Solution Assignment 1

1(a)

We have $H:=D^{2} F(x)\langle u, v\rangle \in \mathbb{R}^{n}$ with $H_{i}=D^{2} F_{i}(x)\langle u, v\rangle$. As explained in class, for a scalar function F_{i} the second derivative $D^{2} F_{i}$ is a quadratic form with the Hessian matrix $\left(\frac{\partial^{2} F_{i}}{\partial x_{j} \partial x_{k}}\right)_{j, k=1, \ldots, n}$ so that $H_{i}=\sum_{j, k=1 \ldots n} \frac{\partial^{2} F_{i}(x)}{\partial x_{j} \partial x_{k}} u_{j} v_{k}$ and

$$
\begin{gathered}
\left|H_{i}\right| \leq \sum_{j, k=1 \ldots n}\left|\frac{\partial^{2} F_{i}(x)}{\partial x_{j} \partial x_{k}}\right|\left|u_{j}\right|\left|v_{k}\right| \leq \sum_{j, k=1 \ldots n}\left|\frac{\partial^{2} F_{i}(x)}{\partial x_{j} \partial x_{k}}\right|\|u\|_{\infty}\|v\|_{\infty}=C\|u\|_{\infty}\|v\|_{\infty} \\
\|H\|_{\infty}=\max _{i=1 \ldots n}\left|H_{i}\right| \leq C\|u\|_{\infty}\|v\|_{\infty}
\end{gathered}
$$

1(b)

Newton-Kantorovich theorem from class: Let X, Y Banach spaces. Let $F: \Omega \rightarrow Y$ be continuously differentiable with $\Omega \subset X$ open and convex. For the initial guess $x_{0} \in \Omega$ let $F^{\prime}\left(x_{0}\right)$ be invertible. Assume that

$$
\begin{gather*}
\left\|F^{\prime}\left(x_{0}\right)^{-1} F\left(x_{0}\right)\right\| \leq \alpha \tag{1}\\
\left\|F^{\prime}\left(x_{0}\right)^{-1}\left(F^{\prime}(y)-F^{\prime}(x)\right)\right\| \leq \omega_{0}\|y-x\| \quad \text { for } x, y \in \Omega \tag{2}\\
h_{0}:=\alpha \omega_{0} \leq \frac{1}{2} \tag{3}\\
B:=\left\{x \mid\left\|x-x_{0}\right\| \leq \rho_{-}\right\} \subset \Omega \quad \text { with } \rho_{-}:=\left(1-\sqrt{1-2 h_{0}}\right) / \omega_{0} \tag{4}
\end{gather*}
$$

Then the Newton sequence x_{k} is well defined, $x_{k} \in B$ and converges to $x_{*} \in B$ with $f\left(x_{*}\right)=0$. For $h_{0}<\frac{1}{2}$ the convergence is r-quadratic, for $h_{0}=\frac{1}{2}$ the convergence is r-linear.
Let $F(x)=\left[\begin{array}{l}x_{1}-\cos \left(x_{1}+x_{2}\right) / 3 \\ x_{2}-\sin \left(x_{1}-x_{2}\right) / 3\end{array}\right]$. Then $D F(x)=I+\frac{1}{3}\left[\begin{array}{cc}\sin \left(x_{1}+x_{2}\right) & \sin \left(x_{1}+x_{2}\right) \\ -\cos \left(x_{1}-x_{2}\right) & \cos \left(x_{1}-x_{2}\right)\end{array}\right], D^{2} F_{1}(x)=\frac{1}{3} \cos \left(x_{1}+\right.$ $\left.x_{2}\right)\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right], D^{2} F_{2}(x)=\frac{1}{3} \sin \left(x_{1}-x_{2}\right)\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]$. We use the ∞-vector norm and the induced norms for linear maps $D F$ ("row sum norm") and bilinear maps $D^{2} F$ (we denote all these norms by $\|\cdot\|_{\infty}$). Since $F \in C^{2}$ and Ω is convex we have $\left\|F^{\prime}(x)-F^{\prime}(y)\right\| \leq \gamma\|x-y\|$ for $x, y \in \Omega$ with $\gamma=\max _{x \in \Omega}\left\|D^{2} F(x)\right\|_{\infty}$. From (a) we obtain $\left\|D^{2} F(x)\right\|_{\infty}=\max _{i=1 \ldots n} \sum_{j, k=1 \ldots n}\left|\frac{\partial^{2} F_{i}(x)}{\partial x_{j} \partial x_{k}}\right| \leq \frac{4}{3} \operatorname{since}|\sin t| \leq 1,|\cos t| \leq 1$ for any $x \in \mathbb{R}^{2}$. Hence $\gamma=\frac{4}{3}$. We have $F\left(x_{0}\right)=\left[\begin{array}{c}-\frac{1}{3} \\ 0\end{array}\right], F^{\prime}\left(x_{0}\right)=\left[\begin{array}{cc}1 & 0 \\ -\frac{1}{3} & \frac{4}{3}\end{array}\right], F^{\prime}\left(x_{0}\right)^{-1}=\left[\begin{array}{cc}1 & 0 \\ \frac{1}{4} & \frac{3}{4}\end{array}\right]$ and $F^{\prime}\left(x_{0}\right)^{-1} F\left(x_{0}\right)=\left[\begin{array}{c}-1 / 3 \\ -1 / 12\end{array}\right]$, hence $\alpha=\frac{1}{3}$. We use $\left\|F^{\prime}\left(x_{0}\right)^{-1}\left(F^{\prime}(y)-F^{\prime}(x)\right)\right\|_{\infty} \leq\left\|F^{\prime}\left(x_{0}\right)^{-1}\right\|_{\infty} \gamma\|y-x\|_{\infty}$ and get $\omega_{0}=\left\|F^{\prime}\left(x_{0}\right)^{-1}\right\|_{\infty} \gamma=\frac{4}{3}$. Therefore $h_{0}:=\alpha \omega_{0}=\frac{4}{9}<\frac{1}{2}$ and $\rho_{-}=\left(1-\sqrt{\frac{1}{9}}\right) /\left(\frac{4}{3}\right)=\frac{1}{2}$. We use the theorem with $\Omega=\mathbb{R}^{2}$. Then conditions (1)-(4) are satisfied, and we obtain that x_{k} converges r-quadratically to a solution x_{*} with $\left\|x_{*}\right\|_{\infty} \leq \rho_{-}=\frac{1}{2}$, i.e., x_{*} is contained in the square $\left[-\frac{1}{2}, \frac{1}{2}\right] \times\left[-\frac{1}{2}, \frac{1}{2}\right]$.

1(c)

1(d)

2(a)

(A1): There is $x_{*} \in \Omega$ with $F\left(x_{*}\right)=0$, (A2): $F^{\prime}(x)$ satisfies Lipschitz condition: $\left\|F^{\prime}(x)-F^{\prime}(y)\right\| \leq \gamma\|x-y\|$ for $x, y \in \Omega$, (A3): $F^{\prime}\left(x_{*}\right)^{-1}$ exists.

Assume first that for k we have

$$
\begin{equation*}
\gamma\left\|F^{\prime}\left(x_{*}\right)^{-1}\right\|\left\|x_{k}-x_{*}\right\| \leq q<\frac{2}{3} \tag{5}
\end{equation*}
$$

We redo (L2) for this assumption:

$$
\left\|F^{\prime}\left(x_{k}\right)^{-1}\right\| \leq \frac{\left\|F^{\prime}\left(x_{*}\right)^{-1}\right\|}{1-\left\|I-F^{\prime}\left(x_{*}\right)^{-1} F^{\prime}\left(x_{k}\right)\right\|} \leq \frac{\left\|F^{\prime}\left(x_{*}\right)^{-1}\right\|}{1-q}
$$

where we used

$$
\left\|I-F^{\prime}\left(x_{*}\right)^{-1} F^{\prime}\left(x_{k}\right)\right\|=\left\|F^{\prime}\left(x_{*}\right)^{-1}\left[F^{\prime}\left(x_{*}\right)-F^{\prime}\left(x_{k}\right)\right]\right\| \leq\left\|F^{\prime}\left(x_{*}\right)^{-1}\right\| \gamma\left\|x_{*}-x_{k}\right\| \leq q .
$$

Under assumption (5) we can then estimate $\left\|x_{k+1}-x_{*}\right\|$ in terms of $\left\|x_{k}-x_{*}\right\|$:

$$
\begin{gather*}
x_{k+1}-x_{*}=x_{k}-x_{*}-F^{\prime}\left(x_{k}\right)^{-1} F\left(x_{k}\right)=F^{\prime}\left(x_{k}\right)^{-1} \int_{0}^{1}\left[F^{\prime}\left(x_{k}\right)-F^{\prime}\left(x_{*}+t\left(x_{k}-x_{*}\right)\right)\right]\left(x_{k}-x_{*}\right) d t \\
\left\|x_{k+1}-x_{*}\right\| \leq\left\|F^{\prime}\left(x_{k}\right)^{-1}\right\| \int_{0}^{1} \gamma(1-t)\left\|x_{k}-x_{*}\right\|^{2} d t=\left\|F^{\prime}\left(x_{k}\right)^{-1}\right\| \gamma \frac{1}{2}\left\|x_{k}-x_{*}\right\|^{2} \leq \frac{\left\|F^{\prime}\left(x_{*}\right)^{-1}\right\| \gamma\left\|x_{k}-x_{*}\right\|^{2}}{2(1-q)} \\
\left\|x_{k+1}-x_{*}\right\| \leq K\left\|x_{k}-x_{*}\right\|^{2} \tag{6}
\end{gather*}
$$

with $K:=\left\|F^{\prime}\left(x_{*}\right)^{-1}\right\| \gamma /(2-2 q)$.
According to the problem, we initially have that (5) holds for $k=0$. Therefore

$$
K\left\|x_{0}-x_{*}\right\|=\frac{\gamma\left\|F^{\prime}\left(x_{*}\right)^{-1}\right\|\left\|x_{0}-x_{*}\right\|}{2-2 q} \leq \frac{q}{2-2 q}=: Q<\frac{\frac{2}{3}}{2-\frac{4}{3}}=1
$$

We claim that for all $k=0,1,2, \ldots$ we have (5) and

$$
\begin{equation*}
K\left\|x_{k}-x_{*}\right\| \leq Q^{\left(2^{k}\right)} \tag{7}
\end{equation*}
$$

We use induction: Both statements hold for $k=0$. Assume that (5), (7) hold for k. Then $\left\|x_{k+1}-x_{*}\right\| \leq$ $\left(K\left\|x_{k}-x_{*}\right\|\right)\left\|x_{k}-x_{*}\right\| \leq Q^{\left(2^{k}\right)}\left\|x_{k}-x_{*}\right\|$ which implies that (5) holds for $k+1$. Furthermore

$$
K\left\|x_{k+1}-x_{*}\right\| \leq\left(K\left\|x_{k}-x_{*}\right\|\right)^{2} \leq\left(Q^{\left(2^{k}\right)}\right)^{2}
$$

which is (7) for $k+1$.
Now (7) implies that $\lim _{k \rightarrow \infty} x_{k}=x_{*}$. We also have (6). So both requirements for q-quadratic convergence are satisfied.

2(b)

$F^{\prime}(x)=1 /\left(x^{2}+1\right), F^{\prime \prime}(x)=-2 x /\left(x^{2}+1\right)^{2}$. We have $F^{\prime}\left(x_{*}\right)^{-1}=1$. For the Lipschitz constant γ we use that for $F \in C^{2}$ we have $\gamma=\max _{x}\left\|F^{\prime \prime}(x)\right\|$. We can use the maximum over $x \in \mathbb{R}: F^{\prime \prime \prime}(x)=0$ for $x= \pm 1 / \sqrt{3}$, and $\left|F^{\prime \prime}(\pm 1 / \sqrt{3})\right|=\frac{3}{8} \sqrt{3}$. As $\left|F^{\prime \prime}(x)\right|$ is increasing for $x<-\frac{3}{8} \sqrt{3}$ and decreasing for $x>\frac{3}{8} \sqrt{3}$ it is easy to see that $\left|F^{\prime \prime}(x)\right| \leq \frac{3}{8} \sqrt{3}$ for all $x \in \mathbb{R}$.
So we obtain the condition $\gamma\left\|F^{\prime}\left(x_{0}\right)^{-1}\right\|\left\|x_{0}-x_{*}\right\|<\frac{2}{3}$ or $\frac{3}{8} \sqrt{3}\left|x_{0}\right|<\frac{2}{3}$ or $\left|x_{0}\right|<\frac{16}{9 \sqrt{3}} \approx 1.0264$.

3(a)

Assume that $t_{k}<\rho_{-}$. As $f^{\prime \prime}(t)=1>0$ we have $p(t):=f\left(t_{k}\right)+f^{\prime}\left(t_{k}\right)\left(t-t_{k}\right)<f(t)$ for $t \neq t_{k}$ by Taylor's theorem, i.e., the tangent line is below the graph of f. We have $p\left(t_{k}\right)=f\left(t_{k}\right)>0, p\left(\rho_{-}\right)<f\left(\rho_{-}\right)=0$, so therefore the zero t_{k+1} of $p\left(t_{k}\right)$ must be in ($\left.t_{k}, \rho_{-}\right)$. The sequence t_{k} is increasing and bounded from above, hence it has a limit $t_{*} \leq \rho_{-}$. Assume $t_{*}<\rho_{-}$, then taking the limit in $t_{k+1}=t_{k}-f\left(t_{k}\right) / f^{\prime}\left(t_{k}\right)$ gives $t_{*}=t_{*}-f\left(t_{*}\right) / f^{\prime}\left(t_{*}\right)$ with $f\left(t_{*}\right)>0, f^{\prime}\left(t_{*}\right)<0$ which is a contradiction.

For $h_{0}=\frac{1}{2}$ we have $f(t)=\frac{1}{2}(t-1)^{2}$ and $t_{k+1}=t_{k}-\frac{\frac{1}{2}\left(t_{k}-1\right)^{2}}{t_{k}-1}$, i.e., $\left(t_{k+1}-1\right)=\frac{1}{2}\left(t_{k}-1\right)$ which is q-linear convergence to $\rho_{-}=1$ with factor $\frac{1}{2}$.
Case $h_{0}<\frac{1}{2}$: Consider a function $f(t)$ with zero t_{*}. Taylor's theorem gives $p(t):=f\left(t_{k}\right)+f^{\prime}\left(t_{k}\right)\left(t-t_{k}\right)=f(t)-$ $\frac{1}{2} f^{\prime \prime}\left(\tau_{k}\right)\left(t-t_{k}\right)^{2}$, hence $p\left(t_{*}\right)=f\left(t_{k}\right)+f^{\prime}\left(t_{k}\right)\left(t_{*}-t_{k}\right)=0-\frac{1}{2} f^{\prime \prime}\left(\tau_{k}\right)\left(t_{*}-t_{k}\right)^{2}$. Dividing by $f^{\prime}\left(t_{k}\right)$ gives

$$
\left(t_{*}-t_{k+1}\right)=-\frac{f^{\prime \prime}\left(\tau_{k}\right)}{2 f^{\prime}\left(t_{k}\right)}\left(t_{*}-t_{k}\right)^{2}
$$

We use $t_{*}:=\rho_{-}$and have for our function f that $f^{\prime \prime}\left(\tau_{k}\right)=1, f^{\prime}\left(t_{k}\right)=t_{k}-1$. As $t_{k}<\rho_{-}$we have $\left|f^{\prime}\left(t_{k}\right)\right| \geq\left|f^{\prime}\left(\rho_{-}\right)\right|=$ $\sqrt{1-2 h_{0}}$ and

$$
\left|t_{k+1}-\rho_{-}\right| \leq \frac{1}{2 \sqrt{1-2 h_{0}}}\left|t_{k}-\rho_{-}\right|^{2} .
$$

3(c)

We have $a_{k+1}=a_{k}\left(1-h_{k}\right)=a_{k}-d_{k}$ and $\tau_{k}-\tau_{0}=d_{0}+\cdots+d_{k-1}=-\left(a_{k}-a_{0}\right)$, i.e., $\tau_{k}=1-a_{k}$.

$$
d_{k}=a_{k} h_{k}=a_{k-1}\left(1-h_{k-1}\right) \frac{1}{2} \frac{h_{k-1}^{2}}{\left(1-h_{k-1}\right)^{2}}=\frac{1}{2} \frac{\left(a_{k-1} h_{k-1}\right)^{2}}{a_{k-1}\left(1-h_{k-1}\right)}=\frac{1}{2} \frac{d_{k-1}^{2}}{a_{k}}=\frac{1}{2} \frac{d_{k-1}^{2}}{1-\tau_{k}} .
$$

On the other hand t_{k} is defined by $t_{k+1}=t_{k}-\frac{\frac{1}{2} t_{k}^{2}-t_{k}+h_{0}}{t_{k}-1}=\frac{\frac{1}{2} t_{k}^{2}-h_{0}}{t_{k}-1}$. Multiplying by $t_{k}-1$ and adding $\frac{1}{2} t_{k+1}^{2}$ gives $\frac{1}{2} t_{k+1}^{2}-t_{k+1}+h_{0}=\frac{1}{2}\left(t_{k+1}-t_{k}\right)^{2}$. Therefore $t_{k+1}-t_{k}=-\frac{\frac{1}{2} t_{k}^{2}-t_{k}+h_{0}}{t_{k}-1}=\frac{\frac{1}{2}\left(t_{k}-t_{k-1}\right)^{2}}{1-t_{k}}$.
We have $\tau_{o}=t_{0}=0$ and $\tau_{1}=t_{1}=h_{0}$. We have for $k \geq 1$ that $t_{k+1}=t_{k}-\frac{1}{2}\left(t_{k}-t_{k-1}\right)^{2} /\left(1-t_{k}\right)$ and $\tau_{k+1}=$ $\tau_{k}-\frac{1}{2}\left(\tau_{k}-\tau_{k-1}\right)^{2} /\left(1-\tau_{k}\right)$. Hence we obtain by induction that $t_{k}=\tau_{k}$ for all $k \geq 0$. Therefore $t_{k+1}-t_{k}=\tau_{k+1}-\tau_{k}=d_{k}$.

3(d)

$$
\begin{align*}
\left\|x_{0}-x_{l}\right\| & \leq \sum_{j=0}^{l-1}\left\|x_{j+1}-x_{j}\right\| \leq \sum_{j=0}^{l-1} d_{j} \stackrel{(\mathrm{c})}{=} t_{l} \stackrel{(\mathrm{a})}{<} \rho_{-} \tag{8}\\
\left\|x_{k}-x_{l}\right\| & \leq \sum_{j=k}^{l-1}\left\|x_{j+1}-x_{j}\right\| \leq \sum_{j=k}^{l-1} d_{j} \stackrel{(\mathrm{c})}{=} t_{l}-t_{k} \tag{9}
\end{align*}
$$

Since t_{k} converges, it is a Cauchy sequence: We can find for every $\varepsilon>0$ an integer k_{0} such that $k, l \geq k_{0}$ imply $\left|t_{l}-t_{k}\right|<\varepsilon$ and hence $\left\|x_{k}-x_{l}\right\|<\varepsilon$. So x_{k} is also a Cauchy sequence and has a limit x_{*}. Taking the limit $l \rightarrow \infty$ in (8), (9) gives $\left\|x_{0}-x_{*}\right\| \leq \rho_{-}$and

$$
\left\|x_{k}-x_{*}\right\| \leq \rho_{-}-t_{k}
$$

We have from (b) that $\rho_{-}-t_{k}$ converges q-linearly to 0 for $h_{0}=\frac{1}{2}$, and it converges q-quadratically to 0 for $h_{0}<\frac{1}{2}$. By the definition of r-convergence this means that x_{k} converges r-linearly for $h_{0}=\frac{1}{2}$, and r-quadratically for $h_{0}<\frac{1}{2}$.

