Solution Assignment 1

1(a)

We have H := D*F(z) (u,v) € R" with H; = D*F;(x) (u,v). As explained in class, for a scalar function F; the second
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derivative D2F; is a quadratic form with the Hessian matrix ( 83 g;k) . so that H; =
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1(b)

Newton-Kantorovich theorem from class: Let X, Y Banach spaces. Let F': {2 — Y be continuously differentiable with
2 C X open and convex. For the initial guess 2o € 2 let F’(z() be invertible. Assume that

HF/ m'() _1F :L'O H < (0% (1)
[ (o) ™" (F'(y) = F'(2))|| < wo Hy—wll forz,y € Q 2)
hg := awg S b 3)

B:={x| |z —xol]| < p-} CQ with p_ := (1 — M) Jwo “)

Then the Newton sequence x, is well defined, x;, € B and converges to z,. € B with f(z,) = 0. For hg < % the convergence
is r-quadratic, for hg = % the convergence is r-linear.

| @1 —cos(x1 +x2)/3 o 1| sin(zrdxe)  sin(zy 4 x2) 9
Let F(z) = { 2o — sin(zy — 2)/3 | Then DF(x) = I+ 3 ~cos(z1 — x3) cos(z1 — x2) , D*Fy(z) = % cos(z1+
x2) [ 1 1 ], D?Fy(z) = 3sin(z; — z2) [ _11 —11 } We use the oco-vector norm and the induced norms for linear
maps DF (“row sum norm”) and bilinear maps D*F (we denote all these norms by |[-||._). Since F' € C? and Q is
convex we have ||[F'(z) — F'(y)|| < ~|lz—yll for z,y € Q with y = max,cq ||[D*F(z)||_. From (a) we obtain
O*Fy(w
HD2F(55)HOO = zmlaxnjkz n‘axjﬁ(xlj < % since [sint| < 1, [cost| < 1 for any 2 € R% Hence v = 3. We have
—3 / 1 O / 10 / -1 1
F(xz9) = 30, F'(zg) = 1 , Fl(xg)~t = 13 and F'(xz9) " F(xg) = , hence a = 3.
0 ~1 4 1/12
We use || F'(zo) ™ (F'(y) — F’(a:))“oo || F'(z0) 1H 0% ||y - :BH and get wy = ||F'(zo) oy = 3. Therefore

hy = awy = % < % and p_ = (1 — \/g) / (%) = 5. We use the theorem with = R2. Then conditions (1)-(4) are

1

satisfied, and we obtain that x;, converges r-quadratically to a solution x, with ||z, |, < p— = 3, i.e., x4 is contained in the

square [_%7 %] X [_%a %]

1(c)
1(d)
2(a)

(A1): There is z, € Q with F(z.) = 0, (A2): F'(z) satisfies Lipschitz condition: ||[F'(z) — F'(y)|| < v |lx — y|| for
z,y € Q, (A3): F'(z,) ! exists.



Assume first that for k£ we have

2
Y| ()7 | e — 24| < g < 3 Q)
We redo (L2) for this assumption:
-1 [[F" )] [ F" ()]
1™l < TPt < 14

where we used
|7 = Fa) P )| = [F ) [F' () = F'an)] || < [F @)y e — 2l < g

Under assumption (5) we can then estimate ||z;11 — || in terms of ||z — z4]|:

1
Tyl — Tu = Tp — o — F'(x) " F () = F’(xk)l/o [F'(zk) — F' (24 4 t(zg — 24))] (wp — z0)dt

| F' () ] 7y e — ]|

1
[Tht1 — 2| < HF’(xk)_lH/O YA = t) o — 2P dt = || F'(a) || 73 lloe — 2al® <

2(1-q)
|zk1 — 2ol < K [Jag — 2. (6)
with K := ||F'(z,) 7 || 7/(2 = 2q).
According to the problem, we initially have that (5) holds for £ = 0. Therefore
Fl(x) Y| lxo — s 2

2—-2q 2—-2q 2—3
We claim that for all kK = 0,1, 2, ... we have (5) and

K [|zg — 2. < Q) )
We use induction: Both statements hold for & = 0. Assume that (5), (7) hold for k. Then ||zpi1 — x| <

(K ||lzg — xi]]) |lop — 24| < Q(Qk) ||z — x| which implies that (5) holds for k& + 1. Furthermore

K g — 2]l < (K oy — 2])? < (@)

which is (7) for k + 1.

Now (7) implies that limy_,, ; = x.. We also have (6). So both requirements for q-quadratic convergence are satisfied.

2(b)

F'(z) = 1/(z* + 1), F"(z) = —2x/(2* + 1)2. We have F'(z,)~! = 1. For the Lipschitz constant v we use that
for F € C? we have y = max, ||[F”(z)||. We can use the maximum over 2 € R: F”/(2) = 0 for x = +1/+/3, and
|F"(£1/V3)| = 2v/3. As |F"(x)| is increasing for 2 < —2+/3 and decreasing for z > 31/3 it is easy to see that
|[F"(z)] < 33 forallz € R.

So we obtain the condition v || F'(zo) ™! || [z — || < 2 or 2v/3 |q| < 3 or |zo| < 91—\% ~ 1.0264.

3(a)

Assume that t, < p_. As f”(t) =1 > 0 we have p(t) := f(tg) + f(tx)(t — tp) < f(t) for t # t} by Taylor’s theorem,
i.e., the tangent line is below the graph of f. We have p(tx) = f(tx) > 0, p(p—) < f(p—) = 0, so therefore the zero 51
of p(tx) must be in (¢, p—). The sequence tj, is increasing and bounded from above, hence it has a limit ¢, < p_. Assume
ts < p—, then taking the limit in ;11 = tx — f(tx)/f (tr) gives t. = t. — f(t.)/f'(ts) with f(t.) > 0, f'(t+) < 0 which
is a contradiction.



3(b)

1. 2
For hg = % we have f( )= 3(t—1)%and ty41 =ty — 2(5:_11) ,ie., (tp41 — 1) = 1(tx — 1) which is g-linear convergence

top_ =1 w1th factor 1 5
Case hg < 3: Consider a function f(t) with zero ¢,. Taylor’s theorem gives p(t) := f(t) + f/(te)(t — ty) = f(t) —
317 (7i) (t — ti)% hence p(t.) = f(t) + f/(tk) (te — ti) = 0 — 1 f"(7x) (¢« — ti)?. Dividing by f’(tx) gives

S (k)

2f'(tx)
We use t, := p_ and have for our function f that f” () = 1, f/(tx) =t — 1. As tx, < p— we have |f'(tx)| > |f'(p-)| =

v1—2hg and

(te —tpy1) = — (e — tr)?

1 2
thir — po| < ——— [ty — p_|*.
[tk P\f21_2h0|k p-|

3(c)
We have ag11 = ak(l — hk) =ar—dyand T, —T90=do+ -+ dip_1 = —(ak — a()), e, =1—ag.
hi (ak—1hg—1)* dj di
di = aghi, = ap—1(1 — hy—1)% el =1 — =1kl 1 k-1
( )2(1—hk—1)2 a1 (1 —hg1) 2 ap *l-mp
. th*tk+ho ll‘/Q*ho C . . 1 .
On the other hand ¢}, is defined by 5,1 = t; — 2 ’“tk_l = Qt:—l . Multiplying by ¢ — 1 and adding §t%+1 gives
1 2 1 2
2t +h 2(t—ti_1)
%tz—i-l — tk+1 + ho e %(tk—&-l — tk)Q. Therefore tk—i—l — 1l = — 2 ktkfl 0 =2 klitkk !

We have 7, = tg = O and 73 = t; = hg. We have for k > 1 that t.1 = t; — %(tk —tp_1)?/(1 — t3,) and Ty =
T — %(Tk —7_1)?/(1—7%). Hence we obtain by induction that t; = 4 for all k > 0. Therefore ty 1 —tp = Tpr1— Tk = dp.

3(d)

o — 2]l < Z 241 — ] < Zd ©,9, ®)

_ e
ok — a1l < Z 21 — 5] < Zdj Oy ©)

Since t, converges, it is a Cauchy sequence: We can find for every ¢ > 0 an integer ko such that k, 1 > ko imply |t; — tx| < &
and hence ||z — z;]] < €. So zy is also a Cauchy sequence and has a limit z,. Taking the limit [ — oo in (8), (9) gives
|zo — z«| < p- and

HJ:k - 55*” < p-—

We have from (b) that p_ — ¢, converges g-linearly to O for hg = 5 and it converges g-quadratically to O for ho < 2 By the
definition of r-convergence this means that xj converges r—hnearly for hy = 3, and r-quadratically for kg < 2



