Assignment \#1, due Monday, March 2

1.

(a) Let $F: \Omega \rightarrow \mathbb{R}^{n}$ with $\Omega \subset \mathbb{R}^{n}$. Show that $\left\|D^{2} F(x)\langle u, v\rangle\right\|_{\infty} \leq C\|u\|_{\infty}\|v\|_{\infty}$ with

$$
C=\max _{i} \sum_{j, k}\left|\frac{\partial^{2} F_{i}(x)}{\partial x_{j} \partial x_{k}}\right|
$$

(b) We want to solve the nonlinear system $x_{1}=\cos \left(x_{1}+x_{2}\right) / 3, x_{2}=\sin \left(x_{1}-x_{2}\right) / 3$ using the Newton method with initial guess $x^{0}=(0,0)$. Show that you can apply the Newton-Kantorovich theorem and (a). What does the theorem say about the location of x_{*} ?
(c) Perform the Newton iteration from (b) in Matlab with 310 digits accuracy (see example code on the course web page). How many iterations do you need to obtain $\left\|x^{k}-x_{*}\right\|_{\infty} /\left\|x_{*}\right\|_{\infty} \leq 10^{-300}$? How can you see the convergence order in your computations?
(d) Repeat (c) for the Broyden iteration with $x^{0}=(0,0), B_{0}=I$ (identity matrix). How many iterations do you need to obtain $\left\|x^{k}-x_{*}\right\|_{\infty} /\left\|x_{*}\right\|_{\infty} \leq 10^{-300}$? What convergence order do you observe numerically? Does B_{k} converge to $F^{\prime}\left(x_{*}\right)$? Check the convergence order of $\left\|\left(B_{k}-F^{\prime}\left(x_{*}\right)\right) s_{k}\right\| /\left\|s_{k}\right\|$.
2.
(a) Prove the following theorem: Assume that F satisfies assumptions (A1)-(A3) in Ω. Assume that $\gamma\left\|F^{\prime}\left(x_{*}\right)^{-1}\right\|\left\|x_{0}-x_{*}\right\|<\frac{2}{3}$. Show that the Newton iterates x_{k} converge q-quadratically to x_{*}. Hint: Use $\gamma\left\|F^{\prime}\left(x_{*}\right)^{-1}\right\|\left\|x_{0}-x_{*}\right\| \leq q$ and prove a modified form of (L2), then use this in the proof of quadratic convergence from class.
(b) Consider the example $F(x)=\arctan x$ for $x \in \mathbb{R}$ with $x_{*}=0$. What condition $\left|x_{0}-x_{*}\right|<c$ does (a) give for convergence?
3. Let $h_{0} \in\left(0, \frac{1}{2}\right]$ and $f(t):=\frac{1}{2} t^{2}-t+h_{0}$. Let $\rho_{-}:=1-\sqrt{1-2 h_{0}}$.
(a) Consider the Newton iterates t_{k} for the equation $f(t)=0$ with initial guess $t_{0}=0$. Show that t_{k} satisfies $t_{k-1}<t_{k}<\rho_{-}$. Show that this implies $\lim _{k \rightarrow \infty} t_{k}=\rho_{-}$.
(b) Show that t_{k} converges q-linearly for $h_{0}=\frac{1}{2}$. Show that t_{k} converges q-quadratically for $h_{0}<\frac{1}{2}$.
(c) Let $a_{0}:=1, a_{k+1}:=a_{k}\left(1-h_{k}\right), h_{k+1}:=\frac{1}{2} h_{k}^{2} /\left(1-h_{k}\right)^{2}$. Show that $t_{k+1}-t_{k}=h_{k} a_{k}$ for $k=0,1,2, \ldots$.
Hint: Let $d_{k}:=a_{k} h_{k}, \tau_{0}:=0, \tau_{k+1}:=\tau_{k}+d_{k}$. First show that $a_{k}-a_{k+1}=d_{k}$ and hence $\tau_{k}=1-a_{k}$. Then show that $d_{k}=\frac{1}{2} d_{k-1}^{2} /\left(1-\tau_{k}\right)$. On the other hand show from the definition of t_{k} that $t_{k+1}=\frac{\frac{1}{2} t_{k}^{2}-h_{0}}{t_{k}-1}$ which implies $\frac{1}{2}\left(t_{k+1}-t_{k}\right)^{2}=\frac{1}{2} t_{k+1}^{2}-t_{k+1}+h_{0}$ and hence $t_{k+1}-t_{k}=$ $\frac{1}{2}\left(t_{k}-t_{k-1}\right)^{2} /\left(1-t_{k}\right)$.
(d) Complete the proof of the Newton-Kantorovich theorem from class: Let $a_{k}=\omega_{k}^{-1}$, w.l.o.g. $\omega_{0}=1$. We showed that $\left\|x_{k+1}-x_{k}\right\| \leq d_{k}$ for $k=0,1,2, \ldots$ with d_{k} as defined in (c). Show that $\left\|x_{0}-x_{k}\right\|<\rho_{-}$for $k=0,1, \ldots$ Show that x_{k} form a Cauchy sequence which converges to x_{*} with $\left\|x_{0}-x_{*}\right\| \leq \rho_{-}$. Show that the convergence is r-linear for $h_{0}=\frac{1}{2}$, and r-quadratic for $h_{0}<\frac{1}{2}$.

