
Solution Assignment 1

1(a)

We have H := D2F (x) 〈u, v〉 ∈ Rn with Hi = D2Fi(x) 〈u, v〉. As explained in class, for a scalar function Fi the second

derivative D2Fi is a quadratic form with the Hessian matrix
(

∂2Fi
∂xj∂xk

)
j,k=1,...,n

so that Hi =
∑

j,k=1...n

∂2Fi(x)
∂xj∂xk

ujvk and

|Hi| ≤
∑

j,k=1...n

∣∣∣∣∂2Fi(x)
∂xj∂xk

∣∣∣∣ |uj | |vk| ≤
∑

j,k=1...n

∣∣∣∣∂2Fi(x)
∂xj∂xk

∣∣∣∣ ‖u‖∞ ‖v‖∞ = C ‖u‖∞ ‖v‖∞

‖H‖∞ = max
i=1...n

|Hi| ≤ C ‖u‖∞ ‖v‖∞

1(b)

Newton-Kantorovich theorem from class: Let X, Y Banach spaces. Let F : Ω → Y be continuously differentiable with
Ω ⊂ X open and convex. For the initial guess x0 ∈ Ω let F ′(x0) be invertible. Assume that∥∥F ′(x0)−1F (x0)

∥∥ ≤ α (1)∥∥F ′(x0)−1
(
F ′(y)− F ′(x)

)∥∥ ≤ ω0 ‖y − x‖ for x, y ∈ Ω (2)

h0 := αω0 ≤ 1
2 (3)

B := {x | ‖x− x0‖ ≤ ρ−} ⊂ Ω with ρ− :=
(
1−

√
1− 2h0

)
/ω0 (4)

Then the Newton sequence xk is well defined, xk ∈ B and converges to x∗ ∈ B with f(x∗) = 0. For h0 < 1
2 the convergence

is r-quadratic, for h0 = 1
2 the convergence is r-linear.

Let F (x) =
[

x1 − cos(x1 + x2)/3
x2 − sin(x1 − x2)/3

]
. Then DF (x) = I + 1

3

[
sin(x1 + x2) sin(x1 + x2)
− cos(x1 − x2) cos(x1 − x2)

]
, D2F1(x) = 1

3 cos(x1 +

x2)
[

1 1
1 1

]
, D2F2(x) = 1

3 sin(x1 − x2)
[

1 −1
−1 1

]
. We use the ∞-vector norm and the induced norms for linear

maps DF (“row sum norm”) and bilinear maps D2F (we denote all these norms by ‖·‖∞). Since F ∈ C2 and Ω is
convex we have ‖F ′(x)− F ′(y)‖ ≤ γ ‖x− y‖ for x, y ∈ Ω with γ = maxx∈Ω

∥∥D2F (x)
∥∥
∞. From (a) we obtain∥∥D2F (x)

∥∥
∞ = max

i=1...n

∑
j,k=1...n

∣∣∣∣∂2Fi(x)
∂xj∂xk

∣∣∣∣ ≤ 4
3 since |sin t| ≤ 1, |cos t| ≤ 1 for any x ∈ R2. Hence γ = 4

3 . We have

F (x0) =
[
−1

3
0

]
, F ′(x0) =

[
1 0
−1

3
4
3

]
, F ′(x0)−1 =

[
1 0
1
4

3
4

]
and F ′(x0)−1F (x0) =

[
−1/3
−1/12

]
, hence α = 1

3 .

We use
∥∥F ′(x0)−1 (F ′(y)− F ′(x))

∥∥
∞ ≤

∥∥F ′(x0)−1
∥∥
∞ γ ‖y − x‖∞ and get ω0 =

∥∥F ′(x0)−1
∥∥
∞ γ = 4

3 . Therefore

h0 := αω0 = 4
9 < 1

2 and ρ− =
(
1−

√
1
9

)
/

(
4
3

)
= 1

2 . We use the theorem with Ω = R2. Then conditions (1)–(4) are

satisfied, and we obtain that xk converges r-quadratically to a solution x∗ with ‖x∗‖∞ ≤ ρ− = 1
2 , i.e., x∗ is contained in the

square [−1
2 , 1

2 ]× [−1
2 , 1

2 ].

1(c)

1(d)

2(a)

(A1): There is x∗ ∈ Ω with F (x∗) = 0, (A2): F ′(x) satisfies Lipschitz condition: ‖F ′(x)− F ′(y)‖ ≤ γ ‖x− y‖ for
x, y ∈ Ω, (A3): F ′(x∗)−1 exists.
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Assume first that for k we have
γ

∥∥F ′(x∗)−1
∥∥ ‖xk − x∗‖ ≤ q <

2
3

(5)

We redo (L2) for this assumption:

∥∥F ′(xk)−1
∥∥ ≤ ∥∥F ′(x∗)−1

∥∥
1− ‖I − F ′(x∗)−1F ′(xk)‖

≤
∥∥F ′(x∗)−1

∥∥
1− q

where we used∥∥I − F ′(x∗)−1F ′(xk)
∥∥ =

∥∥F ′(x∗)−1
[
F ′(x∗)− F ′(xk)

]∥∥ ≤ ∥∥F ′(x∗)−1
∥∥ γ ‖x∗ − xk‖ ≤ q.

Under assumption (5) we can then estimate ‖xk+1 − x∗‖ in terms of ‖xk − x∗‖:

xk+1 − x∗ = xk − x∗ − F ′(xk)−1F (xk) = F ′(xk)−1

∫ 1

0

[
F ′(xk)− F ′ (x∗ + t(xk − x∗))

]
(xk − x∗)dt

‖xk+1 − x∗‖ ≤
∥∥F ′(xk)−1

∥∥∫ 1

0
γ(1− t) ‖xk − x∗‖2 dt =

∥∥F ′(xk)−1
∥∥ γ 1

2 ‖xk − x∗‖2 ≤
∥∥F ′(x∗)−1

∥∥ γ ‖xk − x∗‖2

2(1− q)

‖xk+1 − x∗‖ ≤ K ‖xk − x∗‖2 (6)

with K :=
∥∥F ′(x∗)−1

∥∥ γ/(2− 2q).

According to the problem, we initially have that (5) holds for k = 0. Therefore

K ‖x0 − x∗‖ =
γ

∥∥F ′(x∗)−1
∥∥ ‖x0 − x∗‖

2− 2q
≤ q

2− 2q
=: Q <

2
3

2− 4
3

= 1

We claim that for all k = 0, 1, 2, . . . we have (5) and

K ‖xk − x∗‖ ≤ Q(2k) (7)

We use induction: Both statements hold for k = 0. Assume that (5), (7) hold for k. Then ‖xk+1 − x∗‖ ≤
(K ‖xk − x∗‖) ‖xk − x∗‖ ≤ Q(2k) ‖xk − x∗‖ which implies that (5) holds for k + 1. Furthermore

K ‖xk+1 − x∗‖ ≤ (K ‖xk − x∗‖)2 ≤
(
Q(2k)

)2

which is (7) for k + 1.

Now (7) implies that limk→∞ xk = x∗. We also have (6). So both requirements for q-quadratic convergence are satisfied.

2(b)

F ′(x) = 1/(x2 + 1), F ′′(x) = −2x/(x2 + 1)2. We have F ′(x∗)−1 = 1. For the Lipschitz constant γ we use that
for F ∈ C2 we have γ = maxx ‖F ′′(x)‖. We can use the maximum over x ∈ R: F ′′′(x) = 0 for x = ±1/

√
3, and∣∣F ′′(±1/

√
3)

∣∣ = 3
8

√
3. As |F ′′(x)| is increasing for x < −3

8

√
3 and decreasing for x > 3

8

√
3 it is easy to see that

|F ′′(x)| ≤ 3
8

√
3 for all x ∈ R.

So we obtain the condition γ
∥∥F ′(x0)−1

∥∥ ‖x0 − x∗‖ < 2
3 or 3

8

√
3 |x0| < 2

3 or |x0| < 16
9
√

3
≈ 1.0264.

3(a)

Assume that tk < ρ−. As f ′′(t) = 1 > 0 we have p(t) := f(tk) + f ′(tk)(t − tk) < f(t) for t 6= tk by Taylor’s theorem,
i.e., the tangent line is below the graph of f . We have p(tk) = f(tk) > 0, p(ρ−) < f(ρ−) = 0, so therefore the zero tk+1

of p(tk) must be in (tk, ρ−). The sequence tk is increasing and bounded from above, hence it has a limit t∗ ≤ ρ− . Assume
t∗ < ρ−, then taking the limit in tk+1 = tk − f(tk)/f ′(tk) gives t∗ = t∗ − f(t∗)/f ′(t∗) with f(t∗) > 0, f ′(t∗) < 0 which
is a contradiction.
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3(b)

For h0 = 1
2 we have f(t) = 1

2(t− 1)2 and tk+1 = tk −
1
2 (tk−1)2

tk−1 , i.e., (tk+1− 1) = 1
2(tk − 1) which is q-linear convergence

to ρ− = 1 with factor 1
2 .

Case h0 < 1
2 : Consider a function f(t) with zero t∗. Taylor’s theorem gives p(t) := f(tk) + f ′(tk)(t − tk) = f(t) −

1
2f ′′(τk)(t− tk)2, hence p(t∗) = f(tk) + f ′(tk)(t∗ − tk) = 0− 1

2f ′′(τk)(t∗ − tk)2. Dividing by f ′(tk) gives

(t∗ − tk+1) = − f ′′(τk)
2f ′(tk)

(t∗ − tk)2

We use t∗ := ρ− and have for our function f that f ′′(τk) = 1, f ′(tk) = tk − 1. As tk < ρ− we have |f ′(tk)| ≥ |f ′(ρ−)| =√
1− 2h0 and

|tk+1 − ρ−| ≤
1

2
√

1− 2h0
|tk − ρ−|2 .

3(c)

We have ak+1 = ak(1− hk) = ak − dk and τk − τ0 = d0 + · · ·+ dk−1 = −(ak − a0), i.e., τk = 1− ak.

dk = akhk = ak−1(1− hk−1)1
2

h2
k−1

(1− hk−1)2
= 1

2

(ak−1hk−1)2

ak−1(1− hk−1)
= 1

2

d2
k−1

ak
= 1

2

d2
k−1

1− τk
.

On the other hand tk is defined by tk+1 = tk −
1
2 t2k−tk+h0

tk−1 =
1
2 t2k−h0

tk−1 . Multiplying by tk − 1 and adding 1
2 t2k+1 gives

1
2 t2k+1 − tk+1 + h0 = 1

2(tk+1 − tk)2. Therefore tk+1 − tk = −
1
2 t2k−tk+h0

tk−1 =
1
2 (tk−tk−1)2

1−tk
.

We have τo = t0 = 0 and τ1 = t1 = h0. We have for k ≥ 1 that tk+1 = tk − 1
2(tk − tk−1)2/(1 − tk) and τk+1 =

τk− 1
2(τk−τk−1)2/(1−τk). Hence we obtain by induction that tk = τk for all k ≥ 0. Therefore tk+1−tk = τk+1−τk = dk.

3(d)

‖x0 − xl‖ ≤
l−1∑
j=0

‖xj+1 − xj‖ ≤
l−1∑
j=0

dj
(c)
= tl

(a)
< ρ− (8)

‖xk − xl‖ ≤
l−1∑
j=k

‖xj+1 − xj‖ ≤
l−1∑
j=k

dj
(c)
= tl − tk (9)

Since tk converges, it is a Cauchy sequence: We can find for every ε > 0 an integer k0 such that k, l ≥ k0 imply |tl − tk| < ε
and hence ‖xk − xl‖ < ε. So xk is also a Cauchy sequence and has a limit x∗. Taking the limit l → ∞ in (8), (9) gives
‖x0 − x∗‖ ≤ ρ− and

‖xk − x∗‖ ≤ ρ− − tk

We have from (b) that ρ−− tk converges q-linearly to 0 for h0 = 1
2 , and it converges q-quadratically to 0 for h0 < 1

2 . By the
definition of r-convergence this means that xk converges r-linearly for h0 = 1

2 , and r-quadratically for h0 < 1
2 .
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