyperbolic diffeomorphism is dynamically coherent if
its center, center-stable, and center-unstable invariant distributions
are integrable, i.e., tangent to foliations. Dynamical coherence is a
key assumption in the theory of stable ergodicity. The main result:
a partially hyperbolic diffeomorphism f: M — M is dynamically co-
herent if the strong stable and unstable foliations are quasi-isometric
in the universal cover M, i.e., for any two points in the same leaf,
the distance between them in M is bounded from below by a linear
function of the distance along the leaf.

Let M be an m-dimensional differentiable manifold. A k-dimensional
distribution £ on M is a continuous (in z € M) family of k-planes E(z) C
T,M.

By a k-dimensional foliation W of M we mean a partition of M into k-
dimensional, complete, connected, C*-submanifolds W (z) 3 z (called leaves)
which (as C'-submanifolds) depend continuously (in the compact — open
topology) on x € M. Let D™ denote the open unit ball in R". For each point
x € M, there is a coordinate chart (U, ¢) of W at z, i.e., a neighborhood
U and a homeomorphism ¢ : D¥ x D™ * — U such that for each p €
D™=k the set Wy (4(0,p)) := ¢(D*,p) (called the local leaf) is contained
in W(¢(0,p)) and ¢(-,p) : DF — W(¢(p)) is a C' diffeomorphism which
depends continuously on p € D™ * in the C''-topology.
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If W is a k-dimensional foliation on M, then the family of tangent planes
{E(z) = T,W(x)}sen is a k-dimensional distribution on M. A distribution
E is called integrable if there is a foliation W whose leaves are tangent to E,
ie., E(x) =T,W(x) for each z € M. It is not clear (to the author) to what
extent the existence of such an integral foliation (globally or locally) implies
its uniqueness.

If W is a foliation, denote by dy, the distance along the leaves of W and
by W;s(x) the ball of radius 6 in W (x) centered at z.

A diffeomorphism f of a compact Riemannian manifold M is called par-
tially hyperbolic if there are constants 0 < A} < Ay <71 < 1< v < g < g,
Cph > 1 and, for every x € M, subspaces E*(z), E¢(x), E*(x) (called stable,
center and unstable, respectively) such that for every x € M

1. T,M = E*(z) ® E¢(z) ® E*(x);

2. the distributions F*, E° and E“ are invariant under the derivative df,
ie., df (z)E¥(z) = E*(f(x)), v = u, ¢, s;

3. C;hl)\’fHUSH < ||df™(z)v¥|| < CponAy||v?|| for each v* € E*(z) and n > 0;
4. C’l:hlfy?||vc|| < |ldf™(x)ve|| < Con¥y||ve|| for each v¢ € E¢(x) and n > 0;
5. C'p_hlu’f||v“|| < ||df™(z)v"]| < Cpnps||v*|| for each v* € E*(z) and n > 0.

It is assumed that at least one of the two distributions E* or E" is nontrivial.
The stable E® and unstable E* distributions are known to be Hoélder con-
tinuous [BP01] and integrable, i.e., there exist foliations W* and W*, called
(strong) stable and unstable, respectively, such that T,W?*(z) = E*(z) and
T,W*(z) = E*(z) for each z € M [BP74].

The center distribution E° is not always integrable [Wil98]. Its integra-
bility was established by M. Hirsch, C. Pugh and M. Shub for small per-
turbations of partially hyperbolic diffeomorphisms whose center distribution
is integrable and either is Lipschitz continuous or its integral foliation has
compact leaves [HPS77].

A partially hyperbolic diffeomorphism is called dynamically coherent if
the distributions F¢, E“, and E“ are integrable. The corresponding fo-
liations are called the center, center-stable, and center-unstable foliations,
respectively [BPSWO01].

Dynamical coherence is a key assumption (dynamical coherence) in the
theory of stable ergodicity for partially hyperbolic diffeomorphisms which
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was created by C. Pugh and M. Shub [GPS94], [PS97], [PS00] and further
developed by K. Burns and A. Wilkinson [BPSWO01].

The following property of a distribution implies its “unique” integrability
and is similar to the uniqueness of solutions of ordinary differential equations.

A continuous k-dimensional distribution £ on a smooth Riemannian man-
ifold M is called locally uniquely integrable if for each x € M there is a k-
dimensional C'-submanifold Wi, (z) and a(x) > 0 such that every piecewise
Cl-curve o : [0,1] — M satisfying (i) o(0) = =z, (ii) ¢(¢t) € E(o(t)) for
t € [0,1], and (iii) length(o) < a(z), is contained in Wj,.(z). Obviously, if F
is locally uniquely integrable, then it is integrable and the integral foliation
is unique.

If E is a smooth distribution, its unique local integrability can be estab-
lished by checking the Frobenius condition — the Lie brackets of vector fields
tangent to £ must be tangent to E.

The main result of this paper is the integrability of the center distribution
(and its joint integrability with the stable and unstable distributions) for
partially hyperbolic diffeomorphisms whose stable and unstable foliations
are quasi-isometric. s

A foliation W of a simply connected Riemannian manifold M is called
quasi-isometric [Fen92] if there are positive constants a and b such that for
any two points z and y which lie in the same leaf of W,

dW(‘Tay) < ad(x:y)—i_b

THEOREM 1. Let f be a partially hyperbolic diffeomorphism of a compact
m-dimensional Riemannian manifold M. Suppose the stable W* and unstable
W foliations of f are quasi-isometric in the universal cover M.

Then the distributions E¢, B = E°@® E?, and E® = E°® E" are locally
untquely integrable; in particular, f is dynamically coherent.

Proof. We will prove the local unique integrability of E¢. The local unique
integrability of E°* and the existence of the center-unstable foliation W<
follow by reversing the time. The local unique integrability of E¢ and the
existence of the center foliation W€ are established by observing that every
C'-curve starting at © € M and tangent to E° is also tangent to E° and to
E°* and therefore is contained in W¢(z) (| W (x).

LEMMA 2. Suppose W is a k-dimensional foliation of M and E is an -
dimensional distribution such that k+1=m and E is (uniformly) transverse
to W, i.e., T,W(x)N E(x) = {0} for each x € M.
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There is Cy > 0 and for every 6 > 0 there is ¢g > 0 such that if d(x,y) < €y
then there is a C'-curve o : [0,1] — M with the property that o(0) = =,
o(1) € Ws(y), o(t) € E(o(t)) for t € [0,1], length(o) < Cyd(x,y), and
dW(y7 0(1)) S COd(xa y)

Proof. By choosing a small enough ¢, we may assume that a neighborhood
of z under consideration is identified by a coordinate chart (with uniformly
bounded derivative) with the unit ball in R™. For a small enough ¢ > 0, the
ball W5(y) is contained in a local leaf and is identified with a k-dimensional
C'-submanifold in R™. Assuming that ¢, is small enough, there is a point
z € B for which d(z, z) = d(z, B) and dw (z,y) < Cd(z,y), where C depends
only on W. In particular d(z,z) < d(z,y) and z — z L T,B. The union
(k 4+ 1)-dimensional C'-surface

S = U (B4 (1 —1t)(z — 2))

0<t<1

of the parallel translates of the local leaf B along the segment connecting x
to y is a (k + 1)-dimensional C'-surface which is a Riemannian product of
the interval [0, ||z — z||] and B. We refer to B and x — z as the horizontal
and vertical components, respectively. For s € S, let L(s) = E(s)(7TsS.
Since F' is uniformly transverse to B, if 6 and ¢y are small enough, then L is
a continuous line field L on S which is uniformly (in z, y, and s) transverse
to the codimension 1 (in S) submanifolds B + (1 — t)(z — z). Therefore, for
each s € S there is a unique vector v(s) € L(s) whose vertical component is
z—x. The uniform transversality of E and B+ (1—t)(z — z) implies that v is



a uniformly (in z, y, and s) bounded, continuous vector field on S. For each
s € S, the vertical component of v(s) is z — 2 and the horizontal component
is bounded by a constant C’ which depends on €5 and 6 but not on z, y, and
s. By the existence theorem for ordinary differential equations, there is a
(possibly not unique) solution o(-) of § = v(s) with o(0) = x. The solution
stays within the C’-cone near the vertical segment in S. Therefore, if ¢,
and ¢ are small enough, its interval of definition can be extended to [0, 1] so
that o(1) € B, length(o) < v/1+ C?d(z,2) < Cod(z,y), and dw(y,o(1)) <
Cod(z,y). O

To prove the unique integrability of £, lift all distributions and foliations
to the universal cover M. Fix r € (0,¢). For x € M denote by W*(z) the
set of ends of all piecewise C'-curves o : [0,1] — M such that o(0) = z,
a(t) € E(o(t)), and length(o) < r.

LEMMA 3. Lety,z € M be such that y, z € W (z) and z € W(y).
Then z = y.

Proof. By assumption, there are C'-curves o, and o, tangent to E° and
connecting = to y and z, respectively. Consider the points f™(z), f"(y),
f™(z). From the partial hyperbolicity inequalities we have:

length(f"(oy)) < Cpryy - length(oy), length(f"(0,)) < Cprysy - length(o,)
and therefore
d(f"(y), f"(2)) < Cyns (length(oy) + length(a)) .

On the other hand, let d, denote the distance along the leaves of W* and let o
be the C'-curve in W*(f™(y)) = W*(f™(z)) which realizes d,(f"(y), f*(2)z).
Then

du(f"(y), f"(2)) = length(f"(0)) > C,, uslength(f "(0)) > C,, udu(y, z) .
Since W*" is a quasi-isometric foliation,

d(f"(y): [(2)) > (du(f" (), f*(2)) = b)/a > (Cpp iy duly, 2) — b) [a.
Since d(f"(z), f"(y)) < length(f"(oy)), d(f"(z), ["(2)) < length(f"(02)),

and since y5 < o, we obtain a contradiction with the triangle inequality for
f™(x), f"(y), f*(z) (with n sufficiently large) unless d,(y, z) = 0. O
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We need to show that W (x) is a C*-submanifold of the same dimension
as B. .

Fix 6 > 0 such that for each x € M, the d-ball W(z) is contained in
a local leaf of W*. For € > 0 and y € W*(x), denote by E(y) the e-ball
in E°(y) centered at y. Since W*(y) is transverse to E(y) at y, for small
enough 0 < € < ¢ and each z € E%(y), the leaf W"(2) is transverse to
E®(y) at z. By Lemma 2, if r and € < r are small enough, then each leaf
Wi(z) intersects WS(x) and, by Lemma 3, the intersection consists of a
single point 7(z). Let 21,29 € E¢(y). Since W{(z) depends continuously on
z as a Cl-submanifold, d(m(z1), W¥(22)) — 0 as d(z1,22) — 0. Therefore,
by Lemma 2, d(7(z1),7(22) — 0 as d(z1,22) — 0. It follows that 7 is
continuous and a homeomorphism onto its image which is a neighborhood
of y = w(y) in W& (x). It follows that W, *(z) is a topological submanifold.
Obviously E(y) is the tangent plane to W (y) at y. Since the distribution
E* is continuous, W< (z) is a C' submanifold. Hence E is locally uniquely
integrable and the leaf W (z) of the integral foliation W passing through
x € M is the set of ends of piecewise C'-curves starting at z and tangent to
E<. O

In general, the stable and unstable foliations of a partially hyperbolic dif-
feomorphism do not have to be quasi-isometric. For example, for the time-1
map of the geodesic flow on a compact manifold of negative sectional curva-
ture, the stable and unstable foliations are not quasi-isometric — the unstable
horosphere expands exponentially with time but the distance between points
on the horosphere grows linearly in time.

PROPOSITION 4. Let W be a k-dimensional foliation of the m-dimensional
torus T™. Suppose there is an (m — k)-dimensional plane A such that
T.W(x) A =0 for each z € T™.
Then the lift W (of W to R™) is quasi-isometric.

Proof. Let B be the 1e orthogonal complement of the lift A of Ain R™. Fix
z € R™ and let 7 : W (z) — B be the orthogonal (parallel to A) projection of
W (z) to B. By compactness, W is uniformly transverse to A. Therefore there
is a > 0 such that ||dr(y)v|| > a||v|| for each y € W(z) and v € TyW( ).
Hence, by compactness, there is > 0 such that for each y € W( ), the map

7 restricted to the d-neighborhood W(s( ) of y in W( ) is a diffeomorphism
onto its image which contains the ad-neighborhood of 7(y). It follows that 7

is a covering map. Since W (z) and B are simply connected, 7 is one-to-one.
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Let y,z € W(x) and let o : [0,1] — B be the straight line segment
connecting 7(y) to w(z). The lift 7! oo is a C'-curve connecting y to z. By
uniform transversality,

d(m(y),n(z)) = length(o) > élength(w‘1 oo) > édw(y, Z),

where, as before, dg;(y, 2) is the distance from y to z in W(m) O

The next proposition is an application of Proposition 4 to a certain class
of partially hyperbolic diffeomorphisms of T™.

PROPOSITION 5. Let fo: T3 — T2 act by
T
fo(z,y,2) = (A<y),z - a) mod 1,

where A = (? }) and o« € R. Suppose fi = g o fy, where g : T —
T3 is a C-diffeomorphism such that ||dg(p) — I|| < 0.1 for each p € T3.
Then f1 1s partially hyperbolic and its weak stable, weak unstable, and center

distributions are locally uniquely integrable.

Proof. Use a subindex 0 for the invariant distributions of f, and 1 for those
of fi. The stable Ef(z), unstable E§(z), and center E§(x) subspaces for
fo are 1-dimensional and mutually perpendicular. The subspaces at different
points are also parallel, so we omit the dependence on z € T3. The derivative

3+v5
2

dfy stretches vectors from E§ by a factor of ~ 2.6180, contracts

vectors from Ej by a factor of ~ .3820, and acts as an isometry in

the direction of E§. For a tangent vector v, let v = v" + v® + v° be the
decomposition given by the splitting E§ & Ej @ Eg.
Consider the strong and weak, stable and unstable 7 /6-cones

Ky ={v:|v° +v°|| < .5}, K& = {v: |v*| < .5},
K ={v:|v" + v < .5}, K& = {v: | < .5}.

A direct computation shows that the strong and weak unstable cones are
invariant under df; and the strong and weak stable cones are invariant under



dfi’'. Tt follows that f; has invariant distributions E¥, Ef, ES* E¢ which
lie in the 7/6-cones of the corresponding distributions of f.

Again, a direct computation shows that each vector from K is stretched
by df; by a factor of at least 2 and each vector from K§ is stretched by df;!
by a factor of at least 2.

Let v € ES. Then ||v*|| < .5||v|| and ||v*|| < .5||v]|. A direct computation
shows that 1.87!||v|| < ||dfiv|| < 1.8||v||. Therefore f; is partially hyperbolic.

The stable W7 and unstable W foliations of f; satisfy the assumptions of
Proposition 4 with A = E§* for W} and A = E§® for W{* and the proposition
follows from Theorem 1. O

A partially hyperbolic diffeomorphism f : M — M is center-isometric if
it acts isometrically in the center direction, i.e., ||df(x)v|| = ||v|| for every
x € M and v € E¢(x).

PROPOSITION 6. If a partially hyperbolic diffeomorphism f : M — M 1is
center-isometric, then the distributions E¢, B, and E“ are locally uniquely
integrable; in particular, f is dynamically coherent.

Proof. The proof of the proposition is completely analogous to the proof of
Theorem 1 with the only exception that Lemma 3 should be replaced by the
following lemma. 0

LEMMA 7. There are ry > 0 and 6y > 0 such that for every r € (0, 7] and
d€ (0,00 ify,z€ M, y,z€ W(x), and z € Wi(y), then z = y.

Proof. Since the leaves of W* are C' and depend continuously on the point,
there is 6o > 0 and C; > 0 such that if 2’ € Wy (y), then

du(yla zl) S Cld(yla ZI)'
By the uniform expansion of W*,
du(f"(y), ["(2)) > Cpyl 5 du(y, 2).

Assuming that z # y, choose n > 0 so that dy(f*(y), f*¥(z)) < & for k =
0,1,...,n and d,(f" ' (y), /"™ (2)) > . Then

du(f"(y), ["(2)) = véy,

where v is the maximum of the norm of df over M.
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By assumption, there are C'-curves o, and o, which have length < r, are
tangent to E£° and connect x to y and z, respectively. Consider the points
™), f*(y), f*(z). By the partial hyperbolicity and center isometry,

length(f"(oy)) < Cpp - length(oy), length(f"(o,)) < Cpp - length(o,)
and therefore

d(f"(y), f*(2)) < Cpn(length(oy) + length(o,)) < 2Cy,r.

It follows that
Crléo < d(f™(y), f(z)) < 2Cpur

which gives a contradiction for a small enough 7. O

Let f : T> — T2 be a partially hyperbolic diffeomorphism (with one-
dimensional stable, center, and unstable distributions). The following ques-
tions arise naturally:

1) Are the stable and unstable foliations necessarily quasi-isometric?

2) Is f necessarily dynamically coherent?
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