Modeling The Variance of a Time Series

Peter
Bloomfield

Introduction
Time Series
Models
First Wave

Stochastic Volatility

Stochastic Volatility and GARCH

Modeling The Variance of a Time Series

Peter Bloomfield

Department of Statistics
North Carolina State University

July 31, 2009 / Ben Kedem Symposium

Outline

Modeling The Variance of a Time Series Peter Bloomfield

Introduction
Time Series Models
First Wave
Second Wave
Stochastic
Volatility
Stochastic
Volatility and GARCH
A Simple Tricrable Model

An Appliration
Summary

1 Introduction

2 Time Series Models

- First Wave
- Second Wave

3 Stochastic Volatility

4 Stochastic Volatility and GARCH

■ A Simple Tractable Model

- An Application

5 Summary

Ben Kedem

■ Ben has made many contributions to time series methodology.

- A common theme is that some unobserved (latent) series controls either:

■ the values of the observed data, or

- the distribution the observed data.

■ In a stochastic volatility model, a latent series controls specifically the variance of the observed data.

- We relate stochastic volatility models to other time series models.

Outline

Modeling The Variance of a Time Series Peter Bloomfield

Introduction
Time Series Models
First Wave
Second Wave
Stochastic
Volatility
Stochastic Volatility and GARCH
A simple Tractable Model
An Arpicacaion
Summary

1 Introduction

2 Time Series Models

- First Wave
- Second Wave

3 Stochastic Volatility

4 Stochastic Volatility and GARCH
■ A Simple Tractable Model

- An Application

5 Summary

Correlation

Modeling The Variance of a Time Series

Peter
Bloomfield
introduction
Time Series Models

Second Wave
Stochastic Volatility

Stochastic Volatility and GARCH

Time series modeling is not just about correlation...

http://xkcd.com/552/

Time Domain Approach

■ The time domain approach to modeling a time series $\left\{Y_{t}\right\}$ focuses on the conditional distribution of $Y_{t} \mid Y_{t-1}, Y_{t-2}, \ldots$.
\square One reason for this focus is that the joint distribution of $Y_{1}, Y_{2}, \ldots, Y_{n}$ can be factorized as

$$
\begin{aligned}
& f_{1: n}\left(y_{1}, y_{2}, \ldots, y_{n}\right) \\
& =f_{1}\left(y_{1}\right) f_{2 \mid 1}\left(y_{2} \mid y_{1}\right) \ldots f_{n \mid n-1: 1}\left(y_{n} \mid y_{n-1}, y_{n-2}, \ldots, y_{1}\right) .
\end{aligned}
$$

- So the likelihood function is determined by these conditional distributions.

Modeling The Variance of a Time Series

The conditional distribution may be defined by:

- the conditional mean,

$$
\mu_{t}=\mathrm{E}\left(Y_{t} \mid Y_{t-1}=y_{t-1}, Y_{t-2}=y_{t-2}, \ldots\right) ;
$$

- the conditional variance,

$$
h_{t}=\operatorname{Var}\left(Y_{t} \mid Y_{t-1}=y_{t-1}, Y_{t-2}=y_{t-2}, \ldots\right) ;
$$

the shape of the conditional distribution.

Forecasting

■ We observe Y_{t-1}, Y_{t-2}, \ldots;
■ what statements can we make about Y_{t} ?
■ The conditional mean is our best forecast, and the conditional standard deviation measures how far we believe the actual value might differ from the forecast.

- The conditional shape, usually a fixed distribution such as the normal, allows us to make probability statements about the actual value.

Outline

Modeling The Variance of a Time Series Peter Bloomfield

Introduction
Time Series
Models
First Wave
Second Wave
Stochastic
Volatility
Stochastic
Volatility and GARCH
A simple Tractable Model An Application

Summary

1 Introduction

2 Time Series Models

- First Wave
- Second Wave

3 Stochastic Volatility

4 Stochastic Volatility and GARCH

- A Simple Tractable Model
- An Application

5 Summary

First Wave

$$
\mu_{t}=\mu_{t}\left(y_{t-1}, y_{t-2}, \ldots\right)
$$

■ Time-homogeneous:

$$
\mu_{t}=\mu\left(y_{t-1}, y_{t-2}, \ldots\right)
$$

depends on t only through y_{t-1}, y_{t-2}, \ldots

Autoregression

Modeling The Variance of a Time Series

Peter
Bloomfield

Introduction
Time Series Models
First Wave

Ganann in

Stochastic Volatility

Stochastic Volatility and GARCH

■ Simplest form:
$\mu_{t}=$ a linear function of a small number of values:

$$
\mu_{t}=\phi_{1} y_{t-1}+\cdots+\phi_{p} y_{t-p}
$$

■ Equivalently, and more familiarly,

$$
Y_{t}=\phi_{1} Y_{t-1}+\cdots+\phi_{p} Y_{t-p}+\epsilon_{t}
$$

where $\epsilon_{t}=Y_{t}-\mu_{t}$ satisfies

$$
\begin{aligned}
\mathrm{E}\left(\epsilon_{t} \mid Y_{t-1}, Y_{t-2}, \ldots\right) & =0 \\
\operatorname{Var}\left(\epsilon_{t} \mid Y_{t-1}, Y_{t-2}, \ldots\right) & =h
\end{aligned}
$$

Recursion

Modeling The Variance of a Time Series

Peter
Bloomfield

Introduction
Time Series
Models
First Wave

■ Problem: some time series need large p.
■ Solution: recursion; include also some past values of μ_{t} :

$$
\mu_{t}=\phi_{1} y_{t-1}+\cdots+\phi_{p} y_{t-p}+\psi_{1} \mu_{t-1}+\cdots+\psi_{q} \mu_{t-q} .
$$

■ Equivalently, and more familiarly,

$$
Y_{t}=\phi_{1} Y_{t-1}+\cdots+\phi_{p} Y_{t-p}+\epsilon_{t}+\theta_{1} \epsilon_{t-1}+\cdots+\theta_{q} \epsilon_{t-q}
$$

- This is the ARMA (AutoRegressive Moving Average) model of order (p, q).

Outline

Modeling The Variance of a Time Series Peter Bloomfield

Introduction
Time Series Models

Second Wave
Stochastic
Volatility
Stochastic Volatility and GARCH
A simple Thactablis Model An Application

Summary

1 Introduction

2 Time Series Models

- First Wave
- Second Wave

3 Stochastic Volatility

4 Stochastic Volatility and GARCH
■ A Simple Tractable Model

- An Application

5 Summary

Modeling The Variance of a Time Series

Peter
Bloomfield

Introduction
Time Series Models

Second Wave
Stochastic
Volatility
Stochastic Volatility and GARCH

Second Wave

Modeling The Variance of a Time Series

- The second wave of time series methods added a focus on the conditional variance, h_{t}.
■ Now need to specify the form of

$$
h_{t}=h_{t}\left(y_{t-1}, y_{t-2}, \ldots\right)
$$

■ Time-homogeneous:

$$
h_{t}=h\left(y_{t-1}, y_{t-2}, \ldots\right)
$$

depends on t only through y_{t-1}, y_{t-2}, \ldots

ARCH

Modeling The
Variance of a Time Series

Peter
Bloomfield

Introduction
Time Series
Models

Second Wave
Stochastic
Volatility
Siochastic

■ Simplest form: h_{t} a linear function of a small number of squared ϵ s:

$$
h_{t}=\omega+\alpha_{1} \epsilon_{t-1}^{2}+\cdots+\alpha_{q} \epsilon_{t-q}^{2}
$$

■ Engle, ARCH (AutoRegressive Conditional Heteroscedasticity):

- proposed in 1982;

■ Nobel Prize in Economics, 2003 (shared with the late Sir Clive Granger).

Recursion

Modeling The
Variance of a Time Series

Peter
Bloomfield

Introduction
Time Series Models

Second Wave
Stochastic
Volatility
Stochastic

■ Problem: some time series need large q.
■ Solution: recursion; include also some past values of h_{t} :
$h_{t}=\omega+\alpha_{1} \epsilon_{t-1}^{2}+\cdots+\alpha_{q} \epsilon_{t-q}^{2}+\beta_{1} h_{t-1}+\cdots+\beta_{p} h_{t-p}$.
■ Bollerslev, 1987; GARCH (Generalized ARCH; no Nobel yet, nor yet a Knighthood).
■ Warning! note the reversal of the roles of p and q from the convention of $\operatorname{ARMA}(p, q)$.

$\operatorname{GARCH}(1,1)$

Modeling The Variance of a Time Series

Peter

- The simplest GARCH model has $p=1, q=1$:

$$
h_{t}=\omega+\alpha \epsilon_{t-1}^{2}+\beta h_{t-1}
$$

■ If $\alpha+\beta<1$, there exists a stationary process with this structure.

■ If $\alpha+\beta=1$, the model is called integrated: $\operatorname{IGARCH}(1,1)$.

Outline

Modeling The Variance of a Time Series Peter Bloomfield

Introduction

Time Series Models
First Wave
Second Wave
Stochastic
Volatility
Stochastic
Volatility and GARCH
A Simple Tractable Model
An App lication
Summary

1 Introduction

2 Time Series Models
－First Wave
－Second Wave

3 Stochastic Volatility

4 Stochastic Volatility and GARCH
■ A Simple Tractable Model
－An Application
5 Summary

Stochastic Volatility

Modeling The
Variance of a Time Series

Peter
Bloomfield

Introduction
Time Series
Models
First Wave

Stochastic Volatility

Stochastic Volatility and GARCH

■ In a stochastic volatility model, an unobserved (latent) process $\left\{X_{t}\right\}$ affects the distribution of the observed process $\left\{Y_{t}\right\}$, specifically the variance of Y_{t}.
■ Introducing a "second source of variability" is appealing from a modeling perspective.

Simple Example

Modeling The Variance of a Time Series

Peter
Bloomfield

Introduction
Time Series
Models
First Wave

Stochastic Volatility

Stochastic Volatility and GARCH

■ For instance:

- $\left\{X_{t}\right\}$ satisfies

$$
X_{t}-\mu=\phi\left(X_{t-1}-\mu\right)+\xi_{t}
$$

where $\left\{\xi_{t}\right\}$ are i.i.d. $N\left(0, \sigma_{\xi}^{2}\right)$.
\square If $|\phi|<1$, this is a (stationary) autoregression, but if $\phi=1$ it is a (non-stationary) random walk.
■ $Y_{t}=\sigma_{t} \eta_{t}$, where $\sigma_{t}^{2}=\sigma^{2}\left(X_{t}\right)$ is a non-negative function such as

$$
\sigma^{2}\left(X_{t}\right)=\exp \left(X_{t}\right)
$$

and $\left\{\eta_{t}\right\}$ are i.i.d. $(0,1)$-typically Gaussian, but also t.

Conditional Distributions

Modeling The Variance of a Time Series

Peter Bloomfield

Introduction
Time Series Models
First Wave

Stochastic Volatility

Stochastic Volatility and GARCH
$h_{t}\left(y_{t-1}, y_{t-2}, \ldots\right)=\operatorname{Var}\left(Y_{t} \mid Y_{t-1}=y_{t-1}, Y_{t-2}=y_{t-2}, \ldots\right)$
is not a simple function.

Difficulties

Modeling The Variance of a Time Series

Peter
Bloomfield

Introduction
Time Series
Models
First Wave

Stochastic Volatility

Stochastic Volatility and GARCH

- Analytic difficulties cause problems in:
- estimation;
- forecasting.

■ Computationally intensive methods, e.g.:
■ Particle filtering;
■ Numerical quadrature.

Outline

Modeling The Variance of a Time Series Peter Bloomfield

Introduction
Time Series Models
First Wave
Second Wave
Stochastic Volatility

Stochastic Volatility and GARCH
A Simple Tractable Model An Application

Summary

1 Introduction

2 Time Series Models

- First Wave
- Second Wave

3 Stochastic Volatility

4 Stochastic Volatility and GARCH

- A Simple Tractable Model
- An Application

5 Summary

Stochastic Volatility and GARCH

Modeling The Variance of a Time Series

Peter
Bloomfield

Introduction
Time Series
Models
First Wave
Second We
Stochastic
Volatility
Stochastic Volatility and GARCH

■ Stochastic volatility models have the attraction of an explicit model for the volatility, or variance.

- Is analytic difficulty the unavoidable cost of that advantage?

Outline

Modeling The Variance of a Time Series

Bloomfield

Introduction
Time Series
Models
First Wave
Second Wave

Stochastic
Volatility
Stochastic
Volatility and GARCH
A Simple Tractable Model

1 Introduction
2 Time Series Models

- First Wave
- Second Wave

3 Stochastic Volatility
4 Stochastic Volatility and GARCH

- A Simple Tractable Model
- An Application

5 Summary

The Latent Process

Modeling The Variance of a Time Series

Introduction
Time Series
Models
First Wave
Second Wave
Stochastic
Volatility
Stochasitic Volatility and GARCH
A Simple Tractable Model

We construct a latent process by:

$$
x_{0} \sim \Gamma\left(\frac{\nu}{2}, \frac{\tau^{2}}{2}\right)
$$

and for $t>0$

$$
X_{t}=B_{t} X_{t-1}
$$

where

$$
\theta B_{t} \sim \beta\left(\frac{\nu}{2}, \frac{1}{2}\right)
$$

and $\left\{B_{t}\right\}$ are i.i.d. and independent of X_{0}.

The Observed Process

Modeling The Variance of a Time Series
\square The observed process is defined for $t \geq 0$ by

$$
Y_{t}=\sigma_{t} \eta_{t}
$$

where

$$
\sigma_{t}=\frac{1}{\sqrt{X_{t}}}
$$

and $\left\{\eta_{t}\right\}$ are i.i.d. $N(0,1)$ and independent of $\left\{X_{t}\right\}$.
■ Equivalently: given $X_{u}=x_{u}, 0 \leq u$, and
$Y_{u}=y_{u}, 0 \leq u<t$,

$$
Y_{t} \sim N\left(0, \sigma_{t}^{2}\right)
$$

with the same definition of σ_{t}.

Constraints

Modeling The Variance of a Time Series

$$
\operatorname{Var}\left(Y_{0}\right)=\mathrm{E}\left(X_{0}^{-1}\right),
$$

we constrain $\nu>2$ to ensure that

$$
E\left(X_{0}^{-1}\right)<\infty
$$

■ Requiring

$$
\mathrm{E}\left(x_{t}^{-1}\right)=\mathrm{E}\left(x_{0}^{-1}\right)
$$

for all $t>0$ is also convenient, and is met if

$$
\theta=\frac{\nu-2}{\nu-1} .
$$

Comparison with Earlier Example

Modeling The Variance of a Time Series

Introduction
Time Series Models
First Wave
Second Wave
Stochastic Volatility

Stochastic Volatility and GARCH
A Simple Tractable Model

This is quite similar to the earlier example, with $\phi=1$:
■ Write $X_{t}^{*}=-\log \left(X_{t}\right)$.
■ Then

$$
X_{t}^{*}=X_{t-1}^{*}+\xi_{t}^{*}
$$

where

$$
\xi_{t}^{*}=-\log \left(B_{t}\right)
$$

■ In terms of X_{t}^{*},

$$
\sigma_{t}^{2}=\exp \left(X_{t}^{*}\right)
$$

Differences

■ A key constraint is that now $\phi=1$, so $\left\{X_{t}^{*}\right\}$ is a (non-stationary) random walk, instead of a (stationary) auto-regression.

- Also $\left\{X_{t}^{*}\right\}$ is non-Gaussian, where in the earlier example, the latent process was Gaussian.
- Also $\left\{X_{t}^{*}\right\}$ has a drift, because

$$
\mathrm{E}\left(\xi_{t}^{*}\right) \neq 0 .
$$

■ Of course, we could include a drift in the earlier example.

Matched Simulated Random Walks

Modeling The Variance of a Time Series

Peter
Bloomfield

Introduction
Time Series Models
First Wave
Second Wave
Stochastic
Volatility
Stochastic
Volatility and
GARCH
A Simple Tractable Model

Matched Simulated Random Walks

Modeling The Variance of a Time Series

Peter
Bloomfield

Introduction
Time Series
Models
First Wave
Second Wale
Stochastic
Volatility
Stochastic
Volatility and GARCH
A Simple Tractable Model

So What?

■ So our model is not very different from (a carefully chosen instance of) the earlier example.
■ So does it have any advantage?
\square Note: the inverse Gamma distribution is the conjugate prior for the variance of the Gaussian distribution.

Marginal distribution of Y_{0}

Modeling The Variance of a Time Series

■ Marginal distribution of Y_{0} :

$$
Y_{0} \sim \sqrt{h_{0}} t^{*}(\nu)
$$

where

$$
h_{0}=\frac{\tau^{2}}{\nu-2}
$$

and $t^{*}(\nu)$ is the standardized t-distribution (i.e., scaled to have variance 1).

Conditional distributions of X_{0} and $X_{1} \mid Y_{0}$

Modeling The Variance of a Time Series

■ Conjugate prior/posterior property: conditionally on $Y_{0}=y_{0}$,

$$
x_{0} \sim \Gamma\left(\frac{\nu+1}{2}, \frac{\tau^{2}+y_{0}^{2}}{2}\right)
$$

■ Beta multiplier property: conditionally on $Y_{0}=y_{0}$,

$$
X_{1}=B_{1} X_{0} \sim \Gamma\left[\frac{\nu}{2}, \theta\left(\frac{\tau^{2}+y_{0}^{2}}{2}\right)\right] .
$$

Conditional distribution of $Y_{1} \mid Y_{0}$

Modeling The Variance of a Time Series

Peter Bloomfield

Introduction
Time Series Models
First Wave Second Wave

■ The conditional distribution of $X_{1} \mid Y_{0}$ differs from the distribution of X_{0} only in scale, so conditionally on $Y_{0}=y_{0}$,

$$
Y_{1} \sim \sqrt{h_{1}} t^{*}(\nu)
$$

where

$$
h_{1}=\frac{\theta}{\nu-2}\left(\tau^{2}+y_{0}^{2}\right)=\theta h_{0}+(1-\theta) y_{0}^{2}
$$

■ Hmm...so the distribution of $Y_{1} \mid Y_{0}$ differs from the distribution of Y_{0} only in scale...l smell a recursion!

The Recursion

Modeling The Variance of a Time Series

Introduction
Time Series
Models
First Wave
Second Wave
Stochastic
Volatility
Stochastic Volatility and GARCH
A Simple Tractable Model

- Write $\mathbf{Y}_{t-1}=\left(Y_{t-1}, Y_{t-2}, \ldots, Y_{0}\right)$.

■ For $t>0$, conditionally on $\mathbf{Y}_{t-1}=\mathbf{y}_{t-1}$,

$$
Y_{t} \sim \sqrt{h_{t}} t^{*}(\nu)
$$

where

$$
h_{t}=\theta h_{t-1}+(1-\theta) y_{t-1}^{2}
$$

The Structure

Modeling The Variance of a Time Series

Introduction
Time Series
Models
First Wave

Stochastic Volatility

Siochastic

■ That is, $\left\{Y_{t}\right\}$ is $\operatorname{IGARCH}(1,1)$ with $t(\nu)$-distributed innovations.
■ Constraints:
■ $\omega=0$;

- $\beta=1-\alpha=\frac{\nu-2}{\nu-1}$.

■ So we can have a stochastic volatility structure, and still have (I)GARCH structure for the observed process $\left\{Y_{t}\right\}$.

The Structure

Modeling The Variance of a Time Series

Peter
Bloomfield

Introduction
Time Series
Models
First Wave
Second Wave

■ That is, $\left\{Y_{t}\right\}$ is $\operatorname{IGARCH}(1,1)$ with $t(\nu)$-distributed innovations.
■ Constraints:
■ $\omega=0$;

- $\beta=1-\alpha=\frac{\nu-2}{\nu-1}$.

■ So we can have a stochastic volatility structure, and still have (I)GARCH structure for the observed process $\left\{Y_{t}\right\}$.
■ Details and some multivariate generalizations sketched out at http://www4.stat.ncsu.edu/~bloomfld/talks/sv.pdf

Outline

Modeling The Variance of a Time Series

Bloomfield

Introduction
Time Series
Models
First Wave
Second Wave
Stochastic
Volatility
Stochastic
Volatility and GARCH
A simple Trictable Mode

An Application

1 Introduction

2 Time Series Models

- First Wave
- Second Wave

3 Stochastic Volatility

4 Stochastic Volatility and GARCH

- A Simple Tractable Model
- An Application

5 Summary

$\frac{\mu \sigma}{}$ Same Two Years of S\&P 500

Modeling The Variance of a Time Series

Peter
Bloomfield

Introduction
Time Series Models

Stochastic
Volatility
Stochastic

An Application

Two Years of S\&P 500

Modeling The Variance of a Time Series

Peter
Bloomfield

Introduction
Time Series
Models
First Wave
Second Wave
Stochastic
Volatility
Stochastic
Volatility and
GARCH

An Application

■ Data: 500 log-returns for the S\&P 500 index, from 05/24/2007 to 05/19/2009.

■ Maximum likelihood estimates:

$$
\begin{aligned}
\hat{\tau}^{2} & =4.37 \\
\hat{\theta} & =0.914 \\
\Rightarrow \hat{\nu} & =12.6
\end{aligned}
$$

■ With ν unconstrained:

$$
\begin{aligned}
\hat{\tau}^{2} & =3.37 \\
\hat{\theta} & =0.918 \\
\hat{\nu} & =9.93 .
\end{aligned}
$$

Comparison

Modeling The
Variance of a Time Series

- Likelihood ratio test:

$$
\begin{aligned}
-2 \log (\text { likelihood ratio }) & =0.412 \\
\text { assuming } \sim \chi^{2}(1), P & =0.521,
\end{aligned}
$$

so differences are not significant.

- With more data, difference becomes significant.

Outline

Modeling The Variance of a Time Series Peter Bloomfield

Introduction

Time Series Models
First Wave
Second Wave
Stochastic Volatility

Stochastic Volatility and GARCH
A simple Tractable Model
An Application
Summary

1 Introduction

2 Time Series Models

- First Wave
- Second Wave

3 Stochastic Volatility

4 Stochastic Volatility and GARCH
■ A Simple Tractable Model

- An Application

5 Summary

Summary

■ Latent processes are useful in time series modeling.

- GARCH and Stochastic Volatility are both valuable tools for modeling time series with changing variance.
■ GARCH fits naturally into the time domain approach.
■ Stochastic Volatility is appealing but typically intractable.

■ Exploiting conjugate distributions may bridge the gap.

Summary

■ Latent processes are useful in time series modeling.

- GARCH and Stochastic Volatility are both valuable tools for modeling time series with changing variance.
■ GARCH fits naturally into the time domain approach.
■ Stochastic Volatility is appealing but typically intractable.

■ Exploiting conjugate distributions may bridge the gap.

Thank you!

ON OPTIMAL PREDICTIVE INFERENCE IN LOG-GAUSSIAN RANDOM FIELDS

Victor De Oliveira Department of Management Sciences and Statistics
University of Texas at San Antonio victor.deoliveira@utsa.edu

http://faculty.business.utsa.edu/vdeolive

LOG-GAUSSIAN RANDOM FIELDS

The random field $\{Z(\mathrm{~s}), \mathrm{s} \in D\}, D \subset \mathbb{R}^{d}$ and $d \geq 1$, is log-Gaussian if $\{Y(\mathbf{s}), \mathrm{s} \in D\}$, with $Y(\mathrm{~s})=\log (Z(\mathrm{~s}))$, is Gaussian.
Here we assume that the mean and covariance functions of $Y(\cdot)$ are given by

$$
\begin{aligned}
E\{Y(\mathbf{s})\} & =\mu_{Y} \\
\operatorname{cov}\{Y(\mathbf{s}), Y(\mathbf{u})\} & =C_{Y}(\mathbf{s}, \mathbf{u})
\end{aligned}
$$

where $\mu_{Y} \in \mathbb{R}$ unknown and $C_{Y}(\mathbf{s}, \mathbf{u})$ a known covariance function in \mathbb{R}^{d}, satisfying that for all $\mathbf{s} \in D, C_{Y}(\mathbf{s}, \mathbf{s})=\sigma_{Y}^{2}$.

It follows the mean and covariance functions of $Z(\cdot)$ are given by

$$
\begin{aligned}
E\{Z(\mathrm{~s})\} & =\exp \left\{\mu_{Y}+\frac{\sigma_{Y}^{2}}{2}\right\}=: \mu_{Z} \\
\operatorname{cov}\{Z(\mathrm{~s}), Z(\mathbf{u})\} & =\mu_{Z}^{2}\left(\exp \left\{C_{Y}(\mathrm{~s}, \mathbf{u})\right\}-1\right) .
\end{aligned}
$$

PREDICTIVE INFERENCE

DATA: $\mathbf{Z}=\left(Z\left(\mathrm{~s}_{1}\right), \ldots, Z\left(\mathrm{~s}_{n}\right)\right)$ measured at sampling locations $\mathbf{s}_{1}, \ldots, s_{n} \in D$. Let
$\mathbf{s}_{0} \in D$ an unmeasured location in D
$B \subset D$ a subregion of interest

GOALS:

- Obtain predictor of $Z\left(\mathrm{~s}_{0}\right)$
(point prediction).
- Obtain prediction interval for $Z\left(\mathrm{~s}_{0}\right)$
(interval prediction)
- Obtain preditor of $Z(B)=\frac{1}{|B|} \int_{B} Z(\mathbf{s}) d \mathbf{s}$ (block prediction).

POINT PREDICTION

Let \hat{Z}_{0} be a predictor for Z_{0} (within a family) and $L\left(Z_{0}, \hat{Z}_{0}\right)$ a loss function.
The optimal predictor of Z_{0} is the predictor that minimizes the risk function

$$
r\left(\hat{Z}_{0}\right)=E\left\{L\left(Z_{0}, \hat{Z}_{0}\right)\right\}
$$

For the squared error loss the risk function becomes the mean squared prediction error

$$
\operatorname{MSPE}\left(\hat{Z}_{0}\right)=E\left\{\left(\hat{Z}_{0}-Z_{0}\right)^{2}\right\} .
$$

Notation: All quantities that depend on the prediction location so would be written with the subscript '0'.

If μ_{Y} were known, the optimal predictor and its MSPE are given by

$$
\begin{aligned}
\hat{Z}_{0}^{*} & =E\left\{Z_{0} \mid \mathbf{Z}\right\} \\
& =\exp \left\{\hat{Y}_{0}^{*}+\frac{\widehat{\sigma}_{0 Y}^{*}}{2}\right\}
\end{aligned}
$$

$\operatorname{MSPE}\left(\hat{Z}_{0}^{*}\right)=\operatorname{var}\left(Z_{0}\right)-\operatorname{var}\left(\widehat{Z}_{0}^{*}\right)$

$$
=\mu_{Z}^{2}\left(\exp \left\{\sigma_{Y}^{2}\right\}-\exp \left\{\mathbf{c}_{0 Y}^{\prime} \Sigma_{Y}^{-1} \mathbf{c}_{0 Y}\right\}\right),
$$

where

$$
\begin{aligned}
& \hat{Y}_{0}^{*}=E\left\{Y_{0} \mid \mathbf{Y}\right\} \\
&=\mu_{Y}+\mathbf{c}_{0 Y}^{\prime} \Sigma_{Y}^{-1}\left(\mathbf{Y}-\mu_{Y} \mathbf{1}\right) \\
& \hat{\sigma}_{0 Y}^{*}=\operatorname{var}\left(Y_{0} \mid \mathbf{Y}\right) \\
&=\sigma_{Y}^{2}-\mathbf{c}_{0 Y}^{\prime} \Sigma_{Y}^{-1} \mathbf{c}_{0 Y} ; \\
& \Sigma_{Y, i j}=C_{Y}\left(\mathbf{s}_{i}, \mathbf{s}_{j}\right) \\
& \mathbf{c}_{0 Y, i}=C_{Y}\left(\mathbf{s}_{0}, \mathrm{~s}_{i}\right) .
\end{aligned}
$$

These are known in the geostatistical literature as the simple kriging predictors and simple kriging variances of Z_{0} and Y_{0}.

Unbiased Prediction:

In practice the most used predictor is the lognormal kriging predictor

$$
\hat{Z}_{O}^{L K}=\exp \left\{\hat{Y}_{O}^{O K}+\frac{1}{2}\left(\sigma_{Y}^{2}-\lambda_{O Y}^{\prime} \Sigma_{Y} \boldsymbol{\lambda}_{O Y}\right)\right\}
$$

$\operatorname{MSPE}\left(\hat{Z}_{0}^{L K}\right)=\mu_{Z}^{2}\left(\exp \left\{\sigma_{Y}^{2}\right\}+\exp \left\{\boldsymbol{\lambda}_{0 Y}^{\prime} \Sigma_{Y} \boldsymbol{\lambda}_{O Y}\right\}-2 \exp \left\{\boldsymbol{\lambda}_{0 Y}^{\prime} \Sigma_{Y} \boldsymbol{\lambda}_{O Y}-m_{O Y}\right\}\right) ;$
where

$$
\begin{aligned}
\hat{Y}_{0}^{O K} & =\lambda_{0 Y}^{\prime} \mathbf{Y} \quad\left(\text { the BLUP of } Y_{0}\right) \\
\lambda_{0 Y}^{\prime} & =\left(\mathbf{c}_{0 Y}+\frac{1-1^{\prime} \Sigma_{Y}^{-1} \mathbf{c}_{0 Y}}{1^{\prime} \Sigma_{Y}^{-1} 1} 1\right)^{\prime} \Sigma_{Y}^{-1} .
\end{aligned}
$$

By construction $\hat{Z}_{0}^{L K}$ satisfies the following optimality property:

Proposition 1. The predictor $\hat{Z}_{0}^{L K}$ minimizes $E\left\{\left(\log \left(\hat{Z}_{0}\right)-\log \left(Z_{0}\right)\right)^{2}\right\}$ over the class of predictors of the form $\hat{Z}_{0}=\exp \left\{\boldsymbol{\lambda}_{0}^{\prime} \log (\mathbf{Z})+k_{0}\right\}$, where $\lambda_{0} \in \mathbb{R}^{n}$ and $k_{0} \in \mathbb{R}$ are constrained such that $E\left\{\hat{Z}_{0}\right\}=E\left\{Z_{0}\right\}$ for every $\mu_{Y} \in \mathbb{R}$.

Recently, Cox (2004) noted a stronger optimality property:

Proposition 2. The predictor $\hat{Z}_{0}^{L K}$ minimizes $E\left\{\frac{\left(\hat{Z}_{0}-Z_{0}\right)^{2}}{\exp \left\{c_{0 Y}^{\prime} \Sigma_{Y}^{-1} \log (\mathbf{Z})\right\}}\right\}$ over the class of all unbiased predictors of Z_{0}.

These optimality properties are somewhat unsatisfactory.
The former holds in the transformed log-scale rather than in the original scale of measurement.
The latter, although holds in the original scale, is with respect to a weighted squared error loss function with little intuitive appeal.

Optimal Point Prediction:

Consider the family of predictors

$$
\mathcal{P}_{0}=\left\{\hat{Z}_{0}=\exp \left\{\mathbf{a}_{0}^{\prime} \mathbf{Y}+k_{0}\right\}: k_{0} \in \mathbb{R}, \mathbf{a}_{0} \in \mathbb{R}^{n}, \mathbf{a}_{0}^{\prime} \mathbf{1}=1\right\}
$$

which includes many special cases:
$\hat{Z}_{0}^{L K}, \widehat{Z}_{0}^{N}=\exp \left\{\hat{Y}_{0}^{O K}\right\}$ and

$$
\hat{Z}_{0}^{M L}=\exp \left\{\hat{Y}_{0}^{O K}+\frac{1}{2}\left(\sigma_{Y}^{2}-\mathbf{c}_{0 Y}^{\prime} \Sigma_{Y}^{-1} \mathbf{c}_{0 Y}\right)\right\}
$$

$$
\hat{z}_{0}^{B}=\exp \left\{\hat{Y}_{0}^{O K}+\frac{1}{2}\left(\sigma_{Y}^{2}+\lambda_{0 Y}^{\prime} \Sigma_{Y} \boldsymbol{\lambda}_{0 Y}-2 \lambda_{0 Y}^{\prime} \mathbf{c}_{O Y}\right)\right\}
$$

Theorem 1. The predictor in the family \mathcal{P}_{0} that minimizes $E\left\{\left(\hat{Z}_{0}-Z_{0}\right)^{2}\right\}$ is given by
$\hat{Z}_{O}^{M E}=\exp \left\{\hat{Y}_{O}^{O K}+\frac{1}{2}\left(\sigma_{Y}^{2}-\boldsymbol{\lambda}_{O Y}^{\prime} \Sigma_{Y} \boldsymbol{\lambda}_{O Y}-2 m_{O Y}\right)\right\}$,
and its MSPE is given by $\operatorname{MSPE}\left(\hat{Z}_{0}^{M E}\right)=\mu_{Z}^{2}\left(\exp \left\{\sigma_{Y}^{2}\right\}-\exp \left\{\boldsymbol{\lambda}_{O Y}^{\prime} \Sigma_{Y} \boldsymbol{\lambda}_{O Y}-2 m_{O Y}\right\}\right)$. where $m_{O Y}=\frac{1-1^{\prime} \Sigma_{Y}^{-1} c_{0 Y}}{1^{\prime} \Sigma_{Y}^{-1} 1}$.

BLOCK PREDICTION

A related problem is the prediction of:

$$
Z(B)=\frac{1}{|B|} \int_{B} Z(\mathrm{~s}) d \mathrm{~s}, \quad B \subset D
$$

based on (point) data \mathbf{Z}.
Examples where inference about this arises:

- Environmental assessment
- Precision farming

Two predictors have been proposed in the geostatistical literature:
The lognormal kriging block predictor

$$
\hat{Z}(B)^{L K}=\frac{1}{|B|} \int_{B} \hat{Z}^{L K}(\mathbf{s}) d \mathbf{s} .
$$

A block predictor motivated by the assumption of "preservation of lognormality"

$$
\hat{Z}(B)^{P L}=\exp \left\{\hat{Y}(B)^{O K}+\frac{1}{2}\left(\sigma_{Y}^{2}-\boldsymbol{\lambda}_{Y}^{\prime}(B) \Sigma_{Y} \boldsymbol{\lambda}_{Y}(B)\right)\right\},
$$

where $\hat{Y}(B)^{O K}=\lambda_{Y}^{\prime}(B) \mathrm{Y}$ is the BLUP of $Y(B)=\int_{B} Y(\mathbf{s}) d \mathbf{s} /|B|$ based on \mathbf{Y}.

Optimal Block Prediction:

Consider the family of block predictors
$\mathcal{P}_{B}=\left\{\hat{Z}(B)=\frac{1}{|B|} \int_{B} \exp \left\{\hat{Y}^{O K}(\mathrm{~s})+k(\mathrm{~s})\right\} d \mathrm{~s}: k(\mathrm{~s}) \in \mathcal{C}(B)\right\}$,
where $\mathcal{C}(B)$ is the space of bounded and Lebesgue measurable functions on B.

Theorem 2. The predictor in the family of predictors \mathcal{P}_{B} that minimizes $E\left\{(\hat{Z}(B)-Z(B))^{2}\right\}$ is given by

$$
\hat{Z}(B)^{M E}=\frac{1}{|B|} \int_{B} \hat{Z}^{M E}(\mathrm{~s}) d \mathrm{~s},
$$

where $\hat{Z}^{M E}(\mathrm{~s})$ is the optimal point predictor given before, and $\operatorname{MSPE}\left(\hat{Z}(B)^{M E}\right)$ is given by

$$
\frac{\mu_{Z}^{2}}{|B|^{2}} \int_{B} \int_{B}\left(\exp \left\{C_{Y}(\mathbf{s}, \mathbf{u})\right\}-\exp \left\{\lambda_{Y}^{\prime}(\mathbf{s}) \Sigma_{Y} \lambda_{Y}(\mathbf{u})-m_{Y}(\mathbf{s})-m_{Y}(\mathbf{u})\right\}\right) d s d \mathbf{u} .
$$

Considering now the family of block predictors $\widetilde{\mathcal{P}}_{B}=\left\{\hat{Z}(B)=\exp \left\{\hat{Y}(B)^{O K}+k_{B}\right\}: k_{B} \in \mathbb{R}\right\}$.

Theorem 3. The predictor in the family of predictors $\tilde{\mathcal{P}}_{B}$ that minimizes $E\left\{(\hat{Z}(B)-Z(B))^{2}\right\}$ is given by

$$
\begin{gathered}
\hat{Z}(B)^{M P}=\exp \left\{\hat{Y}(B)^{O K}+\frac{1}{2}\left(\sigma_{Y}^{2}-3 \boldsymbol{\lambda}_{Y}^{\prime}(B) \Sigma_{Y} \boldsymbol{\lambda}_{Y}(B)\right)\right. \\
\left.+\log \left(\frac{1}{|B|} \int_{B} e^{\boldsymbol{\lambda}_{Y}^{\prime}(B) c_{Y}(\mathrm{~s})} d \mathrm{~s}\right)\right\}
\end{gathered}
$$

and $\operatorname{MSPE}\left(\hat{Z}(B)^{M P}\right)$ is given by

$$
\begin{aligned}
& \frac{\mu_{Z}^{2}}{|B|^{2}}\left(\int_{B} \int_{B} \exp \left\{C_{Y}(\mathbf{s}, \mathbf{u})\right\} d s d \mathbf{u}\right. \\
& \left.\quad-|B|^{2} \exp \left\{2 \log \left(\frac{1}{|B|} \int_{B} e^{\lambda_{Y}^{\prime}(B)} \mathbf{c}_{Y}(\mathbf{s}) d s\right)-\boldsymbol{\lambda}_{Y}^{\prime}(B) \Sigma_{Y} \boldsymbol{\lambda}_{Y}(B)\right\}\right) .
\end{aligned}
$$

Remarks.

From the above results follow that:

- $\hat{Z}_{0}^{L K}$ is inadmissible, in the sense that $\operatorname{MSPE}\left(\hat{Z}_{0}^{M E}\right) \leq \operatorname{MSPE}\left(\hat{Z}_{0}^{L K}\right)$ for all $\mu_{Y} \in \mathbb{R}$.
- $\hat{Z}(B)^{L K}$ and $\hat{Z}(B)^{P L}$ are both inadmissible.
- $\hat{Z}(B)^{M E}$ and $\hat{Z}(B)^{M P}$, and their MSPEs can not be compared analytically; they are compared numerically.

COMPARISON OF PREDICTORS

Let the region $D=[0,1] \times[0,1]$ and random field $Z(\mathrm{~s})=\exp \{Y(\mathrm{~s})\}$, where $\{Y(\mathrm{~s}), \mathrm{s} \in D\}$ is Gaussian with

$$
E\{Y(\mathbf{s})\}=\mu_{Y} \quad, \quad C_{Y}(\mathbf{s}, \mathbf{u})=\sigma_{Y}^{2} \exp \left\{-\frac{l}{\theta_{Y}}\right\} ;
$$

$l=\|\mathbf{s}-\mathbf{u}\|$ is Euclidean distance, $\mu_{Y} \in \mathbb{R}$ and $\sigma_{Y}^{2}, \theta_{Y}>0$.
Data on $Z(\cdot)$ is observed at $n=50$ sampling locations chosen at random.

Point Predictors:

We compare the values of $\hat{Z}_{0}^{M E}$ and $\hat{Z}_{0}^{L K}$ by predicting $Z\left(\mathrm{~s}_{0}\right)$ for locations:
$\mathrm{s}_{0}=(0.5,0.5),(0.3,0.8)$ and (0.9, 0.9).
For that note

$$
\frac{\widehat{Z}_{0}^{M E}}{\widehat{Z}_{0}^{L K}}=\exp \left\{-m_{O Y}\right\}=\frac{E\left\{\hat{Z}_{0}^{M E}\right\}}{E\left\{Z_{0}\right\}},
$$

which does not depend on the observed data.

To compare the predictors in terms of their MSPE's we use the predictive efficiency of $\hat{Z}_{0}^{M E}$ relative to $\widehat{Z}_{0}^{L K}$

$$
\operatorname{RMSPE}\left(\hat{Z}_{0}^{M E}, \hat{Z}_{0}^{L K}\right)=\frac{\operatorname{MSPE}\left(\hat{Z}_{0}^{M E}\right)}{\operatorname{MSPE}\left(\hat{Z}_{0}^{L K}\right)} .
$$

Block Predictors:

We compare the block predictors of $Z(B)$ for the sub-regions B shown below:

The predictors are approximated by noting that

$$
\hat{Z}(B)^{L K}=E_{\mathbf{S}}\left\{\hat{Z}^{L K}(\mathbf{S})\right\} \quad, \quad \hat{Z}(B)^{M E}=E_{\mathbf{S}}\left\{\hat{Z}^{M E}(\mathbf{S})\right\},
$$ where $\hat{Z}^{L K}(\cdot)$ and $\hat{Z}^{M E}(\cdot)$ are point predictors and expectation is taken with respect to $\mathrm{S} \sim \operatorname{unif}(B)$.

RMSPE(Z(B)^ME,Z(B)^MP)

$\operatorname{RMSPE}\left(Z(B)^{\wedge} M E, Z(B)^{\wedge} M P\right)$

The Non-constant Mean Case:

Suppose now that

$$
\mu_{Y}(\mathbf{s})=\sum_{j=1}^{p} \beta_{j} f_{j}(\mathbf{s})
$$

where $\boldsymbol{\beta}=\left(\beta_{1}, \ldots, \beta_{p}\right)^{\prime} \in \mathbb{R}^{p}$ are unknown regression parameters, $\left(f_{1}(\mathbf{s}), \ldots, f_{p}(\mathbf{s})\right)^{\prime}$ are known location-dependent covariates.
In this case we have:

- The result on optimal point prediction (Theorem 1) can be easily extended.
- The results on optimal block prediction (Theorems 2 and 3) cannot be extended.

FIRST CONCLUSIONS

- New point and block predictors for log-Gaussian processes have been proposed that improve upon existing ones.
- The lognormal kriging point and block predictors have (near) optimality properties in the original scale.
- The lognormal kriging block predictor is substantially better than the block predictor motivated by "permanence of lognormality". Also, the best predictor in \mathcal{P}_{B} is substantially better than the the best predictor in $\widetilde{\mathcal{P}}_{B}$.
- For random fields with non-constant mean the optimal results also hold for point prediction, but not for block prediction.

INTERVAL PREDICTION

Here we assume that the mean and covariance functions of $Y(\cdot)$ are given by

$$
\begin{aligned}
E\{Y(\mathbf{s})\} & =\sum_{j=1}^{p} \beta_{j} f_{j}(\mathbf{s}) \\
\operatorname{cov}\{Y(\mathbf{s}), Y(\mathbf{u})\} & =C(\mathbf{s}, \mathbf{u})
\end{aligned}
$$

$f_{1}(\mathrm{~s}), \ldots, f_{p}(\mathrm{~s})$ known covariates
$\boldsymbol{\beta}=\left(\beta_{1}, \ldots, \beta_{p}\right)^{\prime} \in \mathbb{R}^{p}$ unknown parameters $C(\mathbf{s}, \mathbf{u})$ parametric covariance function in \mathbb{R}^{d} satisfying $C(\mathbf{s}, \mathbf{s})=\sigma^{2}>0$

OBSERVED DATA:

Noisy measurements of the random field $Z(\cdot)$ at known sampling locations $\mathrm{s}_{1}, \ldots, \mathrm{~s}_{n} \in D$:

$$
Z_{i, \mathrm{obs}}=Z\left(\mathrm{~s}_{i}\right) \epsilon_{i}, \quad i=1, \ldots, n,
$$

$\left\{\log \left(\epsilon_{i}\right)\right\} \stackrel{\text { iid }}{\sim} \mathrm{N}\left(0, \sigma_{\epsilon}^{2}\right)$ are measurement errors distributed independently of $Z(\cdot)$, and $\sigma_{\epsilon}^{2} \geq 0$.

GOAL:

obtain prediction interval for $Z_{0}=Z\left(\mathrm{~s}_{0}\right)$, the unobserved value of the process at $\mathrm{s}_{0} \in D$, based on $\mathbf{Z}=\left\{Z_{i, \mathrm{obs}}\right\}_{i=1}^{n}$.

Model parameters are $\boldsymbol{\beta} \in \mathbb{R}^{p}$ and $\boldsymbol{\vartheta} \in \Theta \subset \mathbb{R}^{q}$ include $\sigma_{\epsilon}^{2}, \sigma^{2}$ and other parameters in $C(\mathbf{s}, \mathbf{u})$.

Common approach to construct prediction intervals for $Z(\cdot)$ is to transform prediction intervals for $Y(\cdot)$. Let

$$
\mathbf{Y}=\log (\mathbf{Z}) \quad \text { and } \quad Y_{0}=\log \left(Z_{0}\right)
$$

The BLUP of Y_{0} based on Y and its mean squared prediction error are
$\hat{Y}_{0}(\vartheta)=\lambda_{0}^{\prime}(\vartheta) \mathbf{Y}, \hat{\sigma}_{0}^{2}(\vartheta)=\sigma^{2}-2 \lambda_{0}^{\prime}(\vartheta) \mathbf{c}_{0}(\vartheta)+\lambda_{0}^{\prime}(\vartheta) \Sigma_{\vartheta} \lambda_{0}(\vartheta)$ with
$\lambda_{0}^{\prime}(\boldsymbol{\vartheta})=\left(\mathrm{c}_{0}(\vartheta)+X\left(X^{\prime} \Sigma_{\vartheta}^{-1} X\right)^{-1}\left(\mathrm{x}_{0}-X^{\prime} \Sigma_{\vartheta}^{-1} \mathbf{c}_{0}(\vartheta)\right)\right)^{\prime} \Sigma_{\vartheta}^{-1}$
$X=\left(f_{j}\left(\mathbf{s}_{i}\right)\right)_{n \times p}, \quad \mathbf{x}_{0}=\left(f_{1}\left(\mathbf{s}_{0}\right), \ldots, f_{p}\left(\mathbf{s}_{0}\right)\right)^{\prime}$
$\Sigma_{\vartheta}, \mathbf{c}_{0}(\boldsymbol{\vartheta})$ are the $n \times n$ and $n \times 1$ matrices:
$\Sigma_{\vartheta, i j}=C\left(\mathbf{s}_{i}, \mathbf{s}_{j}\right)+\sigma_{\epsilon}^{2} \mathbf{1}\{i=j\}, \mathbf{c}_{0}(\vartheta)_{i}=C\left(\mathbf{s}_{0}, \mathbf{s}_{i}\right)$.
Σ_{ϑ} is positive definite for any $\boldsymbol{\vartheta} \in \Theta$.

We start by assuming that ϑ is known.

It follows

$\binom{Y_{0}}{\widehat{Y}_{0}(\boldsymbol{\vartheta})} \sim \mathrm{N}_{2}\left(\binom{\mathbf{x}_{0}^{\prime} \boldsymbol{\beta}}{\mathbf{x}_{0}^{\prime} \boldsymbol{\beta}},\left(\begin{array}{cc}\sigma^{2} & \boldsymbol{\lambda}_{0}^{\prime}(\boldsymbol{\vartheta}) \mathbf{c}_{0}(\boldsymbol{\vartheta}) \\ \boldsymbol{\lambda}_{0}^{\prime}(\boldsymbol{\vartheta}) \mathbf{c}_{0}(\boldsymbol{\vartheta}) & \boldsymbol{\lambda}_{0}^{\prime}(\boldsymbol{\vartheta}) \Sigma_{\vartheta} \boldsymbol{\lambda}_{0}(\boldsymbol{\vartheta})\end{array}\right)\right)$
so $T=Y_{0}-\hat{Y}_{0}(\boldsymbol{\vartheta}) \sim \mathrm{N}\left(0, \hat{\sigma}_{0}^{2}(\boldsymbol{\vartheta})\right)$ is a pivot for the prediction of Y_{0}.
Then a $1-\alpha$ prediction interval for Y_{0} is

$$
\hat{Y}_{0}(\vartheta) \pm \Phi^{-1}(1-\alpha / 2) \hat{\sigma}_{0}(\vartheta)
$$

and a $1-\alpha$ prediction interval for Z_{0} is

$$
\exp \left\{\hat{Y}_{0}(\vartheta) \pm \Phi^{-1}(1-\alpha / 2) \hat{\sigma}_{0}(\vartheta)\right\}
$$

We denote this PI as $I_{0}^{N}(\alpha, \boldsymbol{\vartheta})$ and call it the standard $1-\alpha$ prediction interval for Z_{0}.

SHORTEST PREDICTION INTERVALS:

 KNOWN COVARIANCE CASEConsider the family of $1-\alpha$ prediction intervals for Z_{0}

$$
\begin{aligned}
\mathcal{F}_{0}= & \left\{\left(\underset{\exp \left\{\hat{Y}_{0}(\vartheta)-\Phi^{-1}(1-\gamma) \hat{\sigma}_{0}(\vartheta),\right.}{ }\right.\right. \\
& \left.\left.\left.\exp \left\{\hat{Y}_{0}(\vartheta)-\Phi^{-1}(1-\alpha+\gamma)\right)_{0}(\vartheta)\right\}\right): \gamma \in[0, \alpha)\right\}
\end{aligned}
$$

which includes the standard prediction interval (obtained for $\gamma=\alpha / 2$).

THEOREM. Let $\alpha \in(0,1), \boldsymbol{\vartheta} \in \Theta$ and $\mathrm{s}_{0} \in D$. Then the shortest prediction interval in \mathcal{F}_{0} is the one corresponding to the value

$$
\gamma=\gamma_{0}^{\mathrm{opt}}=\gamma_{0}^{\mathrm{opt}}(\alpha, \vartheta) \in(0, \alpha / 2)
$$

which is the (unique) solution to the equation

$$
\Phi^{-1}(1-\gamma)-\Phi^{-1}(1-\alpha+\gamma)=2 \widehat{\sigma}_{0}(\vartheta)
$$

Hence the shortest $1-\alpha$ PI for Z_{0} in \mathcal{F}_{0} is

$$
\begin{aligned}
I_{0}^{S}(\alpha, \boldsymbol{\vartheta})= & \left(\operatorname { e x p } \left\{\hat{Y}_{0}(\boldsymbol{\vartheta})-\Phi^{-1}\left(1-\gamma_{0}^{\mathrm{opt}}\right) \hat{\sigma}_{0}(\boldsymbol{\vartheta}),\right.\right. \\
& \left.\exp \left\{\hat{Y}_{0}(\boldsymbol{\vartheta})-\Phi^{-1}\left(1-\alpha+\gamma_{0}^{\mathrm{opt}}\right) \hat{\sigma}_{0}(\boldsymbol{\vartheta})\right\}\right)
\end{aligned}
$$

COMPARISON

Let $\operatorname{RL}\left(I_{0}^{N}(\alpha, \vartheta), I_{0}^{S}(\alpha, \boldsymbol{\vartheta})\right)$ be defined as
$\frac{\operatorname{en}\left(I_{0}^{S}(\alpha, \vartheta)\right)}{\operatorname{len}\left(I_{0}^{N}(\alpha, \vartheta)\right)}=\frac{\exp \left\{\Phi^{-1}\left(1-\alpha+\gamma_{0}^{\text {opt }}\right) \hat{\sigma}_{0}(\vartheta)\right\}-\exp \left\{-\Phi^{-1}\left(1-\gamma_{0}^{\mathrm{opt}}\right) \hat{\sigma}_{0}(\vartheta)\right\}}{\exp \left\{\Phi^{-1}(1-\alpha / 2) \hat{\sigma}_{0}(\vartheta)\right\}-\exp \left\{-\Phi^{-1}(1-\alpha / 2) \hat{\sigma}_{0}(\vartheta)\right\}}$

Consider $D=[0,1] \times[0,1]$ and random field $Z(\mathrm{~s})=\exp \{Y(\mathrm{~s})\}$, where $\{Y(\mathrm{~s}), \mathrm{s} \in D\}$ is Gaussian with constant mean and Matérn covariance function

$$
C(\mathbf{s}, \mathbf{u})=\frac{\sigma^{2}}{2^{\theta_{2}-1} \Gamma\left(\theta_{2}\right)}\left(\frac{l}{\theta_{1}}\right)^{\theta_{2}} \mathcal{K}_{\theta_{2}}\left(\frac{l}{\theta_{1}}\right),
$$

$l=\|\mathbf{s}-\mathbf{u}\|$ is Euclidean distance $\vartheta=\left(\sigma^{2}, \theta_{1}, \theta_{2}\right)$ are covariance parameters.

We consider the cases $\theta_{2}=0.5$ and $\theta_{2}=1.5$ Also assume $\sigma_{\epsilon}^{2}=0$ (no measurement error).

Fifty sampling locations (o) chosen at random within the region D and prediction locations $s_{0}=(0.5,0.5),(0.3,0.8)$ and $(0.9,0.9)(\times)$.

$\theta_{2}=0.5$

Findings:

- Length reductions in the range $1-35 \%$
- Length reductions decrease when confidence level increases
- Length reductions decrease when smoothness of the process increases
- The largest reductions are obtained in models with highly asymmetric marginals (σ^{2} large) and moderate to weak dependence (θ small)

SHORTEST PREDICTION INTERVALS: UNKNOWN COVARIANCE CASE

The previous prediction intervals depend on $\boldsymbol{\vartheta}$. The most immediate fix to this problem is to use $I_{0}^{N}(\alpha, \widehat{\vartheta})$ and $I_{0}^{S}(\alpha, \widehat{\vartheta})$, where $\widehat{\boldsymbol{\vartheta}}=\widehat{\boldsymbol{\vartheta}}(\mathbf{z})$ is an estimate of $\boldsymbol{\vartheta}$.
These are called plug-in prediction intervals.

The drawback is that plug-in PIs have coverage properties that differ from the nominal coverage properties, usually having smaller coverage than the desired coverage since these PIs intervals do not take into account the sampling variability of the parameter estimates.

A solution is to calibrate these plug-in PIs:
Cox (1975) and Beran (1990).

Calibrated Prediction Intervals

The coverage probability function of $I_{0}^{S}(\alpha, \widehat{\vartheta})$ is defined as

$$
\pi_{0}(\alpha, \boldsymbol{\vartheta})=P_{\vartheta}\left\{Z_{0} \in I_{0}^{S}(\alpha, \widehat{\boldsymbol{\vartheta}}(\mathbf{Z}))\right\}
$$

We start by estimating $\pi_{0}(\cdot, \boldsymbol{\vartheta})$ with $\pi_{0}(\cdot, \widehat{\boldsymbol{\vartheta}})$. The basic idea of calibrating plug-in prediction intervals is to find $\alpha_{c} \in(0,1)$ for which it holds, exactly or approximately, that

$$
\pi_{0}\left(\alpha_{c}, \widehat{\boldsymbol{\vartheta}}\right)=1-\alpha,
$$

The calibrated prediction interval is $I_{0}^{S}\left(\alpha_{c}, \widehat{\boldsymbol{\vartheta}}\right)$, which by construction has coverage probability close to $1-\alpha$.
$\pi_{0}(\cdot, \widehat{\vartheta})$ is usually not available in closed form so it needs to be approximated.

Bootstrap Calibration

Let $\pi_{0}^{*}(\cdot, \widehat{\boldsymbol{\vartheta}})$ be a Monte Carlo estimate of $\pi_{0}(\cdot, \widehat{\vartheta})$.
One way is simulate $\left(\mathbf{Z}_{j}^{*}, Z_{0 j}^{*}\right)$, say B times, from the lognormal model with parameters $\widehat{\boldsymbol{\beta}}=$ $\widehat{\boldsymbol{\beta}}(\mathbf{z})$ and $\widehat{\boldsymbol{\vartheta}}=\widehat{\boldsymbol{\vartheta}}(\mathbf{z})$, and estimate $\pi_{0}(x, \widehat{\boldsymbol{\vartheta}})$ with

$$
\begin{aligned}
& \frac{1}{B} \sum_{j=1}^{B} 1\left\{Y_{0}\left(\vartheta_{j j}^{*}\right)-\Phi^{-1}\left(1-\gamma_{0 j}^{\text {opt* }}\right) \hat{\sigma}_{0}\left(\vartheta_{j}^{*}\right)<Y_{0 j}^{*}<Y_{0}\left(\vartheta_{j}^{*}\right)+\Phi^{-1}\left(1-x+\gamma_{0 j}^{\text {opt }}\right) \hat{\sigma}_{0}\left(\vartheta_{j}^{*}\right)\right\} \\
& Y_{0 j}^{*}=\log \left(Z_{0 j}^{*}\right), \vartheta_{j}^{*}=\widehat{\boldsymbol{\vartheta}}\left(\mathbf{Z}_{j}^{*}\right) \text { and } \gamma_{0 j}^{\mathrm{opt} *}=\gamma_{0}^{\mathrm{opt}}\left(x, \boldsymbol{\vartheta}_{j}^{*}\right) .
\end{aligned}
$$

A better way is to use 'Rao-Backwellization' based on the identity
$\pi_{0}(\alpha, \vartheta)=E_{\vartheta}\left\{\Phi\left(\frac{U_{0}(\alpha, \hat{\vartheta}, \mathbf{Y})-\eta_{0}(0, \vartheta, \mathbf{Y})}{\tau_{0}(\vartheta)}\right)-\Phi\left(\frac{L_{0}(\alpha, \hat{\vartheta}, \mathbf{Y})-\eta_{0}(0, \vartheta, \mathbf{Y})}{\tau_{0}(\boldsymbol{\vartheta})}\right)\right\}$
$L_{0}(x, \boldsymbol{\vartheta}, \mathbf{Y})=\hat{Y}_{0}(\boldsymbol{\vartheta})-\Phi^{-1}\left(1-\gamma_{0}^{\text {opt }}\right) \hat{\sigma}_{0}(\boldsymbol{\vartheta})$
$U_{0}(x, \boldsymbol{\vartheta}, \mathbf{Y})=\hat{Y}_{0}(\vartheta)+\Phi^{-1}\left(1-x+\gamma_{0}^{\text {opt }}\right) \hat{\sigma}_{0}(\vartheta)$
Expectation is wrt Y when $\boldsymbol{\beta}=0$.

Algorithm:

Step 1. Compute the ML (or REML) estimate $\hat{\boldsymbol{\vartheta}}=\hat{\boldsymbol{\vartheta}}(\mathbf{z})$ from the observed data \mathbf{z}.

Step 2. Simulate B independent and identically distributed bootstrap samples $\left\{\mathbf{Y}_{j}^{*}: 1 \leq j \leq B\right\}$ from the Gaussian random field $\{Y(\mathbf{s}), \mathbf{s} \in D\}$ with $\boldsymbol{\beta}=\mathbf{0}$ and $\vartheta=\widehat{\boldsymbol{\vartheta}}$.

Step 3. For each $j=1, \ldots, B$, compute the estimate $\boldsymbol{\vartheta}_{j}^{*}=\widehat{\boldsymbol{\vartheta}}\left(\exp \left(\mathbf{Y}_{j}^{*}\right)\right)$ based on the bootstrap sample \mathbf{Y}_{j}^{*}.

Step 4. For each $\mathrm{s}_{0} \in D$ where a PI is sought, compute $L_{0 j}^{*}=L_{0}\left(x, \boldsymbol{\vartheta}_{j}^{*}, \mathbf{Y}_{j}^{*}\right), U_{0 j}^{*}=U_{0}\left(x, \boldsymbol{\vartheta}_{j}^{*}, \mathbf{Y}_{j}^{*}\right)$ and for $x \in(0,1)$ estimate $\pi_{0}(x, \widehat{\boldsymbol{\vartheta}})$ by

$$
\pi_{0}^{*}(x, \widehat{\boldsymbol{\vartheta}})=\frac{1}{B} \sum_{j=1}^{B}\left[\Phi\left(\frac{U_{0 j}^{*}-\widehat{\eta}_{0 j}^{*}}{\widehat{\tau}_{0}}\right)-\Phi\left(\frac{L_{0 j}^{*}-\widehat{\eta}_{0 j}^{*}}{\widehat{\tau}_{0}}\right)\right]
$$

where $\widehat{\eta}_{0 j}^{*}=\eta_{0}\left(\mathbf{0}, \widehat{\boldsymbol{\vartheta}}, \mathbf{Y}_{j}^{*}\right)$ and $\widehat{\tau}_{0}=\tau_{0}(\hat{\boldsymbol{\vartheta}})$.

Finally, α_{c} is found as the solution (in x) of

$$
\pi_{0}^{*}(x, \widehat{\boldsymbol{\vartheta}})=(1-\alpha)
$$

Illustration:

When the data have no nugget the effect of calibration is often minor.

But when the data contain measurement error the effect of calibration tends to be substantial.

Comparison of plug-in and calibrated PIs

θ	σ^{2}	0.1			1.0	
		0.1	0.5		0.1	0.5
				$\sigma_{\epsilon}^{2}=0$		
plug-in		1.068	0.551		5.620 .940	3.004
plug-in		1.033	0.545		4.450	2.779
shortest		[.939]	[.950]		[.942]	[.948]
calibrated standard		1.124	0.557		$6.111]$	3.050
calibrated shortest		1.068	0.548 0.951		4.694 $[.949]$	2.795 2.949
				$\sigma_{\epsilon}^{2}=\frac{\sigma^{2}}{4}$		
plug-in		1.011	0.522		6.131	2.897
plug-in		0.981	0.518		4.8908	
shortest		[.900]	[.895]		[.909]	[.902]
calibrated		1.164	0.544		8.597	3.041
standard		[.934]	[.908]		[.936]	[.910]
calibrated shortest		1.098	0.531 .904		6.750 .937	2.775
				$\sigma_{\epsilon}^{2}=0$		
plug-in		1.225	0.727		6.507 934$]$	4.025
standard			[.936]		[.934]	
plug-in		1.934]	0.917		4.945 $[.937]$	3.537
calibrated		1.313	0.779		$\begin{array}{r}7.367 \\ \hline 949\end{array}$	4.422
standard		[.948]	[.952]		[.949]	[.949]
calibrated shortest		$\begin{aligned} & 1.232 \\ & {[.944]} \end{aligned}$	0.950]		[.400]	3.776
				$\sigma_{\epsilon}^{2}=\frac{\sigma^{2}}{4}$		
plug-in		1.175	$\begin{aligned} & 0.697 \\ & 0.8961 \end{aligned}$		$\begin{aligned} & 6.960 \\ & 6.8901 \end{aligned}$	3.907
plug-in						
shortest		[.894]	[.897]		[.903]	[.901]
calibrated		$\begin{aligned} & 1.377 \\ & {[.9321} \end{aligned}$	0.761		10.168	4.390
Standard		$\begin{aligned} & \text { [.932] } \\ & 1 \end{aligned}$	$[.923]$		$\begin{aligned} & {[.933]} \\ & 7626 \end{aligned}$	[.923]
calibrated shortest		1.285]	0.931 .917$]$		[.635]	3.755 $[.921]$

EXAMPLE:

Data on cadmium (Cd) concentrations (in ppm) measured at 259 locations in a region of about $15 \mathrm{~km}^{2}$ in the Switzerland, collected in 1992.

Measurements at 100 locations are used for validation.

Exploratory analysis suggests the "best" model is the log-Gaussian random field associated with constant mean, nugget and exponential covariance function:

$$
\hat{\beta}_{1}=0.084, \hat{\sigma}^{2}=0.4, \hat{\theta}_{1}=0.177 \text { and } \hat{\sigma}_{\epsilon}^{2}=0.073
$$

	plug-in				calibrated		
	standard	shortest	RL		standard	shortest	RL
1	1.169	1.053	0.900		1.176	1.053	0.890
2	4.763	4.201	0.882		4.853	4.230	0.871
3	4.527	3.908	0.863		4.663	3.999	0.858
4	3.550	3.094	.871		3.636	3.130	0.861
5	3.337	2.881	0.863		3.433	2.940	0.856
6	2.999	2.615	0.872		3.100	2.680	0.864
7	3.984	3.494	0.877		4.075	3.568	0.875
8	2.738	2.363	0.863		2.832	2.401	0.847
9	2.813	2.479	0.881		2.873	2.502	0.871
10	3.817	3.326	0.871		3.911	3.393	0.867

The relative lengths of the shortest prediction intervals with respect to the standard prediction intervals vary from 0.84 to 0.89 , with an average of 0.86 , so on average the shortest prediction intervals are about 14% shorter than the standard prediction intervals.

For each of the 100 validation locations computed each type of 95% prediction interval for the Cd true value, and determined whether of not each Cd observed value falls into the corresponding prediction interval.

The proportion of 95% plug-in standard, plug-in shortest, calibrated standard and calibrated shortest prediction intervals covering the corresponding Cd observed values were, respectively, $0.93,0.93,0.93$ and 0.95 . The calibrated shortest prediction intervals seem to have coverage close to nominal.

A Tale about Hockey Sticks

Before the Tale, A few Chance Encounters

Gerald R. North
Atmos. Sci.
Texas A\&M

Sampling Errors were a concern for the proposed Tropical Rainfall Measuring Mission.

- 1985

I was trying to learn statistics.

 I read engineering books, economics books, Bulmer, etc. Then . . .
One of the key papers demonstrating the plausibility of TRMM

Estimation of Mean Rain Rate: Application to Satellite Observations

Benjamin Kedem ${ }^{1}$
Department of Mathematics and Institute for Physical Science and Technology, University of Maryland, College Park

Long S. Chiu ${ }^{2}$
Applied Research Corporation, Landover, Maryland

Gerald R. North ${ }^{3}$

NASA Goddard Space Flight Center, Greenbelt, Maryland

A method for the estimation of the mean area average rain rate from dependent data is developed and applied to the GARP Atlantic Tropical Experiment GATE data. The method consists of fitting a mixed distribution, containing an atom at zero, by minimum chi-square in combination with certain time-space sampling designs. In modeling the continuous component of the mixed distribution it is shown that the lognormal distribution provides a very close fit for the nonzero area average rainrates. A comparison with the gamma distribution shows that the lognormal distribution is a better choice as expressed by the minimum chi-square criterion. Some of the time-space sampling designs correspond to satellite sampling. The results indicate that a satellite visiting an area of about $350 \times 350 \mathrm{~km}^{2}$ in the tropics approximately every 10 hours over a period can provide a rather close estimate for the mean area average rain rate.

TRMM Orbits

Launched in 1997, TRMM is still flying

Not all of my encounters were uncorrelated

Ann. Inst. Statist. Math.
Vol. 49, No. 2, 341-354 (1997)

ALIASING EFFECTS AND SAMPLING THEOREMS OF SPHERICAL RANDOM FIELDS WHEN SAMPLED ON A FINITE GRID

Ta-Hsin LI ${ }^{1}$ and Gerald R. North ${ }^{2}$
${ }^{1}$ Department of Statistics, Texas A6iM University, College Station, TX 77843 , U.S.A.
${ }^{2}$ Climate System Research Program, Department of Meteorology, Texas A\&M University, College Station, TX 77843, U.S.A.

Just a sample:

Fig. 1. Aliasing effects in $\tilde{T}_{m n}$ when $M=3$ (N arbitrary): Coordinates of possible mutual aliases are represented with identical symbols.

Fast Forward to the Present Century

Global Warming Goes to Washington (2006)

Did Earth cool gradually, then heat up fast?

It's the Notorious Hockey Stick!

Past Climates can be Estimated from Proxy Data.

Instrument records go back over a century.

Jan - Dec Global Surface Mean Temp Anomalies

Trend in deg C/decade since 1950

NRC Report 2006

Hockey Stick Time Line

- Mann, Hughes, Bradley $(1998,1999)$
- Intergovernmental Panel on Climate Change (IPCC 2001)
- Enter the Amateurs (M\&M, 2005)
- Enter Congressman Barton, then Boehlert (06)
- Enter the National Academy of Sciences
- Battling Banjos on the Hill

2001 IPCC features the Hockey Stick: it becomes an Icon

FIGURE O-4 Multiproxy reconstruction of Northern Hemisphere surface temperature variations over the past millennium (blue), along with 50 -year average (black), a measure of the statistical uncertainty associated with the reconstruction (grey), and instrumental surface temperature data for the last 150 years (red), based on the work by Mann et al. (1999). This figure has sometimes been referred to as the "hockey stick." SOURCE: IPCC (2001).

Enter the Amateurs (M\&M, 2005)

A very crude estimate of global temps was featured in the 2000 IPCC Report.

FIGURE O-3 Schematic description of global temperature variations in degrees Centigrade for the last 1100 vears nublished more than 15 vears ago SOITRCE: IPCC (1990)

Enter Congressman Joe Barton

Chairman, Energy \& Commerce Committee (2006)
- Wegman Report

Wegman,
Scott,
Said

SURFACE TEMPERATURE RECONSTRUCTIONS FOR THE LAST 2,000 YEARS

Committee on Surface Temperature Reconstructions for the Last 2,000 Years

Board on Atmospheric Sciences and ClimateDivision on Earth and Life Studies NATIONAL RESEARCH COUNCIL OF THE NATIONAL ACADEMIESTHE NATIONAL ACADEMIES PRESS Washington, D.C.

North, Wallace, Christy, Cuffey, Turekian, Druffle, Otto-Bliesner, Nychka, Bloomfield, Biondi, Roberts, Dickinson

12 Anonymous Referees, 2 Monitors

NRC Report

Jerry \& Ed with 1990 graphic.

From

Geotimes,
Sept 2006

Climatologist Gerald North (foreground) and statistician Edward Wegman testified in front of the House Energy and Commerce Subcommittee on Oversight and Investigations in July about the famed hockey stick climate analysis. Photograph is by Christine McCarty, House Committee on Energy and Commerce.

Kinds of Information Available

Thermometer Records for the Last 150 years
Proxies for Extrapolation Back in Time:

- Tree Rings
- Ice Cores and Isotopes
- Bore Holes (ice and ground)
- Glacial Lengths
- Historical Records
- Sediments (lake and oceanic)
- Corals, Pollen, Caves, Entomology

How to Reconstruct the Field (Tree Ring Example)

- Ring Widths are Correlated to Environmental Conditions
- Use the Instrumental Period to Set the Temp Scale on the Ring Widths
- Statistical Issues:
- Stationarity, Confounding Variables
- Range Match
- Verification Period

CROSS SECTION of a CONFER

Making a Record from many Trees

FIGURE \| 0.2 Example of a tree-ring density plot based on an x-ray negative of a section of wood (top of figure). Minimum and maximum densities in each annual ring are clearly seen, enabling the annual ring width to be measured as well as the width of both the earlywood and latewood (courtesy of F . Schweingruber).

Reconstructing a
 Temperature Field using proxies, e.g., tree rings

Tree Ring Sites

FIGURE 4-1 Location map of individual sites (red) and regional composites (yellow boxes) used to reconstruct Northern Hemisphere surface temperatures for the past millennium. SOURCE: D'Arrigo et al. (2006).

Ice Cores

- Chronology (counting back, other)
- Gas Bubbles \& Volcanic Ash
- Temps from ${ }^{18} \mathrm{O}$ Isotopes
- Temperatures Down the Bore Hole

Lonnie Thompson's group collects ice cores.

NRC 2006 Graphic of STR:

NRC Committee Concludes

- Last 100 yrs: Temps up 0.6 deg C
- (highly likely ~95\% Confident)
- 30 yr averages warmest in 400 yrs
- (likely~2 to 1 odds)
- 30 yr averages warmest 1000 yrs
- (Plausible ~reasonable, not possible to bring a convincing argument against - no numbers)
http://epw.senate.gov/pressitem.cfm?id=257697\&party=rep
"Today's NAS report reaffirms what I have been saying all along, that Mann's 'hockey stick' is broken," Senator Inhofe said. "Today's report refutes Mann's prior assertions that there was no Medieval Warm Period or Little Ice Age."

My chance brushes with Ben, Ta-Hsin, Peter, and Manny, (Ed W., Too) have enriched my life and I think we've done some good.

At least we had fun tryin'.

Introducing a Fractional INAR(1) Model for Time Series of Counts

Harry Pavlopoulos www.stat-athens.aueb.gr/~hgp/

Department of Statistics

Athens University of Economics and Business 76 Patission Str., GR-10434 Athens, Greece

OUTLINE

1. Motivation by an interest on series of pixel counts and relevant links to the "Threshold Method" for prediction of SARR.
2. Introduce Randomized Binomial Thinning and a class of Fractional INAR(1) models.
3. Calculation of Moments up to $2^{\text {nd }}$ order, under the assumption of stationarity.
4. Simulation and Inference.
5. Application on daily series of global rain-rate fields.

MOTIVATION

Let $\quad\left\{R_{t}\left(A_{i, j}\right) ; i, j=1,2, \cdots, n(A)\right\}_{t=1}^{T} \quad$ be a time series of instantaneous realizations (measurements) of random "marks" over the $n^{2}(A)$ pixels $\left\{A_{i, j}\right\}$ of a 2D Marked Regular Lattice (MRL) configuration of a random field probed over a fixed domain A.

WLOG: assume pixels of square shape (with fixed side length), and non-negative marks (e.g. environmental / geophysical MRL).

240×240 Km^2 TOGA-COARE Region, MIT Radar

Cruise-1, Date 921110, Time 23:21 UTC

MIT Radar, Cruise-1, Date 921110, Time 23:21 UTC Clipping Threshold $=1 \mathrm{~mm} / \mathrm{hr}$

$$
\underline{\boldsymbol{u}-\text { COVER }:} \quad\left\{\bar{F}_{n, t}(u, A)=n^{-2}(A) \cdot \sum_{i, j=1}^{n(A)} I\left[R_{t}\left(A_{i, j}\right)>u\right]\right\}_{u \geq 0}
$$

is a random functional, parameterized by the $\underline{u \text {-threshold, providing }}$ an important statistical summary of the MRL over A at each instant t.

$$
\left\{\bar{F}_{n, t}(u, A)\right\}_{u \geq 0} \quad \text { is a functional of random tail-probabilities }
$$ corresponding to the instantaneous empirical spatial cumulative distribution functional (IESCDF): $\left\{F_{n, t}(u, A)=1-\bar{F}_{n, t}(u, A)\right\}_{u \geq 0}$

Time series of pixel counts where a MRL exceeds a fixed \boldsymbol{u}-threshold

$$
\left\{X_{t}(u, A):=\sum_{i, j=1}^{n(A)} I\left[R_{t}\left(A_{i, j}\right)>u\right]\right\}_{t=1,2, \ldots, T}
$$

motivate an interest to model (over-dispersed and persistent) time series of counts.

- IESCDF is a natural predictor of instantaneous spatial-cdf (ISCDF)

$$
\left\{F_{\infty, t}(u, A)=1-\bar{F}_{\infty, t}(u, A)=|A|^{-1} \cdot \int_{A} I\left[R_{t}(a) \leq u\right] d a\right\}_{u \geq 0}
$$

of the probed underlying spatio-temporal random fiel $\left\{k_{t}(a) ; a \in A\right\}$ when $n(A)$ is large enough and/or $\left|A_{i, j}\right| /|\mathrm{A}|$ is small enough (Increasing Domain / Infill Asymptotics).

Lahiri S.N., Kaiser M.S., Cressie N., Hsu N.J. (JASA 1999, 94: 86-97)

- Analogously, u-COVER is a natural predictor of ISCDF-tails.
- Under appropriate assumptions of spatial-temporal homogeneity, rendering stationary ISCDF, modelling the numerator of \boldsymbol{u}-COVER by a stationary model suitable for time series of counts, could (in principle) facilitate temporal prediction of spatial tail-probabilities.
- Prediction of spatial sample moments (i.e. moments of IESCDF) may also be facilitated by implementation of the "Threshold Method", provided that the underlying random field has sufficient variability in its intermittency between zero and positive marks.

$$
\begin{aligned}
& R_{t}^{(k)}\left(A_{i, j}\right):=\frac{1}{\left|A_{i, j}\right|} \cdot \int_{A_{i, j}} R_{t}^{k}(a) d a=\int_{-\infty}^{+\infty} u^{k} d F_{\infty, t}\left(u ; A_{i, j}\right) \\
& R_{t}^{(k)}(A):=\frac{1}{n^{2}(A)} \cdot \sum_{i, j=1}^{n(A)} R_{t}^{(k)}\left(A_{i, j}\right)=\int_{-\infty}^{+\infty} u^{k} d F_{\infty, t}(u ; A) \\
& R_{t}^{[k]}(A):=\frac{1}{n^{2}(A)} \cdot \sum_{i, j=1}^{n(A)} R_{t}^{k}\left(A_{i, j}\right)=\int_{-\infty}^{+\infty} u^{k} d F_{n, t}(u ; A)
\end{aligned}
$$

THRESHOLD METHOD

$$
\begin{gathered}
R_{t}^{[k]}(A)=\beta_{k}(u) \cdot \bar{F}_{n, t}(u, A)+\varepsilon_{t} \\
\beta_{k}(u)=\frac{E\left\{R_{t}^{(k)}\left(A_{i, j}\right) \| R_{t}^{(k)}\left(A_{i, j}\right)>0\right\}}{P\left\{R_{t}^{(k)}\left(A_{i, j}\right)>u \| R_{t}^{(k)}\left(A_{i, j}\right)>0\right\}}
\end{gathered}
$$

within an "optimal" range of u-thresholds, facilitating/justifying prediction of spatial moments by linear regression on ECDF-tails.

Kedem \& Pavlopoulos [1991, JASA] Short, Shimizu, Kedem [1993, JAMet.]
Shimizu, Short, Kedem [1993, J.Met.Soc.Japan]
Shimizu \& Kayano [1994, J.Met.Soc.Japan] Mase [1996, Ann.Inst.Statistical.Math.] Sakaguchi \& Mase [2003, J.Japan Statist.Soc.]

$$
X_{t}=p \circ X_{t-1}+\varepsilon_{t}
$$

$\left\{\varepsilon_{t}\right\}$ II.D. innovations ; $\varepsilon_{t} \perp\left\{X_{s}\right\}_{s<t}$
Binomial p-Thinning: $p \circ X_{t-1}:=\sum_{i=1}^{X_{t-1}} Z_{t, i}$
$\left\{Z_{t, i}\right\}$ IID array, independently of $\left\{X_{t}\right\}$

$$
\begin{gathered}
P\left(Z_{t, i}=1\right)=1-P\left(Z_{t, i}=0\right)=p \in[0,1] \\
\left(p \circ X_{t-1} \| X_{t-1}\right) \sim B\left(X_{t-1}, p\right) \\
\varphi_{p \circ X}(u)=E\left(e^{i \cdot u \cdot(p \circ X)}\right)=E\left\{\left(1-p+p \cdot e^{i \cdot u}\right)^{X}\right\}
\end{gathered}
$$

Stationary Solution

$\left\{X_{t}\right\}$ (strictly) stationary $\Leftrightarrow \quad p<1 \quad \& \quad E\left(\varepsilon_{t}\right)<\infty$

$$
\begin{aligned}
& X_{t} \stackrel{D}{=} \sum_{j=0}^{\infty} \alpha^{j} \circ \varepsilon_{t-j} \quad \begin{array}{l}
\text { Discrete } \\
\text { Self-Decomposable } \\
\text { Law }
\end{array} \\
& G_{X}(z)=E\left(z^{X_{t}}\right)=\prod_{j=0}^{\infty} G_{\varepsilon}\left(1-\alpha^{j}+\alpha^{j} \cdot z\right) \\
& G_{\varepsilon}(z)=E\left(z^{\varepsilon_{t}}\right), \quad|z| \leq 1 \\
& \sum_{j=1}^{\infty} \frac{P\left(\varepsilon_{t} \geq j\right)}{j}<\infty
\end{aligned}
$$

$\underline{2^{\text {nd }} \text { Order Moments }}$

$$
\begin{gathered}
\mu_{X}=E\left(X_{t}\right)=\frac{\mu_{\varepsilon}}{1-p} \quad \& \quad \sigma_{X}^{2}=\operatorname{Var}\left(X_{t}\right)=\frac{p \cdot \mu_{\varepsilon}+\sigma_{\varepsilon}^{2}}{1-p^{2}} \\
I D(X)=\frac{\sigma_{X}^{2}}{\mu_{X}}=\left(1+\frac{I D(\varepsilon)}{p}\right) /\left(1+\frac{1}{p}\right) \geq 1 \Leftrightarrow I D(\varepsilon) \geq 1 \\
\gamma_{X}(k)=\operatorname{Cov}\left(X_{t}, X_{t-k}\right)=p^{|k|} \cdot \sigma_{X}^{2} \\
\rho_{X}(k)=\operatorname{Corr}\left(X_{t}, X_{t-k}\right)=p^{|k|} \geq 0 \\
S_{X}(\omega)=\frac{1}{\pi} \cdot \sum_{k=-\infty}^{\infty} \gamma_{X}(k) \cdot e^{-i k \omega}=\frac{p \cdot \mu_{\varepsilon}+\sigma_{\varepsilon}^{2}}{\pi \cdot\left(1-2 p \cdot \cos \omega+p^{2}\right)}
\end{gathered}
$$

Model Marginal or Innovation Law?

$$
\begin{aligned}
& G_{\varepsilon}(z)=G_{X}(z) / G_{X}(1-\alpha+\alpha \cdot z) \\
& X \sim P(\lambda) \Rightarrow \varepsilon \sim P((1-\alpha) \cdot \lambda) \\
& X \sim \operatorname{Geom}(\theta) \Rightarrow \varepsilon \sim B(1,1-\alpha) \cdot \operatorname{Geom}(\theta) \\
& X \sim N B(\beta, \lambda) \Rightarrow \varepsilon \sim \text { Nontrivial }
\end{aligned}
$$

Model ε-law so that

$$
I D(\varepsilon) \geq 1 \quad \& \quad \sum_{j=1}^{\infty} \frac{P(\varepsilon \geq j)}{j}<\infty
$$

subject to feasibility of inference and simulation.

Mixed Poisson Innovations

Pavlopoulos \& Karlis (Environmetrics 2008; 19: 369-393)

$$
\begin{gathered}
P\left(\varepsilon_{t}=x\right)=\sum_{i=1}^{m} \pi_{i} \cdot e^{-\lambda_{i}} \cdot \frac{\lambda_{i}^{x}}{x!}, \quad m \geq 1, \quad x=0,1,2, \cdots \\
\lambda_{1}, \cdots, \lambda_{m}>0, \quad 0 \leq \pi_{1}, \cdots, \pi_{m} \leq 1, \quad \sum_{i=1}^{m} \pi_{i}=1 \\
G_{\varepsilon}(z)=\sum_{i=1}^{m} \pi_{i} \cdot \exp \left\{\lambda_{i} \cdot(z-1)\right\} \\
\mu_{\varepsilon}=\sum_{i=1}^{m} \pi_{i} \lambda_{i} ; \sigma_{\varepsilon}^{2}=\mu_{\varepsilon}+\sum_{i=1}^{m} \pi_{i}\left(\lambda_{i}-\mu_{\varepsilon}\right)^{2}>\mu_{\varepsilon} \\
\sum_{j=1}^{\infty} \frac{P\left(\varepsilon_{t} \geq j\right)}{j} \leq \sum_{j=1}^{\infty}\left(\sum_{i=1}^{m} \pi_{i} \cdot \frac{\lambda_{i}^{j}}{j!}\right)=\sum_{i=1}^{m} \pi_{i} \cdot\left(e^{\lambda_{i}}-1\right)<\infty \\
\text { mporesen } \\
G_{X}(z)=\prod_{j=0}^{\infty}\left(\sum_{i=1}^{m} \pi_{i} \cdot \exp \left\{\lambda_{i} \cdot \alpha^{j} \cdot(z-1)\right\}\right)
\end{gathered}
$$

A Convenient Representation

$$
\varepsilon_{t}=\sum_{i=1}^{m} Q_{t}^{(i)} \cdot \Lambda_{t}^{(i)}
$$

$$
\begin{aligned}
& \mathbf{Q}_{t}=\left(Q_{t}^{(1)}, \cdots, Q_{t}^{(m)}\right) \sim M\left(1, p_{1}, \cdots, p_{m}\right) \\
& \boldsymbol{\Lambda}_{t}=\left(\Lambda_{t}^{(1)}, \cdots, \Lambda_{t}^{(m)}\right) \sim_{\perp}\left(P\left(\theta_{1}\right), \cdots, P\left(\theta_{m}\right)\right)
\end{aligned}
$$

$$
\left\{\boldsymbol{Q}_{t}\right\}_{t \in Z} \perp\left\{\Lambda_{t}\right\}_{t \in \mathcal{Z}} \quad \begin{aligned}
& \text { independent sequences } \\
& \text { of I.I.D. random vectors }
\end{aligned}
$$

$$
\begin{aligned}
\sum_{i=1}^{m} Q_{t}^{(i)} & =1 \Rightarrow \\
X_{t} & =\alpha \circ X_{t-1}+\varepsilon_{t}=\sum_{i=1}^{m} Q_{t}^{(i)} \cdot\left(\alpha \circ X_{t-1}+\Lambda_{t}^{(i)}\right)
\end{aligned}
$$

Poisson-Binomial Convolutions

$$
\begin{aligned}
& \left(\alpha \circ X_{t-1}+\Lambda_{t}^{(i)} \mid X_{t-1}\right)=\left(\alpha \circ X_{t-1} \mid X_{t-1}\right)+\Lambda_{t}^{(i)} \sim P B\left(X_{t-1}, \alpha ; \lambda_{i}\right) \\
& \pi_{i}\left(z \mid x_{t-1}\right)=\sum_{k=0}^{z x_{t-1}} e^{-\lambda_{i}} \cdot \frac{\lambda_{i}^{k}}{k!} \cdot\binom{x_{t-1}}{z-k} \cdot \alpha^{z-k} \cdot(1-\alpha)^{x_{t-1}-z+k} \\
& \quad\left(X_{t} \mid X_{t-1}\right) \sim \sum_{i=1}^{m} Q_{t}^{(i)} \cdot P B\left(X_{t-1}, \alpha ; \lambda_{i}\right) \\
& \quad\left(X_{t} \mid X_{t-1}\right) \sim \text { mixture of } \boldsymbol{m} \text { Poisson-Binomial r. v. } \\
& \quad P_{\theta}\left(X_{t}=x_{t} \mid X_{t-1}=x_{t-1}\right)=\sum_{i=1}^{m} p_{i} \cdot \pi_{i}\left(x_{t} \mid x_{t-1}\right)
\end{aligned}
$$

More generally, the \boldsymbol{k}-step predictive/conditional law of $\left(X_{t} \mid X_{t-k}\right)$ is a mixture of $\boldsymbol{m}^{\boldsymbol{k}}$ Poisson-Binomial r. v. with parameters determined by $\alpha, \lambda_{1}, \ldots, \lambda_{m}, p_{1}, \ldots, p_{m}$.

TOGA-COARE Data

Cruise-1: 10 November - 9 December, 1992)
MIT-Radar (Doppler Precipitation)
Location: ($2^{\circ} \mathrm{S}, 156^{\circ} \mathrm{E}$) China Sea, SW Pacific Ocean
Temporal resolution (sampling frequency) 20 min .
Regular section of 184 scans: 22/11(02:01) - 24/11(15:21)
Total duration of section: $61 \mathrm{hr} ; 20 \mathrm{~min}$

Pixel SARR Marks: $\quad \boldsymbol{R}=(\mathbf{Z} / \mathbf{2 3 0})^{0.8}$
Spatial Scales of probed subregions (centrally nested):

$$
240,120,60,32,16,8,4,2 \mathrm{Km}
$$

Clipping threshold levels of pixel marks:

$$
0,1,2,5,10,20 \mathrm{~mm} / \mathrm{hr}
$$

Total of $8 \times 6=48$ time series

scale $=120 \mathrm{~km}$, threshold=5mm/hr

scale $=60 \mathrm{~km}$, threshold= $1 \mathrm{~mm} / \mathrm{hr}$

scale $=60 \mathrm{~km}$, threshold $=20 \mathrm{~mm} / \mathrm{hr}$

scale $=32 \mathrm{~km}$, threshold $=10 \mathrm{~mm} / \mathrm{hr}$

scale $=60 \mathrm{~km}$, threshold $=1 \mathrm{~mm} / \mathrm{hr}$

scale $=60 \mathrm{~km}$, threshold $=20 \mathrm{~mm} / \mathrm{hr}$

scale $=32 \mathrm{~km}$, threshold $=10 \mathrm{~mm} / \mathrm{hr}$

(a) ACF

(c) 1-step predictions from one replication

(e) 2-step predictions from one replication

(b) Spectrum

(d) 1-step percentile predictions from 1000 reps

(f) 2-step percentile predictions from 1000 reps

(a) ACF

(c) 1-step predictions from one replication

(e) 2-step predictions from one replication

Figure 4
time (x 20 minutes)
(b) Spectrum

(d) 1-step percentile predictions from 1000 reps

(f) 2-step percentile predictions from 1000 reps

Randomized Binomial Thinning

X is a non-negative integer-valued random variable, P is a $[0,1]$-valued random variable.
(X, P) may be jointly distributed or stochastically independent.

$$
P \circ X:=\sum_{i=1}^{X} Z_{P}(i)
$$

$\left\{Z_{P}(i)\right\} \quad$ array of binary r.v.'s, which conditionally on $\{\mathrm{P}=\mathrm{p}\}$ are I.I.D., following $\operatorname{Bin}(1, \mathrm{p})$, independently of X.

$$
P\left\{Z_{P}(i)=1 \| P=p\right\}=1-P\left\{Z_{P}(i)=0 \| P=p\right\}=p
$$

$$
\begin{aligned}
& (P \circ X \| P=p) \stackrel{D}{=} p \circ X \quad ; \quad \text { i.e. } R B T \supset B T \\
& (P \circ X \| P=p ; X=x) \stackrel{D}{=} B(x, p) \\
& E\left(e^{i \cdot \cdot \cdot \cdot(P \circ X)}\right)=E\left\{E\left\{e^{i \cdot u \cdot(P \circ X)} \| P, X\right\}\right\} \\
& \qquad \varphi_{P \circ X}(u)=E\left\{\left(1-P+P \cdot e^{i \cdot u}\right)^{X}\right\} \\
& \left.P_{1} \circ\left(P_{2} \circ X\right) \stackrel{D}{=}\left(P_{1} P_{2}\right) \circ X \quad \text { (always }\right) \\
& P \circ(X+Y) \stackrel{D}{=}(P \circ X)+(P \circ Y) \\
& \text { if } X, Y, P \text { are mutually independent OR } \\
& \text { if } X, Y \text { are independent conditionally on } P .
\end{aligned}
$$

Fractional INAR Model: $X_{t}=P_{t} \circ X_{t-1}+\varepsilon_{t}$

 $\left\{\varepsilon_{t}\right\}$ I.I.D. innovations: non-negative integer-valued noise$\left\{P_{t}\right\}$ Auto-correlated thinning process: $[0,1]$-valued

$$
\left\{P_{t}\right\} \perp\left\{\varepsilon_{t}\right\} \quad \text { and } \quad(\forall t)\left(P_{t}, \varepsilon_{t}\right) \perp \sigma\left(X_{s} ; s<t\right)
$$

$$
P_{t} \circ X_{t-1}:=\sum_{i=1}^{X_{t-1}} Z_{t}(i)
$$

so that, conditionally on P_{t}, the array $\left\{Z_{t}(i) ; i \geq 1\right\}$ is comprised of I.I.D.
$\operatorname{Bin}\left(1, P_{t}\right)$ random variables, independently of $\sigma\left(X_{s} ; \mathrm{s}<\mathrm{t}\right)$.

$$
\begin{aligned}
& P_{t}=f\left(a_{t}\right) ; \quad\left\{a_{t}\right\} \sim F G N\left(\mu, \sigma^{2}, H\right) \\
& f(a)=e^{-a^{2}} ; e^{-|a|} ; e^{-(a \vee 0)} ; \frac{a^{2}}{1+a^{2}} ; \text { etc. } \in[0,1]
\end{aligned}
$$

k-step Iteration (future to present):

$$
X_{t+k} \stackrel{D}{=} \varepsilon_{t+k}+\sum_{i=1}^{k-1}\left(\prod_{j=0}^{i-1} P_{t+k-j}\right) \circ \varepsilon_{t+k-i}+\left(\prod_{i=1}^{k} P_{t+i}\right) \circ X_{t}
$$

∞-step Iteration (present to remote past):

$$
X_{t} \stackrel{D}{=} \varepsilon_{t}+\sum_{i=1}^{\infty}\left(\prod_{j=0}^{i-1} P_{t-j}\right) \circ \varepsilon_{t-i}
$$

Representation of Stationary Solution!
Necessary Conditions !!! Does a Stationary Solution Exist? Under What Conditions?

$$
\mu_{X}=\mu_{\varepsilon}\left(1+\sum_{i=1}^{\infty} E\left(P_{1} \ldots P_{i}\right)\right)=\frac{\mu_{\varepsilon}}{1-\mu_{P}} \Rightarrow\left\{\begin{array}{l}
\mu_{\varepsilon}=E\left(\varepsilon_{t}\right)<\infty \\
\mu_{P}=E\left(P_{t}\right)<1 \\
E\left(P_{1} \ldots P_{t}\right) \rightarrow 0, \text { as } t \rightarrow \infty
\end{array}\right.
$$

1 -step Iteration (future to present):

$$
\begin{aligned}
& E\left(X_{t+1}\right)=E\left(\varepsilon_{t+1}\right)+E\left(P_{t+1} \circ X_{t}\right) \\
& \mu_{X}=\mu_{\varepsilon}+E\left\{E\left(P_{t+1} \circ X_{t} \| P_{t+1}, X_{t}\right)\right\}=\mu_{\varepsilon}+E\left\{P_{t+1} X_{t}\right\}=\mu_{\varepsilon}+\mu_{P} \mu_{X} \\
& \mu_{X}=\frac{\mu_{\varepsilon}}{1-\mu_{P}} \quad \text { Mationary } \\
& \text { Mean }
\end{aligned} \begin{aligned}
& E\left(X_{t+1}^{2}\right)=E\left(\varepsilon_{t+1}^{2}\right)+E\left(P_{t+1} \circ X_{t}\right)^{2}+2 E\left(\varepsilon_{t+1}\right) E\left(P_{t+1} \circ X_{t}\right) \\
& \sigma_{X}^{2}+\mu_{X}^{2}=\sigma_{\varepsilon}^{2}+\mu_{\varepsilon}^{2}+2 \mu_{\varepsilon} \mu_{P} \mu_{X}+E\left\{E\left\{\left(P_{t+1} \circ X_{t}\right)^{2} \| P_{t+1}, X_{t}\right\}\right\} \\
& \sigma_{X}^{2}+\mu_{X}^{2}=\sigma_{\varepsilon}^{2}+\mu_{\varepsilon}^{2}+2 \mu_{\varepsilon} \mu_{P} \mu_{X}+E\left\{X_{t} P_{t+1}\left(1-P_{t+1}\right)+X_{t}^{2} P_{t+1}^{2}\right\} \\
& \sigma_{X}^{2}=\frac{\sigma_{\varepsilon}^{2}+\mu_{\varepsilon} \mu_{P}}{1-\sigma_{P}^{2}-\mu_{P}^{2}}+\sigma_{P}^{2} \frac{\mu_{\varepsilon}\left(\mu_{\varepsilon}+\mu_{P}-1\right)}{\left(1-\sigma_{P}^{2}-\mu_{P}^{2}\right)\left(1-\mu_{P}\right)^{2}} \text { Stationary } \\
& \text { Variance }
\end{aligned}
$$

Index of Dispersion under Stationarity

$$
\begin{gathered}
\delta_{X}=\frac{\sigma_{X}^{2}}{\mu_{X}}=\frac{1-\mu_{P}}{1-\sigma_{P}^{2}-\mu_{P}^{2}}\left(\delta_{P}+\delta_{\varepsilon}\right)+\frac{\sigma_{P}^{2}\left(\mu_{\varepsilon}+\mu_{P}-1\right)}{\left(1-\sigma_{P}^{2}-\mu_{P}^{2}\right)\left(1-\mu_{P}\right)} \\
\delta_{X}>1 \Leftrightarrow \delta_{\varepsilon}>1-\frac{\mu_{\varepsilon} \sigma_{P}^{2}}{\left(1-\mu_{P}\right)^{2}} \\
\therefore \delta_{\varepsilon} \geq 1 \Rightarrow \delta_{X}>1
\end{gathered}
$$

$$
\begin{aligned}
& E\left(X_{t+1} X_{t}\right)=E\left(\varepsilon_{t+1} X_{t}\right)+E\left(\left(P_{t+1} \circ X_{t}\right) X_{t}\right) \\
& \gamma_{X}(1)+\mu_{X}^{2}=\mu_{\varepsilon} \mu_{X}+E\left\{E\left\{\left(P_{t+1} \circ X_{t}\right) X_{t} \| P_{t+1}, X_{t}\right\}\right\} \\
& \quad=\mu_{\varepsilon} \mu_{X}+E\left\{P_{t+1} X_{t}^{2}\right\}=\mu_{\varepsilon} \mu_{X}+\mu_{P}\left(\sigma_{X}^{2}+\mu_{X}^{2}\right)
\end{aligned} \quad \begin{aligned}
& \mu_{X}=\frac{\mu_{\varepsilon}}{1-\mu_{P}} \Rightarrow \gamma_{X}(1)=\mu_{P} \sigma_{X}^{2} \quad \underline{\operatorname{ACVF}(1)}
\end{aligned}
$$

$E\left(X_{t+2} X_{t}\right)=E\left(\varepsilon_{t+2} X_{t}\right)+E\left(\left(P_{t+2} \circ \varepsilon_{t+1}\right) X_{t}\right)+E\left(\left(\left(P_{t+1} P_{t+2}\right) \circ X_{t}\right) X_{t}\right)$
$\Rightarrow \quad \gamma_{X}(2)+\mu_{X}^{2}=\mu_{\varepsilon} \mu_{X}+\mu_{P} \mu_{\varepsilon} \mu_{X}+\left(\gamma_{P}(1)+\mu_{P}^{2}\right)\left(\sigma_{X}^{2}+\mu_{X}^{2}\right)$
$\Rightarrow \quad \gamma_{X}(2)=\mu_{P}^{2} \sigma_{X}^{2}+\left(\sigma_{X}^{2}+\mu_{X}^{2}\right) \gamma_{P}(1)$
$\underline{\operatorname{ACVF}(2)}$
$\gamma_{X}(k)=-\mu_{P}^{2} \mu_{X}^{2}+\mu_{\varepsilon} \mu_{X} \sum_{i=1}^{k-1} E\left(\prod_{j=0}^{i-1} P_{k-j}\right)+\left(\sigma_{X}^{2}+\mu_{X}^{2}\right) E\left(\prod_{i=1}^{k} P_{i}\right)$ $\operatorname{ACVF}(\mathrm{k} \geq 3)$

If $\left\{P_{t}=\exp \left(-a_{t}^{2}\right)\right\} \&\left\{a_{t}\right\} \sim F G N\left(\mu \in R, \sigma^{2}>0,1 / 2 \leq H \leq 1\right)$,
then $E\left(P_{1} \ldots P_{t}\right)=E\left\{\exp \left(-\sum_{i=1}^{t} a_{i}^{2}\right)\right\}=E\left\{\exp \left(-\sum_{i=1}^{t} \lambda_{i}\left(W_{i}-\omega_{i}\right)^{2}\right)\right\}$
$\left\{W_{i}\right\}_{i=1}^{t} \operatorname{IID} N(0,1) \quad \& \quad\left\{\lambda_{i} \geq 0\right\}_{i=1}^{t}$ eigenvalue of
$V_{t}=\left(\gamma_{a}(|i-j|)=\frac{\sigma^{2}}{2}\left((|i-j|+1)^{2 H}-2(i-j)^{2 H}+(|i-j|-1)^{2 H}\right)\right)_{\substack{i=1 . . . t \\ j=1, \ldots, t}}$
$\left(\omega_{1}, \ldots, \omega_{t}\right)^{\prime}=Q_{t}^{\prime} L_{t}^{-1}(\mu, \ldots, \mu)^{\prime}$
Q_{t} : orthogonal matrix of eigenvectors of V_{t}
L_{t} : non-singular lower-triangular matrix such that $V_{t}=L_{t} L_{t}^{\prime}$

The Case of FGN with $\boldsymbol{\mu}=\mathbf{0}$

$$
\begin{aligned}
& E\left(P_{1} \ldots P_{t}\right)=E\left\{\exp \left(-\sum_{i=1}^{t} a_{i}^{2}\right)\right\}=E\left\{\exp \left(-\sum_{i=1}^{t} \lambda_{i} W_{i}^{2}\right)\right\} \\
&=\prod_{i=1}^{t}\left(1+2 \lambda_{i}\right)^{-1 / 2}=\prod_{i=1}^{t}\left(1+\sigma^{2} \lambda_{i}^{*}\right)^{-1 / 2} \\
&\left\{\lambda_{i}^{*} \geq 0\right\}_{i=1}^{t} \text { eigenvalues of } V_{t}^{*}=\frac{2}{\sigma^{2}} V_{t}
\end{aligned}
$$

For $\mathrm{t}=1$: $\lambda_{1}^{*}=2$

$$
\begin{aligned}
\mu_{P} & =E\left(P_{t}\right)=E\left(P_{1}\right)=E\left(\exp \left(-a_{t}^{2}\right)\right)=\left(1+2 \sigma^{2}\right)^{-1 / 2} \\
\sigma_{P}^{2} & =E\left(P_{t}^{2}\right)-\mu_{P}^{2}=E\left(\exp \left(-2 a_{t}^{2}\right)\right)-\left(1+2 \sigma^{2}\right)^{-1} \\
& =\left(1+4 \sigma^{2}\right)^{-1 / 2}-\left(1+2 \sigma^{2}\right)^{-1}
\end{aligned}
$$

The Case of FGN with $\boldsymbol{\mu}=\mathbf{0}$

For $\mathbf{t}=2: \quad \lambda_{1}^{*}=4^{H} \quad ; \quad \lambda_{2}^{*}=4-4^{H}$

For $\mathbf{t}=3: \quad \lambda_{1}^{*}=1+2 \cdot 4^{H}-9^{H}$

$$
\lambda_{2,3}^{*}=\frac{9^{H}-2 \cdot 4^{H}+5 \pm \sqrt{\left(9^{H}-2 \cdot 4^{H}+5\right)^{2}-8 \cdot\left(9^{H}+2 \cdot 4^{H}-16^{H}-1\right)}}{2}
$$

0-inflated Posson innovations

$$
P\left\{\varepsilon_{t}=0\right\}=p \in\left(e^{-\theta}, 1\right) ; \quad \theta>0 \quad ; \quad l=\frac{1-p}{1-e^{-\theta}} \in(0,1)
$$

$$
P\left\{\varepsilon_{t}=k\right\}=e^{-\theta} \cdot \frac{\theta^{k}}{k!} \cdot l=(1-p) \cdot \frac{e^{-\theta}}{1-e^{-\theta}} \cdot \frac{\theta^{k}}{k!}
$$

$$
\mu_{\varepsilon}=l \cdot \theta
$$

$$
\sigma_{\varepsilon}^{2}=l \cdot \theta+l \cdot(1-l) \cdot \theta^{2}
$$

Overdispersion

Method of Moments Inference

$$
\begin{aligned}
& \mu_{X}=\bar{X}=\frac{1}{T} \sum_{t=1}^{T} X_{t} \\
& \sigma_{X}^{2}=S^{2}=\frac{1}{T-1} \sum_{t=1}^{T}\left(X_{t}-\bar{X}\right)^{2} \\
& \gamma_{X}(1)=\widehat{\gamma}_{X}(1)=\frac{1}{T} \sum_{t=1}^{T-1}\left(X_{t}-\bar{X}\right) \cdot\left(X_{t+1}-\bar{X}\right) \\
& \gamma_{X}(2)=\widehat{\gamma}_{X}(2)=\frac{1}{T} \sum_{t=1}^{T-2}\left(X_{t}-\bar{X}\right) \cdot\left(X_{t+2}-\bar{X}\right) \\
& \gamma_{X}(3)=\widehat{\gamma}_{X}(3)=\frac{1}{T} \sum_{t=1}^{T-3}\left(X_{t}-\bar{X}\right) \cdot\left(X_{t+3}-\bar{X}\right)
\end{aligned}
$$

Concluding Remarks

- SUFFICIENT \& NECESSARY CONDITIONS FOR STATIONARITY
- REMEDY INSTABILITIES OF FITTED MODEL BY INTRODUCING

$$
\mu \neq 0
$$

- SOLVE NUMERICALLY A HIGHLY NON-LINEAR 5X5 SYSTEM OF MOM EQUATIONS
- COME UP WITH ALTERNATIVE INFERENCE PROCEDURES (other than Method of Moments)

FAREWELL DEAR BENJAMIN

Distributions of statistics of hidden state sequences through the sum-product algorithm

Donald E.K. Martin, NC State Univ. John A.D. Aston, Warwick Univ.

Outline

- Introduction
- Background Information
- Computation of Distributions in Hidden State Sequences
- Conclusion

Introduction

- Let $\mathbf{0} \equiv o_{1}, \ldots, o_{n}$ be an observed sequence
- $\mathbf{s} \equiv s_{1}, \ldots, s_{n}$ is a corresponding hidden state sequence
- We study inference for statistics of \mathbf{s} conditional on $\mathbf{0}$
- States can serve as labels for $\mathbf{0}$
-- Krogh (1997), Durbin et al. (1988) DNA
-- Hamilton (1989) business cycles
(may be interested in "runs")
- States can be the true values of a noisy observed sequence
-- McEliece (1998) transmitted codewords
-- Baxter (1982) noisy image pixels
- Past approaches to such problems:
-- determine Viterbi (most likely) sequence and obtain the statistic from that sequence -- sample from $p(\mathbf{s} \mid \mathbf{o})$
-- Aston and Martin (2007) introduced a Markov chain based method to compute exact distributions for statistics of HMM states

Background Information

- The model
- Factor graphs
- Sum-product algorithm

The model

- We use the discriminative model, a conditional random field

$$
\begin{aligned}
p(\mathbf{s} \mid \mathbf{0}) & =\frac{1}{Z(\mathbf{o})} \prod_{c \in \mathrm{C}} \Psi_{c}\left(\mathbf{s}_{c}, \mathbf{o}\right) \\
\Psi_{c}\left(\mathbf{s}_{c}, \mathbf{0}\right) & =\exp \left[\sum_{l} \lambda_{l} f_{l}\left(\mathbf{s}_{c}, \mathbf{o}\right)\right] \\
Z(\mathbf{o}) & =\sum_{\mathrm{s}} \prod_{c \in \mathrm{C}} \Psi_{c}\left(\mathbf{s}_{c}, \mathbf{o}\right)
\end{aligned}
$$

- If each s_{j} takes on K values then \mathbf{s} takes on K^{n}, and thus, in general, computation of $Z(\mathbf{0})=\sum_{s} \prod_{c \in \mathrm{C}} \Psi_{c}\left(\mathbf{s}_{c}, \mathbf{0}\right)$ is intractable for large n
- We consider models with dependence structure that allows exact inference to be performed

Factor graphs

- Corresponding to the model is a factor graph $F=(V, E)$, a bipartite graph with two types of nodes:
-- variable nodes
-- factor nodes (with edges connecting the functions to their arguments)
- Graph describes how a global function factors into a product of local functions

Factor graph corresponding to the joint distribution

$$
p\left(s_{1}, \ldots, s_{5} \mid \mathbf{0}\right)=[Z(\mathbf{o})]^{-1} \Psi_{4}\left(s_{4}, s_{5}, \mathbf{o}\right) \Psi_{3}\left(s_{3}, s_{4}, \mathbf{0}\right) \Psi_{2}\left(s_{1}, s_{2}, s_{4}, \mathbf{0}\right) \Psi_{1}\left(s_{1}, \mathbf{0}\right)
$$

- Note that "generative" models such as Bayesian networks and HMMs can be represented by our model
e.g. for HMMs $p(\mathbf{s}, \mathbf{o})=\prod_{t=1}^{n} \overbrace{\xi_{1}\left(s_{t} \mid s_{t-1}\right) \xi_{2}\left(o_{t} \mid s_{t}\right)}^{\Psi_{t}\left(s_{t-1}, s_{t}, o_{t}\right)}$

$$
Z(\mathbf{o})=\sum_{\mathrm{s}} p(\mathbf{s}, \mathbf{0})
$$

$$
p(\mathbf{s} \mid \mathbf{0})=p(\mathbf{s}, \mathbf{0}) / Z(\mathbf{0})
$$

The sum-product algorithm (SPA),

 Kschischang et al. (2001)- Operates in a cycle-free factor graph to compute marginal functions by exploiting the way a global function factors
- Nodes are treated as "processors" and "messages" are sent between them
- Essentially equivalent to the "generalized distributive law" (Aji and McEliece, 2000) over junction trees
- A variety of algorithms in artificial intelligence, signal processing and digital communications can be derived as instances of the SPA
-- forward/backward algorithm for HMMs
-- Viterbi algorithm (max-product semiring)
-- interative "turbo" decoding
-- Pearl's belief propagation for Bayesian networks
-- Kalman filter
-- certain FFT algorithms

- A perfect elimination sequence of the SPA is one where marginalization can be carried out without enlarging local domains
- More than one perfect elimination sequence can exist
- To obtain $p\left(s_{j} \mid \mathbf{0}\right)$:
- s_{j} is treated as the root of the graph
- Initial messages are sent from leaves
- Message sent from node to its parent after it has received messages from its children

$$
\begin{aligned}
& \mu_{s_{t} \rightarrow \Psi_{c}}\left(s_{t}\right)=\prod_{\Psi_{d} \in n e\left(s_{t}\right) \Psi_{c}} \mu_{\Psi_{d} \rightarrow s_{t}}\left(s_{t}\right) \\
& \mu_{\psi_{c} \rightarrow s_{s}}\left(s_{t}\right)=\sum_{s_{d}, s_{s}}\left(\Psi_{c}\left(s_{c}, 0\right) \prod_{s, s_{s} s_{s}\left(s_{s}\right)} \mu_{s_{s} \rightarrow \psi_{c}}\left(s_{u}\right)\right)
\end{aligned}
$$

For a factor graph F with cycles:

- Obtain a spanning tree T
- A variable is "stretched" by including it in variable nodes along the unique path of T from the variable to nodes of F that can be reached from it on a path of length two
- Delete redundant edges

$p(\mathbf{s} \mid \mathbf{0})=[Z(\mathbf{o})]^{-1} \Psi_{5}\left(s_{4}, s_{5}, \mathbf{0}\right) \Psi_{4}\left(s_{3}, s_{5}, \mathbf{0}\right) \Psi_{3}\left(s_{2}, s_{4}, \mathbf{0}\right) \Psi_{2}\left(s_{1}, s_{3}, \mathbf{0}\right) \Psi_{1}\left(s_{1}, s_{2}, \mathbf{o}\right)$

Computation of Distributions of Statistics of a Hidden State Sequence

- We compute distributions of a count statistic $\theta_{n}=h_{n}\left(\sigma_{1}, \ldots, \sigma_{n}\right) \in \Theta=\left(\theta^{(0)}, \ldots, \theta^{\left(\theta_{0}\right)}\right)$ associated with a pattern
- $\sigma_{1}, \ldots, \sigma_{n}$ is the order of evaluating θ_{n}
- A sequential ordering $\sigma_{1}, \ldots, \sigma_{n}=s_{1}, \ldots, s_{n}$ is most convenient when the pattern has words of length greater than one
- For that case we introduce $q_{t}=g\left(s_{1}, \ldots, s_{t}\right)$ to keep track of pattern progress
- If the pattern consists of singletons, we can evaluate the statistic in any order (e.g. a multinomial distribution)
- Let $Q \times \Theta=\left\{(q, \theta)^{(1)}, \ldots,(q, \theta)^{(\omega)}\right\}$
- We first obtain an $\omega \times 1$ vector $\tilde{\gamma}_{n}$ that has entries $\operatorname{Pr}\left[\left(q_{n}, \theta_{n}\right)=(q, \theta)^{j}\right]$
- Then we obtain a $|\Theta| \times 1$ vector γ_{n} holding probabilities for θ_{n} through

$$
\gamma_{n}=\underbrace{}_{|\theta| \times \omega} \tilde{\gamma}_{n}
$$

- For each component $\tilde{\gamma}_{n}\left((q, \theta)^{(j)}\right)$ of $\tilde{\gamma}_{n}$,

$$
\begin{aligned}
\tilde{\gamma}_{n}\left((q, \theta)^{(j)}\right) & =\sum_{\mathbf{s}} \operatorname{Pr}\left(\mathbf{s},\left(q_{n}, \theta_{n}\right)^{(j)}=(q, \theta)^{(j)} \mid \mathbf{0}\right) \\
& =\sum_{\mathbf{s}} p(\mathbf{s} \mid \mathbf{0}) I\left[\left((q, \theta)^{(j)}\right)=(g(\mathbf{s}), h(\mathbf{s}))\right]
\end{aligned}
$$

- The computation is similar to computing $Z(\mathbf{o})$ (we also must keep track of the value of the statistic)
- Vectors φ_{n} serve as indicators of the value of the statistic

$$
\varphi_{0}=\left(\begin{array}{llll}
1 & 0 & \cdots & 0
\end{array}\right)^{T} \quad \varphi_{n}=\Delta_{\sigma_{n}} \Delta_{\sigma_{n-1}} \cdots \Delta_{\sigma_{1}} \varphi_{0}
$$

where $\Delta_{\sigma_{j}}$ are $\omega \times \omega$ matrices with a one in the (i, j) position if and only if $(q, \vartheta)^{(j)} \rightarrow(q, \vartheta)^{(i)}$ with the occurrence of σ_{j}.

- Using our representation of $p(\mathbf{s} \mid \mathbf{o})$ we obtain:

- When $\sigma_{1}, \ldots, \sigma_{n}$ is a perfect elimination sequence of the SPA, factors can be efficiently distributed throughout sums

$$
\begin{aligned}
& \tilde{\mu}_{\sigma_{t} \rightarrow \Psi_{c}}\left(\sigma_{t}, q_{t}, \theta_{t}\right)=\prod_{\Psi_{d} \in n_{n}\left(\sigma_{t}\right) \Psi_{c}} \tilde{\mu}_{\Psi_{d} \rightarrow \sigma_{t}}\left(\sigma_{t}, q_{t}, \theta_{t}\right) \\
& \tilde{\mu}_{\Psi_{c} \rightarrow \sigma_{u}}\left(\sigma_{u}, \boldsymbol{q}_{u}, \theta_{u}\right)=\sum_{s_{c}, \sigma_{u}}\left(\Psi_{c}\left(\mathbf{s}_{c}, \mathbf{o}\right) \prod_{s_{s}, s_{c}, \sigma_{u}} \Delta_{s_{s}} \tilde{s}_{s, \rightarrow \Psi_{c}}\left(s_{r}, q_{r}, \theta_{r}\right)\right) \\
& \tilde{\gamma}_{n}=Z(\mathbf{o})^{-1} \sum_{s_{u} s_{s}^{(n)}} \prod_{s_{u}\left(s_{e}^{(n)}\right.} \Delta_{s_{u}}\left(\prod_{\Psi_{d} \in n\left(s_{s}\right)} \tilde{\mu}_{\Psi_{d} \rightarrow s_{u}}\left(s_{u}, q_{n}, \theta_{n}\right)\right) \\
& \gamma_{n}=\Lambda \tilde{\gamma}_{n}
\end{aligned}
$$

Examples

- Let $\theta_{t}=\left(\eta_{1 t}, \ldots, \eta_{K t}\right)$

$$
\begin{aligned}
p(\mathbf{s} \mid \mathbf{0})=[Z(\mathbf{0})]^{-1} & \Psi_{1}\left(s_{1}, s_{2}, s_{3}, s_{4}, \mathbf{o}\right) \Psi_{2}\left(s_{2}, s_{3}, s_{4}, s_{5}, \mathbf{0}\right) \Psi_{3}\left(s_{4}, s_{5}, s_{6}, s_{9}, \mathbf{0}\right) \\
& \times \Psi_{4}\left(s_{2}, s_{3}, s_{4}, s_{7}, \mathbf{0}\right) \Psi_{5}\left(s_{3}, s_{7}, s_{8}, s_{10}, \mathbf{0}\right)
\end{aligned}
$$

- No pattern progress is needed (patterns are the symbols $\left.S^{(1)}, \ldots, S^{(K)}\right)$

$$
\omega=|\Theta| \equiv\binom{n+K-1}{K-1}
$$

- The matrices $\Delta_{\sigma_{t}}$ for the transitions based on $\sigma_{t}=s^{(l)}$ have a one in location (i, j) if column j corresponds to $\left(\eta_{t-1,1}, \ldots, \eta_{t-1, l}, \ldots, \eta_{t-1, K}\right)$ and row i to $\left(\eta_{t-1,1}, \ldots, \eta_{t-1, l}+1, \ldots, \eta_{t-1, K}\right)$

- Passed messages:

$$
\begin{aligned}
& \tilde{\mu}_{s_{j} \rightarrow \Psi_{d}}\left(s_{j}, \theta_{1}\right)=1 \quad(j, d)=(1,1),(6,3),(9,3),(8,5),(10,5) \\
& \tilde{\mu}_{\varphi_{s} \rightarrow \ldots \ldots}\left(s_{s \ldots \ldots,}, \theta_{3}\right)=\sum_{s_{s}, s_{0}} \Delta_{s_{0}} \Delta_{s_{9}} \Psi_{5}\left(s_{3}, s_{7}, s_{8}, s_{1}, \mathbf{0}\right) \varphi_{0} \\
& \tilde{\mu}_{\Psi_{4} \rightarrow \delta_{m}}\left(S_{\ldots m,}, \theta_{1}\right)=\Psi_{4}\left(S_{2}, S_{3}, s_{4}, S_{7}, \mathbf{0}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \tilde{\mu}_{\Psi_{2} \rightarrow s_{\text {s* }}}\left(s_{*_{* *}}, \theta_{7}\right)=\sum_{s_{2}, s_{3}} \Delta_{s_{2}} \Delta_{s_{3}} \Psi_{2}\left(s_{2}, s_{3}, s_{4}, s_{5}, \mathbf{o}\right) \tilde{\mu}_{s_{w_{m+\prime} \rightarrow \Psi_{2}}}\left(s_{* * *}, \theta_{5}\right) \\
& \tilde{\mu}_{\Psi_{3} \rightarrow s_{* * *}}\left(s_{* *}, \theta_{9}\right)=\sum_{s_{6}, s_{9}} \Delta_{s_{6}} \Delta_{s_{9}} \Psi_{3}\left(s_{4}, s_{5}, s_{6}, s_{9}, \mathbf{0}\right) \\
& \gamma_{10}=Z(\mathbf{0})^{-1} \sum_{s_{4}} \sum_{s_{5}} \Delta_{s_{4}} \Delta_{s_{5}} \tilde{\mu}_{\Psi_{2} \rightarrow s_{* * *}}\left(s_{* *}, \theta_{7}\right) \tilde{\mu}_{\Psi_{3} \rightarrow s_{s_{* *}}}\left(s_{* *}, \theta_{9}\right)
\end{aligned}
$$

- Consider the computation of the distribution of the number of overlapping occurrences of $L_{1}=111$ in $s=\left(s_{1}, \ldots, s_{5}\right)$

Let $p(\mathbf{s} \mid \mathbf{0})=[Z(\mathbf{0})]^{-1} \Psi_{4}\left(s_{1}, s_{5}, \mathbf{0}\right) \Psi_{3}\left(s_{1}, s_{3}, \mathbf{0}\right) \Psi_{2}\left(s_{1}, \mathbf{S}_{2}, s_{4}, \mathbf{0}\right) \Psi_{1}\left(s_{4}, \mathbf{0}\right)$

$$
\Psi_{1}^{\prime \prime}=\Psi_{1}
$$

$$
\Psi_{2}^{\prime \prime}\left(s_{1}, s_{2}, s_{3}, s_{4}, s_{5}, \mathbf{0}\right)=\Psi_{4}\left(s_{1}, s_{5}, \mathbf{0}\right) \Psi_{3}\left(s_{1}, s_{3}, \mathbf{0}\right) \Psi_{2}\left(s_{1}, s_{2}, s_{4}, \mathbf{0}\right)
$$

- Transitions of (q, θ) values (for Δ matrices)
$(q, \theta) \quad$ after one after zero
$(\varepsilon, 0)$
$(1,0)$
$(\varepsilon, 0)$
$(1,0)$
$(11,0)$
$(\varepsilon, 0)$
$(11,0)$
$(111,1)$
$(\varepsilon, 0)$
$(\varepsilon, 1)$
$(1,1)$
$(\varepsilon, 1)$
$(111,1)$
$(111,2)$
$(\varepsilon, 1)$
$(111,2)$
$(111,3)$
$(\varepsilon, 2)$
- If states are listed in the order

$$
\begin{aligned}
& (\varepsilon, 0)(1,0)(11,0)(\varepsilon, 1)(1,1)(111,1)(\varepsilon, 2)(111,2)(111,3) \\
& \Lambda=\left(\begin{array}{lllllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

- To reduce the number of q values, we introduce an Aho-Corasick automaton

$$
D=\left(Q, \chi, \delta_{Q}, \varepsilon, T\right)
$$

Q set of prefixes of pattern $\delta_{Q}: Q \times \chi \rightarrow Q$ such that $\delta_{Q}(q, a)$ is the longest suffix of $q a$ that is in Q terminal states T are words of the pattern

- The automaton is then minimized using the Hopcroft (1971) algorithm
- Supposed that we are interested in the number of overlapping occurrences of the Chi motif $L=G N T G G T G G, N \in \chi=\{A, C, G, T\}$
- The are 30 pattern prefixes, but only 10 states in the minimal automaton

Conclusion

- We have given a method to compute exact distributions of statistics of hidden state sequences
- The method can be applied to a variety of models, both discriminative and generative
- For certain elimination orders, computation is as efficient as computing marginals

Future work

- Analyze data sets
- Applications, e.g. in information/coding theory: can we facilitate decoding based on new decoding criteria?
- Approximate inference (bounds on deviation from true distributions?)

References

- A. M. Aji and R. J. McEliece, IEEE Transactions on Information Theory, 46, 325-343 (2000).
- J. A. D. Aston and D. E. K. Martin, Annals of Applied Statistics, 1(2), 585-611 (2007).
- F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, IEEE Transactions on Information Theory, 47(2), 498-519, (2001).

Thank you!!

Classification of Eye Movement Data

Ritaja Sur and Benjamin Kedem

Department of Mathematics, University of Maryland, College Park

Advances in Statistics and Applied Probability: Unified Approaches

$$
\text { July 31, } 2009
$$

Eye-Movement Study Shows Glimpse Of How Brain Plans Movement

ScienceDaily (Jan. 11, 2001) — January 11, 2001 - Researchers are getting closer to understanding how the brain is able to hold a moving image on the retina, yielding smooth, relatively stable images of the moving object. Howard Hughes Medical Institute (HHMI) researchers have discovered that a region of the brain that was formerly believed to control eye movement is actually involved in the high-level planning of movement.

See also:
Health \& Medicine

- Eye Care
- Psychology Research
- Nenous System

Mind \& Brain

- Perception
- Neuroscience

Their findings offer new insight into how the area in the brain's motor cortex adjusts eye movement to track objects, say the researchers. And their experimental approachwhich involves measuring and altering via electrical stimulation the tiny eye movements by which rhesus monkeys track a spot of lightprovides a precise, quantitative approach to studying the basic

Ads by Google
Advertise here
MindWell Psychology
Testing: Educ, Devel, Emotional Therapy:Goal oriented, family focus
www.mindwellpsychology.com
Mental Illness Symptoms
Find Info On Mental Health \& Diagnosing
Neurological Symptoms
www.wyethneuroscience.com
Forensic Psychology
Take Your Psychology Career to the Next Level.
Learn Online Anytime.
online.argosy edu/Psychology
NCI Cancer Trials
Clinical Trial Info from NCl at NIH Learn More About
Resources/Options
BethesdaTrials.Cancer.gov
Brain Rules - Brain Rules
Read the new book that will change your brain

Science News

Eye Movement Studies To Help Diagnose Mental Illness

ScienceDaily (June 18, 2003) - Researchers at the

Ads by Google
Advertise her

University of llinois at Chicago are studying subtle abnormalities in eye movements that may one day be used to diagnose psychiatric disease.

See also:

Health \& Medicine

- Eye Care
- Diseases and Conditions
- Mental Health Research

Mind \& Brain

- Intelligence
- Disorders and

Sundromes.

Irregularities in how the eyes track a moving object reflect defects in the neural circuitry of the brain and appear to correspond with particular types of mental disorders.
Schizophrenic patients, for example, have difficulty keeping their eyes focused on slow-moving objects. With new technology, these abnormalities can be measured precisely and compared with normal patterns.

Wet Macular Degeneration Info on wet AMD and possible treatment option.
Learn more today.
www.LivingWithAMD.com
Treat Bulging Veins
Treating Varicose Veins Without Surgery Since
1981. Free Consults.
www.VeinClinics.com
Mental Illiness Symptoms
Find Info On Mental Health \& Diagnosing
Neurological Symptoms
www.wyethneuroscience.com
Get Bulimia Treatment
Providing Quality Care For Over 20 Yrs. Call Us Fo

Background

- Land and Mcleod (2000) - For a successful hit cricketers fixate on future points of contact of the ball and the ground.
- Reina and Scwartz (2003) studied monkey's fixation points in a repeated drawing task.
- Mataric and Pomplun (1998) studied movement imitation and showed that people tend to fixate on end effectors.

Questions

- What visual inputs are captured when we intend to imitate a movement?
- What are the computations performed by the brain in movement imitation?
- Whether there is any difference when a person intends to imitate?

Data Description

- The eye movement data was obtained from the work of Lior Noy.
- Eye gaze as a response to the motion of the hand was recorded using a eye tracker.
- Coordinates of the wrist, elbow and shoulder were recorded.
- Number of human subjects $=7$.
- Number of distinct hand movements $=10$.
- Number of conditions (Watch and Imitate) $=2$.
- Data recorded in x - and y - coordinates.
- Length of time series ranges from 801 (6.68s) to 1609 (13.41s) data points.
- r-coordinate $r_{t}=\left(x_{t}^{2}+y_{t}^{2}\right)^{1 / 2}$ considered for analysis.

Figure: x - coordinate for Subject 5 Movement 2 (Watch).

Figure: y-coordinate for Subject 5 Movement 2 (Watch).

Figure: x - coordinate vs y - coordinate for Subject 5 Movement 2 (Watch).

Figure: Time series plot and Autocorrelation plot of the r-coordinate for Subject 5 Movement 2 (Watch).

Figure: Time series plot and Autocorrelation plot of the differenced r coordinate for Subject 5 Movement 2 (Watch).

Figure: Partial Autocorrelation plot of the differenced x - coordinate for Subject 5 Movement 2 (Watch).

Non-parametric approach using HOC

Let ∇ be the difference operator defined as.

$$
\nabla Z_{t} \equiv Z_{t}-Z_{t-1}
$$

In general, for $k=0,1,2, \ldots, \nabla^{k} Z_{t}$ is given by

$$
\nabla^{k} Z_{t}=\sum_{j=0}^{k}\binom{k}{j}(-1)^{j} Z_{t-j}
$$

where $\nabla^{0} Z_{t} \equiv Z_{t}$. For each $k=1,2, \ldots$, we further obtain the binary clipped process $X_{t}(k)$ and the HOC counts D_{k}.

$$
X_{t}(k)= \begin{cases}1, & \text { if } \nabla^{k-1} Z_{t} \geq 0 \\ 0, & \text { if } \nabla^{k-1} Z_{t}<0\end{cases}
$$

HOC continued

$$
\begin{gathered}
D_{k}=\sum_{t=1}^{N}\left[X_{t}(k)-X_{t-1}(k)\right]^{2} \\
\Delta_{k} \equiv \begin{cases}D_{1} & \text { if } k=1 \\
D_{k}-D_{k-1} & \text { if } k=2,3, \ldots, K-1 \\
(N-1)-D_{K-1} & \text { if } k=K\end{cases}
\end{gathered}
$$

Distance measure from white Gaussian noise:

$$
\psi^{2}=\sum_{k=1}^{K} \frac{\left(\Delta_{k}-m_{k}\right)^{2}}{m_{k}}
$$

where $m_{k}=E\left(\Delta_{k}\right)$ can be obtained using

$$
E\left[D_{k}\right]=(N-1)\left[\frac{1}{2}+\frac{1}{\pi} \sin ^{-1}\left(\frac{k-1}{k}\right)\right]
$$

Subject 1, Movement 9

Application to eye data

- For each eye signal, the calculations of the D_{k} 's are based on a 751-point segments, corresponding to $t=50,51, \ldots ., 800$.
- The respective ψ^{2} distances from white noise were computed using D_{k} 's for $k=1,2, \ldots, 8$.
- For each subject, the average ψ^{2} values were computed from the 10 movements.
- To test the hypothesis that ψ^{2} values differ significantly under the watch and imitate conditions for each subject, wilcoxon rank-sum test was performed.
- To get further insight from the 70 cases for each of the two conditions, each of the 70 time series was divided into two equal parts. Essentially, this implies as if the subjects were viewing 20 movements instead of 10 .

Results using ψ^{2} Statistic

Table: \mathbf{r} - Average ψ^{2} distance from white noise.

Subject	Watch1	Imitate1	$H_{0}: W 1=I 1$	Watch2	Imitate2	$H_{0}: W 2=I 2$
1	53.317	85.527	0.0116	33.237	50.629	0.0037
2	37.064	48.627	0.1088	27.884	32.373	0.1917
3	92.091	66.617	0.0526	52.357	44.101	0.0637
4	75.271	79.421	0.2894	40.421	46.265	0.1917
5	51.149	50.656	0.4559	32.863	33.162	0.3490
6	105.241	53.506	0.0014	60.175	34.186	0.0026
7	43.894	122.453	$1.08 \mathrm{E}-05$	26.643	74.597	<0.005
Average	65.43	72.40		39.08	45.04	
Median	53.2	66.62		33.24	44.10	

Subject 6, Subject 7

Distance measures - 1

Let x_{t} and y_{t} be two zero mean stationary time series of length n. The various distance measures considered are:

- Euclidean Distance:

$$
d_{E U C L}(x, y)=\sqrt{\sum_{t=1}^{n}\left(x_{t}-y_{t}\right)^{2}}
$$

- Distance based on estimated autoregressive weights:

$$
d_{A R}(x, y)=\sqrt{\sum_{j=1}^{\infty}\left(\hat{\pi}_{j, x}-\hat{\pi}_{j, y}\right)^{2}}
$$

Distance measures - 2

- Distance based on estimated autocorrelations:

$$
\begin{aligned}
d_{A C F U}(x, y) & =\sqrt{\left(\hat{\rho}_{x}-\hat{\rho}_{y}\right)^{\prime}\left(\hat{\rho}_{x}-\hat{\rho}_{y}\right)} \\
d_{A C F G}(x, y) & =\sqrt{\left(\hat{\rho}_{x}-\hat{\rho}_{y}\right)^{\prime} \Omega\left(\hat{\rho}_{x}-\hat{\rho}_{y}\right)}
\end{aligned}
$$

- Distance based on periodogram coordinates:

$$
\begin{gathered}
d_{N P}(x, y)=\sqrt{\sum_{j=1}^{[n / 2]}\left[N P_{x}\left(w_{j}\right)-N P_{y}\left(w_{j}\right)\right]^{2}} \\
d_{L N P}(x, y)=\sqrt{\sum_{j=1}^{[n / 2]}\left[\log N P_{x}\left(w_{j}\right)-\log N P_{y}\left(w_{j}\right)\right]^{2}} \\
d_{K L F D}(x, y)=\sum_{j=1}^{[n / 2]}\left[\frac{N P_{x}\left(w_{j}\right)}{N P_{y}\left(w_{j}\right)}-\log \frac{N P_{x}\left(w_{j}\right)}{N P_{y}\left(w_{j}\right)}-1\right]
\end{gathered}
$$

Distance measures - 3

- Distance based on HOC:

$$
\begin{aligned}
d_{\text {Delta }}(x, y) & =\sqrt{\sum_{k=1}^{K}\left(\Delta_{k, x}-\Delta_{k, y}\right)^{2}} \\
d_{D}(x, y) & =\sqrt{\sum_{k=1}^{K}\left(D_{k, x}-D_{k, y}\right)^{2}}
\end{aligned}
$$

Simulation study

- Simulated 1000 replications of $\operatorname{AR}(0.3)$ and $\operatorname{AR}(0.4)$ processes.
- Length of each time series $=\mathrm{n}$.
- ACFU, ACFG calculated for lag L.
- Ω is a diagonal matrix in ACFG with geometrically decaying weights with $p=0.05$.
- Clustering algorithm - Complete linkage (hierarchical) and K-means (non-hierarchical).
- Calculate missclassification percentages.

Table: Misclassification Percentages in Hierarchical clustering for classification of $\operatorname{AR}(0.3)$ and $\operatorname{AR}(0.4)$ processes.

n	EUCL	AR	L	ACFU	ACFG	FREQ	NP	LNP	KL	Delta	D
100	50	50	5	45	47	LOW	49	50	50	42	44
			8	46	47	HIGH	50	50	45		
			10	48	47	ALL	50	50	46		
			25	45	49						
200	49	46	5	46	47	LOW HIGH ALL	$\begin{aligned} & 49 \\ & 50 \\ & 50 \end{aligned}$	49	50	42	47
			8	45	50			50	50		
			10	47	49			50	44		
			50	46	47						
			100	50	44						
500	45	50	5	34	36	LOW HIGH ALL	$\begin{aligned} & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 49 \\ & 50 \\ & 49 \end{aligned}$	$\begin{aligned} & 43 \\ & 50 \\ & 43 \end{aligned}$	35	34
			8	46	43						
			10	47	40						
			50	37	39						
			100	50	45						
			250	50	38						
1000	47	37	5	45	38	LOW HIGH ALL	$\begin{aligned} & 49 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 42 \\ & 49 \\ & 49 \end{aligned}$	18	34
			8	44	39						
			50	38	42						
			100	39	39						
			250	49	41						

Non-Hierarchical Clustering - K-Means

Table: Misclassification Percentages in Non-Hierarchical clustering (K-Means) for classification of $\operatorname{AR}(0.3)$ and $\operatorname{AR}(0.4)$ processes.

n	EUCL	AR	L	ACFU	FREQ	NP	LNP	Delta	D
100	50	33	5	39	LOW	48	49	40	44
			8	41	HIGH	48	39		
			10	41	ALL	48	49		
			25	42					
200	50	24	5	34	LOW	48	50	36	42
			8	37	HIGH	49	35		
			10	38	ALL	48	50		
			50	41					
			100	43					
500	50	14	5	21	LOW	47	47	26	34
			8	23	HIGH	46	20		
			10	25	ALL	47	46		
			50	29					
			100	31					
			250	31					
1000	50	5	5	9	LOW	48	49	16	16
			8	9	HIGH	24	10		
			50	9	ALL	20	10		
			100	9					
			250	1					

Clustering

- Consider a particular movement.
- Corresponding to each movement, there are eye gaze time series of seven subjects under Watch condition and seven under imitate condition.
- Use Delta metric for classification.
- Use Complete linkage algorithm.
- $1,2,3, \ldots, 7$ correspond to Watch condition.
- $8,9,10, \ldots, 14$ correspond to Imitate condition.

Cluster Dendrogram

Figure: Classification of eye data for movement 1 using the Delta metric.

Cluster Dendrogram

Figure: Classification of eye data for movement 4 using the Delta metric.

Summary

- Based on the ψ^{2} distances, we conclude that in some cases the individuals (Subjects 1, 6 and 7) viewed the movements differently under the two conditions.
- Using the HOC measure in clustering, it can be said that Subject 7 viewed the movements differently under the two conditions.
- The results obtained from clustering do not in general give a clear picture.

References

- Kedem, B.(1994).Time Series Analysis by Higher Order Crossings. IEEE Press, Piscataway, N.J.
- Noy, L.(2009).Studying Eye Movements in Movement Imitation. PhD Thesis, Weizmann Institute of Science, Rehovot, Israel.
- Caiado, J., and Crato, N., and Pena, D.(2006).A periodogram-based metric for time series classification.Computational Statistics \& Data Analysis,50,2668-2684.

Acknowledgements

We are grateful to Lior Noy (Harvard Medical School) for his advice and for providing the datasets.

THANK YOU

Asymptotic Theory for Multiple-Sample Semiparametric Density Ratio Models

Guanhua Lu

Dr. Ben Kedem Symposium

July 31, 2009

Outline

(1) Introduction

- A Historic Review of Biased Sampling Models
- Semiparametric Density Ratio Model
- Estimation

Asymptotic Theory for θ and G

- Asymptotic Theory for $\hat{\theta}$
- Asymptotic Theory for $\hat{G}(t)$

Data Analysis
A Simulation Study for Estimation of Parameters

- Goodness of Fit and Confidence Bands
- An Application to Coronary Heart Disease Data

- Length-biased Sampling

- Sampling Scheme: Lengths of items are distributed according to the cdf G (to be estimated). The probability of selecting any particular item is proportional to its length, then the lengths of sampled items are distributed according to the length-biased cdf

$$
\begin{equation*}
F(y)=\frac{1}{\mu} \int_{0}^{y} x d G(x), y \geq 0 \tag{1}
\end{equation*}
$$

where $\mu=\int_{0}^{\infty} x d G(x)<\infty$.

- The Nonparametric maximum likelihood estimator (NPMLE) for G was obtained through empirical likelihood.
- Biased Sampling/Selection Bias:
- Vardi[1985] and Gill, Vardi and Wellner[1988] considered the following biased sampling model by assuming general weight functions

$$
\begin{equation*}
F_{j}(y)=W_{j}(G)^{-1} \int_{-\infty}^{y} w_{j}(x) d G(x), j=1, \ldots, m \tag{2}
\end{equation*}
$$

where the normalization constant $W_{j}(G)=\int_{-\infty}^{\infty} w_{j}(x) d G(x)$.

- NPMLE for G was obtained by combining information from several independent samples, and was shown asymptotically efficient.
- Case-control Study: (Prentice and Pyke[1979])
- Suppose that m disease groups are defined. Let $D=j$ denote the development of the j th disease, and let $D=0$ indicate the disease-free group. The probability that an individual with characteristics x develops disease $D=j$ can be specified in terms of a logistic regression model as

$$
\begin{equation*}
P(D=j \mid x)=\exp \left(\alpha_{j}+\beta_{j}^{\prime} x\right) / \sum_{i=0}^{m} \exp \left(\alpha_{i}+\beta_{i}^{\prime} x\right) . \tag{3}
\end{equation*}
$$

- Case-control Study: (Prentice and Pyke[1979])
- Suppose that m disease groups are defined. Let $D=j$ denote the development of the j th disease, and let $D=0$ indicate the disease-free group. The probability that an individual with characteristics x develops disease $D=j$ can be specified in terms of a logistic regression model as

$$
\begin{equation*}
P(D=j \mid x)=\exp \left(\alpha_{j}+\beta_{j}^{\prime} x\right) / \sum_{i=0}^{m} \exp \left(\alpha_{i}+\beta_{i}^{\prime} x\right) . \tag{3}
\end{equation*}
$$

- Formula (3) leads to the density ratio model

$$
P(x \mid D=j) / P(x \mid D=0)=\exp \left(\alpha_{j}^{*}+\beta_{j}^{\prime} x\right)
$$

- Case-control Study: (Prentice and Pyke[1979])
- Suppose that m disease groups are defined. Let $D=j$ denote the development of the j th disease, and let $D=0$ indicate the disease-free group. The probability that an individual with characteristics x develops disease $D=j$ can be specified in terms of a logistic regression model as

$$
\begin{equation*}
P(D=j \mid x)=\exp \left(\alpha_{j}+\beta_{j}^{\prime} x\right) / \sum_{i=0}^{m} \exp \left(\alpha_{i}+\beta_{i}^{\prime} x\right) . \tag{3}
\end{equation*}
$$

- Formula (3) leads to the density ratio model

$$
P(x \mid D=j) / P(x \mid D=0)=\exp \left(\alpha_{j}^{*}+\beta_{j}^{\prime} x\right)
$$

- Let $g_{j}(x)$ and $g(x)$ be the densities of the j th group the disease-free group respectively,

$$
\begin{equation*}
g_{j}(x)=\exp \left(\alpha_{j}^{*}+\beta_{j}^{\prime} x\right) g(x), \quad j=1, \ldots, m . \tag{4}
\end{equation*}
$$

- Recent Extensions
- Gilbert, Lele \& Vardi[1999] applied the selection biased model for assessing from vaccine trial data how efficacy of an HIV vaccine varies with characteristics (genotype and phenotype) of exposing virus.
- Recent Extensions
- Gilbert, Lele \& Vardi[1999] applied the selection biased model for assessing from vaccine trial data how efficacy of an HIV vaccine varies with characteristics (genotype and phenotype) of exposing virus.
- Qin \& Zhang[1997] and Zhang[2000] considered the two-sample case, and studied the asymptotic theory. A Kolmogorov-Smirnov type statistic was constructed for testing the goodness of fit of model (4).
- Recent Extensions
- Gilbert, Lele \& Vardi[1999] applied the selection biased model for assessing from vaccine trial data how efficacy of an HIV vaccine varies with characteristics (genotype and phenotype) of exposing virus.
- Qin \& Zhang[1997] and Zhang[2000] considered the two-sample case, and studied the asymptotic theory. A Kolmogorov-Smirnov type statistic was constructed for testing the goodness of fit of model (4).
- Fokianos et al.[2001] studied model (4) based on multiple samples for one-way layout with the distortion function x replaced by a more general form $h(x)$ and designed test for homogeneity among different samples.
- Data Structure: Suppose we have $m+1$ independent samples,

$$
\begin{array}{ccc}
X_{0}=\left(\begin{array}{lcc}
x_{01}, & \ldots & \left., x_{0 n_{0}}\right)^{\prime} \sim g(x) \\
X_{1} & =\left(x_{11},\right. & \ldots \\
& \left., x_{1 n_{1}}\right)^{\prime} \sim g_{1}(x) \\
\vdots
\end{array}\right. \\
X_{m}=\left(x_{m 1},\right. & \left.\ldots, x_{m n_{m}}\right)^{\prime} \sim g_{m}(x) .
\end{array}
$$

X_{0} is referred as the reference sample with unknown distribution.

- Data Structure: Suppose we have $m+1$ independent samples,

$$
\begin{array}{ccc}
X_{0}=\left(\begin{array}{lcc}
x_{01}, & \ldots & \left., x_{0 n_{0}}\right)^{\prime} \sim g(x) \\
X_{1} & =\left(x_{11},\right. & \ldots \\
& \left., x_{1 n_{1}}\right)^{\prime} \sim g_{1}(x) \\
\vdots
\end{array}\right. \\
X_{m}=\left(x_{m 1},\right. & \ldots & \left., x_{m n_{m}}\right)^{\prime} \sim g_{m}(x) .
\end{array}
$$

X_{0} is referred as the reference sample with unknown distribution.

- Density Ratio Model:

$$
\begin{equation*}
g_{j}(x)=\exp \left(\alpha_{j}+\beta_{j}^{\prime} h(x)\right) g(x), \quad j=1, \ldots, m, \tag{6}
\end{equation*}
$$

where α_{j} is a scalar, β_{j} is a $p \times 1$ vector, $h(x)$ is a $p \times 1$ predetermined distortion function.

- Example 1. (Normal Distribution)
$X_{j} \sim g_{j}(x)=N\left(\mu_{j}, \sigma_{j}^{2}\right), j=0,1, \ldots, m$. The weight function

$$
\begin{aligned}
w_{j}\left(x \mid \alpha_{j}, \beta_{j}\right) & =g_{j}(x) / g_{0}(x)=\exp \left(\alpha_{j}+\beta_{j}\left(x, x^{2}\right)^{\prime}\right) \\
\alpha_{j} & =\log \left(\sigma_{0} / \sigma_{j}\right)+\mu_{j}^{2} /\left(2 \sigma_{j}^{2}\right)-\mu_{0}^{2} /\left(2 \sigma_{0}^{2}\right) \\
\beta_{j} & =\left(\mu_{0} / \sigma_{0}^{2}-\mu_{j} / \sigma_{j}^{2}, 1 /\left(2 \sigma_{0}^{2}\right)-1 /\left(2 \sigma_{j}^{2}\right)\right)^{\prime} .
\end{aligned}
$$

The distortion function

$$
h(x)=\left(x, x^{2}\right)^{\prime} .
$$

$h(x)$ degenerates to x^{2} if $\mu_{j}=0$, and weight functions reduce to

$$
w_{j}(x)=\exp \left(\alpha_{j}+\beta_{j} x^{2}\right)
$$

- Example 2. (Gamma Distribution)
$X_{j} \sim g_{j}(x)=\operatorname{Gamma}\left(\alpha_{\gamma j}, \beta_{\gamma}\right), j=0,1, \ldots, m$ with a common scale parameter β_{γ}.
The weight function

$$
\begin{aligned}
w_{j}\left(x \mid \alpha_{j}, \beta_{j}\right) & =g_{j}(x) / g_{0}(x)=\exp \left(\alpha_{j}+\beta_{j} \log (x)\right), \\
\alpha_{j} & =\log \frac{\Gamma\left(\alpha_{\gamma 0}\right)}{\Gamma\left(\alpha_{\gamma j}\right)}+\left(\Gamma\left(\alpha_{\gamma j}\right)-\Gamma\left(\alpha_{\gamma 0}\right)\right) \log \beta_{\gamma}, \\
\beta_{j} & =\alpha_{\gamma j}-\alpha_{\gamma 0} .
\end{aligned}
$$

The distortion function is

$$
h(x)=\log (x)
$$

- Example 3. (Log Normal Distribution)
$X_{j} \sim g_{j}(x)=\mathrm{LN}\left(\alpha_{j}, \sigma^{2}\right), j=0,1, \ldots, m$ with a common σ^{2} parameter.
The weight function

$$
\begin{aligned}
w_{j}\left(x \mid \alpha_{j}, \beta_{j}\right) & =g_{j}(x) / g_{0}(x)=\exp \left(\alpha_{j}+\beta_{j} \log (x)\right), \\
\left(\alpha_{j}, \beta_{j}\right) & =\left(\frac{\mu_{0}^{2}-\mu_{j}^{2}}{2 \sigma^{2}}, \frac{\mu_{0}-\mu_{j}}{\sigma^{2}}\right)
\end{aligned}
$$

The distortion function is

$$
h(x)=\log (x)
$$

Preparation for Estimation

- Parameters: $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{m}\right)^{\prime}, \boldsymbol{\beta}=\left(\beta_{1}^{\prime}, \ldots, \beta_{m}^{\prime}\right)^{\prime}$, $\boldsymbol{\theta}=\left(\boldsymbol{\alpha}^{\prime}, \boldsymbol{\beta}^{\prime}\right)^{\prime}$.

Preparation for Estimation

- Parameters: $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{m}\right)^{\prime}, \boldsymbol{\beta}=\left(\beta_{1}^{\prime}, \ldots, \beta_{m}^{\prime}\right)^{\prime}$, $\boldsymbol{\theta}=\left(\boldsymbol{\alpha}^{\prime}, \boldsymbol{\beta}^{\prime}\right)^{\prime}$.
- Pooled Sample: $\mathbf{t}=\left(t_{1}, \ldots, t_{n}\right)^{\prime}=\left(X_{0}^{\prime}, X_{1}^{\prime}, \ldots, X_{m}^{\prime}\right)^{\prime}$, where $n=n_{0}+n_{1}+\cdots+n_{m}$, the total sample size.

Preparation for Estimation

- Parameters: $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{m}\right)^{\prime}, \boldsymbol{\beta}=\left(\beta_{1}^{\prime}, \ldots, \beta_{m}^{\prime}\right)^{\prime}$, $\boldsymbol{\theta}=\left(\boldsymbol{\alpha}^{\prime}, \boldsymbol{\beta}^{\prime}\right)^{\prime}$.
- Pooled Sample: $\mathbf{t}=\left(t_{1}, \ldots, t_{n}\right)^{\prime}=\left(X_{0}^{\prime}, X_{1}^{\prime}, \ldots, X_{m}^{\prime}\right)^{\prime}$, where $n=n_{0}+n_{1}+\cdots+n_{m}$, the total sample size.
- Empirical Likelihood:

$$
\begin{equation*}
\mathcal{L}(\boldsymbol{\theta}, G)=\prod_{i=1}^{n} p_{i} \prod_{j=1}^{m} \prod_{i=1}^{n_{j}} \exp \left(\alpha_{j}+\beta_{j}^{\prime} h\left(x_{j i}\right)\right) \tag{7}
\end{equation*}
$$

where $p_{i}=d G\left(t_{i}\right)$ is the mass at t_{i}.

A Profiling Procedure for Estimation

1. For fixed $\boldsymbol{\theta}$, maximize only the product term $\prod_{i=1}^{n} p_{i}$ from the empirical likelihood subject to the $m+1$ constraints

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i}=1, \sum_{i=1}^{n} p_{i}\left[w_{j}\left(t_{i}\right)-1\right]=0, j=1, \ldots, m \tag{8}
\end{equation*}
$$

where the weights $w_{j}(t)=\exp \left(\alpha_{j}+\beta_{j}^{\prime} h(t)\right), \quad j=1, \ldots, m$.

A Profiling Procedure for Estimation

1. For fixed $\boldsymbol{\theta}$, maximize only the product term $\prod_{i=1}^{n} p_{i}$ from the empirical likelihood subject to the $m+1$ constraints

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i}=1, \sum_{i=1}^{n} p_{i}\left[w_{j}\left(t_{i}\right)-1\right]=0, j=1, \ldots, m \tag{8}
\end{equation*}
$$

where the weights $w_{j}(t)=\exp \left(\alpha_{j}+\beta_{j}^{\prime} h(t)\right), \quad j=1, \ldots, m$.
2. Solve p_{i} by applying the method of Lagrange multipliers,

$$
\begin{equation*}
p_{i}=\left(n+\sum_{j=1}^{m} \lambda_{j}\left[w_{j}\left(t_{i}\right)-1\right]\right)^{-1}, i=1, \ldots, n \tag{9}
\end{equation*}
$$

3. Substituting p_{i} 's back into (7), the profile log likelihood as a function of $\boldsymbol{\theta}$ only,

$$
\begin{align*}
\ell(\boldsymbol{\theta})= & -n \log n_{0}-\sum_{i=1}^{n} \log \left[1+\rho_{1} w_{1}\left(t_{i}\right)+\cdots+\rho_{m} w_{m}\left(t_{i}\right)\right] \\
& +\sum_{j=1}^{m} \sum_{i=1}^{n_{j}}\left(\alpha_{j}+\beta_{j}^{\prime} h\left(x_{j i}\right)\right) . \tag{10}
\end{align*}
$$

3. Substituting p_{i} 's back into (7), the profile log likelihood as a function of $\boldsymbol{\theta}$ only,

$$
\begin{align*}
\ell(\boldsymbol{\theta})= & -n \log n_{0}-\sum_{i=1}^{n} \log \left[1+\rho_{1} w_{1}\left(t_{i}\right)+\cdots+\rho_{m} w_{m}\left(t_{i}\right)\right] \\
& +\sum_{j=1}^{m} \sum_{i=1}^{n_{j}}\left(\alpha_{j}+\beta_{j}^{\prime} h\left(x_{j i}\right)\right) \tag{10}
\end{align*}
$$

4. $\hat{\boldsymbol{\theta}}$ obtained from the score equations,

$$
\begin{align*}
\frac{\partial \ell}{\partial \alpha_{j}} & =-\sum_{i=1}^{n} \frac{\rho_{j} w_{j}\left(t_{i}\right)}{\sum_{k=0}^{m} \rho_{k} w_{k}\left(t_{i}\right)}+n_{j}=0 \\
\frac{\partial \ell}{\partial \beta_{j}} & =-\sum_{i=1}^{n} \frac{\rho_{j} w_{j}\left(t_{i}\right) h\left(t_{i}\right)}{\sum_{k=0}^{m} \rho_{k} w_{k}\left(t_{i}\right)}+\sum_{i=1}^{n_{j}} h\left(x_{j i}\right)=0 \tag{11}
\end{align*}
$$

5. The solution of the score equations gives the MLE $\hat{\boldsymbol{\theta}}=\left(\hat{\boldsymbol{\alpha}}^{\prime}, \hat{\boldsymbol{\beta}}^{\prime}\right)^{\prime}$, and consequently by substitution also

$$
\begin{equation*}
\hat{p}_{i}=\frac{1}{n_{0}} \cdot \frac{1}{\sum_{j=0}^{m} \rho_{j} \exp \left(\hat{\alpha}_{j}+\hat{\beta}_{j} h\left(t_{i}\right)\right)} \tag{12}
\end{equation*}
$$

5. The solution of the score equations gives the MLE $\hat{\boldsymbol{\theta}}=\left(\hat{\boldsymbol{\alpha}}^{\prime}, \hat{\boldsymbol{\beta}}^{\prime}\right)^{\prime}$, and consequently by substitution also

$$
\begin{equation*}
\hat{p}_{i}=\frac{1}{n_{0}} \cdot \frac{1}{\sum_{j=0}^{m} \rho_{j} \exp \left(\hat{\alpha}_{j}+\hat{\beta}_{j} h\left(t_{i}\right)\right)} \tag{12}
\end{equation*}
$$

6. The estimator for G

$$
\begin{align*}
\hat{G}(t) & =\sum_{i=1}^{n} \hat{p}_{i} I\left(t_{i} \leq t\right) \\
& =\frac{1}{n_{0}} \cdot \sum_{i=1}^{n} \frac{I\left(t_{i} \leq t\right)}{\sum_{j=0}^{m} \rho_{j} \exp \left(\hat{\alpha}_{j}+\hat{\beta}_{j} h\left(t_{i}\right)\right)} \tag{13}
\end{align*}
$$

Outline

1 Introduction

- A Historic Review of Biased Sampling Models
- Semiparametric Density Ratio Model
- Estimation

2 Asymptotic Theory for $\hat{\boldsymbol{\theta}}$ and \hat{G}

- Asymptotic Theory for $\hat{\boldsymbol{\theta}}$
- Asymptotic Theory for $\hat{G}(t)$

Data Analysis
 - A Simulation Study for Estimation of Parameters
 - Goodness of Fit and Confidence Bands
 - An Application to Coronary Heart Disease Data

Assumptions

- The first and second moments of $h(t)$ with respect to each sample are finite,

$$
\begin{align*}
& \quad \int h(t) w_{j}(t) d G(t)<\infty, \quad \int h(t) h^{\prime}(t) w_{j}(t) d G(t)<\infty \tag{14}\\
& j=0,1, \ldots, m
\end{align*}
$$

Assumptions

- The first and second moments of $h(t)$ with respect to each sample are finite,

$$
\begin{aligned}
& \quad \int h(t) w_{j}(t) d G(t)<\infty, \quad \int h(t) h^{\prime}(t) w_{j}(t) d G(t)<\infty, \\
& j=0,1, \ldots, m
\end{aligned}
$$

- Sample fractions $\rho_{j}=n_{j} / n_{0}, j=0,1, \ldots, m$ are finite and remain fixed as the total sample size

$$
n=\sum_{j=0}^{m} n_{j} \rightarrow \infty
$$

- Taylor expansion of $\partial \ell(\hat{\boldsymbol{\theta}}) / \partial \boldsymbol{\theta}$ at "true" $\boldsymbol{\theta}_{0}$,

$$
\begin{equation*}
0=\frac{\partial \ell(\hat{\boldsymbol{\theta}})}{\partial \boldsymbol{\theta}}=\frac{\partial \ell\left(\boldsymbol{\theta}_{0}\right)}{\partial \boldsymbol{\theta}}+\frac{\partial^{2} \ell\left(\boldsymbol{\theta}^{*}\right)}{\partial \boldsymbol{\theta}^{2}}\left(\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}_{0}\right), \tag{15}
\end{equation*}
$$

where $\boldsymbol{\theta}^{*}$ is between $\hat{\boldsymbol{\theta}}$ and $\boldsymbol{\theta}_{0}$.

- Taylor expansion of $\partial \ell(\hat{\boldsymbol{\theta}}) / \partial \boldsymbol{\theta}$ at "true" $\boldsymbol{\theta}_{0}$,

$$
\begin{equation*}
0=\frac{\partial \ell(\hat{\boldsymbol{\theta}})}{\partial \boldsymbol{\theta}}=\frac{\partial \ell\left(\boldsymbol{\theta}_{0}\right)}{\partial \boldsymbol{\theta}}+\frac{\partial^{2} \ell\left(\boldsymbol{\theta}^{*}\right)}{\partial \boldsymbol{\theta}^{2}}\left(\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}_{0}\right) \tag{15}
\end{equation*}
$$

where $\boldsymbol{\theta}^{*}$ is between $\hat{\boldsymbol{\theta}}$ and $\boldsymbol{\theta}_{0}$.

- Provided that $S_{n}(\boldsymbol{\theta})=\partial^{2} \ell(\boldsymbol{\theta}) / \partial \boldsymbol{\theta}^{2}$ is positive-definite,

$$
\sqrt{n}\left(\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}_{0}\right)=-\left[\frac{1}{n} S_{n}\left(\boldsymbol{\theta}^{*}\right)\right]^{-1} \frac{1}{\sqrt{n}} \frac{\partial \ell\left(\boldsymbol{\theta}_{0}\right)}{\partial \boldsymbol{\theta}}
$$

- Taylor expansion of $\partial \ell(\hat{\boldsymbol{\theta}}) / \partial \boldsymbol{\theta}$ at "true" $\boldsymbol{\theta}_{0}$,

$$
\begin{equation*}
0=\frac{\partial \ell(\hat{\boldsymbol{\theta}})}{\partial \boldsymbol{\theta}}=\frac{\partial \ell\left(\boldsymbol{\theta}_{0}\right)}{\partial \boldsymbol{\theta}}+\frac{\partial^{2} \ell\left(\boldsymbol{\theta}^{*}\right)}{\partial \boldsymbol{\theta}^{2}}\left(\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}_{0}\right) \tag{15}
\end{equation*}
$$

where $\boldsymbol{\theta}^{*}$ is between $\hat{\boldsymbol{\theta}}$ and $\boldsymbol{\theta}_{0}$.

- Provided that $S_{n}(\boldsymbol{\theta})=\partial^{2} \ell(\boldsymbol{\theta}) / \partial \boldsymbol{\theta}^{2}$ is positive-definite,

$$
\sqrt{n}\left(\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}_{0}\right)=-\left[\frac{1}{n} S_{n}\left(\boldsymbol{\theta}^{*}\right)\right]^{-1} \frac{1}{\sqrt{n}} \frac{\partial \ell\left(\boldsymbol{\theta}_{0}\right)}{\partial \boldsymbol{\theta}}
$$

- Under the density ratio model (6)

$$
\mathrm{E}_{\boldsymbol{\theta}_{0}}(\partial \ell(\boldsymbol{\theta}) / \partial \boldsymbol{\theta})^{2} \neq-\mathrm{E}_{\boldsymbol{\theta}_{0}} S_{n}(\boldsymbol{\theta})
$$

since contributions to the score statistic $\partial \ell\left(\boldsymbol{\theta}_{0}\right) / \partial \boldsymbol{\theta}$ from individual samples do not in general have mean zero.

Procedure to Develop the Asymptotic Theory for $\hat{\boldsymbol{\theta}}$

1. Derive the structure of limit matrix $-\frac{1}{n} S_{n} \xrightarrow{\text { a.s. }} S$

Procedure to Develop the Asymptotic Theory for $\hat{\boldsymbol{\theta}}$

1. Derive the structure of limit matrix $-\frac{1}{n} S_{n} \xrightarrow{\text { a.s. }} S$
2. Derive the covariance matrix of the score statistic $\frac{\partial \ell\left(\boldsymbol{\theta}_{0}\right)}{\partial \boldsymbol{\theta}}$.

Procedure to Develop the Asymptotic Theory for $\hat{\boldsymbol{\theta}}$

1. Derive the structure of limit matrix $-\frac{1}{n} S_{n} \xrightarrow{\text { a.s. }} S$
2. Derive the covariance matrix of the score statistic $\frac{\partial \ell\left(\boldsymbol{\theta}_{0}\right)}{\partial \boldsymbol{\theta}}$.
3. Prove the strong consistency of $\hat{\boldsymbol{\theta}}$ as an estimator of $\boldsymbol{\theta}$.

Procedure to Develop the Asymptotic Theory for $\hat{\boldsymbol{\theta}}$

1. Derive the structure of limit matrix $-\frac{1}{n} S_{n} \xrightarrow{\text { a.s. }} S$
2. Derive the covariance matrix of the score statistic $\frac{\partial \ell\left(\boldsymbol{\theta}_{0}\right)}{\partial \boldsymbol{\theta}}$.
3. Prove the strong consistency of $\hat{\boldsymbol{\theta}}$ as an estimator of $\boldsymbol{\theta}$.
4. Formulate the asymptotic normality of $\sqrt{n}\left(\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}_{0}\right)$.

Notation

$$
\begin{aligned}
A_{j j^{\prime}} & =\int \frac{w_{j}(t) w_{j^{\prime}}(t)}{\sum_{k=0}^{m} \rho_{k} w_{k}(t)} d G(t), B_{j j^{\prime}}=\int \frac{w_{j}(t) w_{j^{\prime}}(t) h(t)}{\sum_{k=0}^{m} \rho_{k} w_{k}(t)} d G(t) \\
C_{j j^{\prime}} & =\int \frac{w_{j}(t) w_{j^{\prime}}(t) h(t) h^{\prime}(t)}{\sum_{k=0}^{m} \rho_{k} w_{k}(t)} d G(t) \\
E_{j} & =\mathrm{E}\left(h\left(x_{j i}\right)\right)=\int w_{j}(t) h(t) d G(t) \quad \bar{E}_{j}=\int w_{j}(t) h(t) h^{\prime}(t) d G(t) \\
V_{j} & =\operatorname{Var}\left(h\left(x_{j i}\right)\right) \\
& =\int w_{j} h(t) h^{\prime}(t) d G(t)-\int h(t) w_{j} d G(t) \int h^{\prime}(t) w_{j} d G(t) \\
& =\bar{E}_{j}-E_{j} E_{j}^{\prime},
\end{aligned}
$$

where $B_{j j^{\prime}}$ and E_{j} are $p \times 1$ vectors, and $C_{i j^{\prime}}, \bar{E}_{j}$ and V_{j} are all $p \times p$ matrices.

Notation Cont'd

$$
\begin{aligned}
& A=\left(A_{i j}\right)_{m \times m}, B=\left(B_{i j}\right)_{m p \times m}, C=\left(C_{i j}\right)_{m p \times m p} \\
& \rho=\operatorname{diag}\left(\rho_{1}, \ldots, \rho_{m}\right)_{m \times m} \\
& E=\left(\begin{array}{ccc}
E_{1} & \cdots & \tilde{0} \\
\vdots & \ddots & \vdots \\
\tilde{0} & \cdots & E_{m}
\end{array}\right)_{m p \times m} \bar{E}=\left(\begin{array}{ccc}
\bar{E}_{1} & \cdots & \hat{0} \\
\vdots & \ddots & \vdots \\
\hat{0} & \cdots & \bar{E}_{m}
\end{array}\right)_{m p \times m p} \\
& \mathbf{1}_{m}=\left(\begin{array}{ccc}
1 & \cdots & 1 \\
\vdots & \ddots & \vdots \\
1 & \cdots & 1
\end{array}\right)_{m \times m} \quad V=\left(\begin{array}{ccc}
V_{1} & \cdots & \hat{0} \\
\vdots & \ddots & \vdots \\
\hat{0} & \cdots & V_{m}
\end{array}\right)_{m p \times m p}
\end{aligned}
$$

where $\tilde{0}$ is a $p \times 1$ vector of 0 's, and $\hat{0}$ is a $p \times p$ matrix of 0 's.

- Structure of the Limit Matrix

$$
S=\frac{1}{\sum_{k=0}^{m} \rho_{k}}\left(\begin{array}{ll}
S_{11} & S_{12} \tag{16}\\
S_{21} & S_{22}
\end{array}\right)
$$

where

$$
\begin{align*}
& S_{11}=\boldsymbol{\rho}-\boldsymbol{\rho} A \boldsymbol{\rho} \\
& S_{12}=\rho E^{\prime}-\rho B^{\prime}\left(\boldsymbol{\rho} \otimes I_{p}\right) \\
& S_{21}=S_{12}^{\prime}=E \boldsymbol{\rho}-\left(\boldsymbol{\rho} \otimes I_{p}\right) B \boldsymbol{\rho} \\
& S_{22}=\left(\boldsymbol{\rho} \otimes I_{p}\right) \bar{E}-\left(\boldsymbol{\rho} \otimes I_{p}\right) C\left(\boldsymbol{\rho} \otimes I_{p}\right) \tag{17}
\end{align*}
$$

I_{p} is the $p \times p$ identity matrix, \otimes denotes the kronecker product.

Structure of the Covariance Matrix

$$
\begin{aligned}
\Lambda= & \operatorname{Var}\left(\frac{1}{\sqrt{n}} \frac{\partial \ell}{\partial \boldsymbol{\theta}}\right)=\frac{1}{\sum_{k=0}^{m} \rho_{k}}\left(\begin{array}{cc}
\Lambda_{11} & \Lambda_{12} \\
\Lambda_{21} & \Lambda_{22}
\end{array}\right), \\
\Lambda_{11}= & \rho A \boldsymbol{\rho}-\boldsymbol{\rho} A \boldsymbol{\rho} A \boldsymbol{\rho}-\boldsymbol{\rho} \mathbf{1}_{m} \boldsymbol{\rho}+\boldsymbol{\rho} A \boldsymbol{\rho} \mathbf{1}_{m} \boldsymbol{\rho}+\boldsymbol{\rho} \mathbf{1}_{m} \boldsymbol{\rho} A \boldsymbol{\rho} \\
& -\boldsymbol{\rho} A \boldsymbol{\rho} \mathbf{1}_{m} \boldsymbol{\rho} A \boldsymbol{\rho} \\
\Lambda_{12}= & \boldsymbol{\rho} A E^{\prime}\left(\boldsymbol{\rho} \otimes I_{p}\right)-\boldsymbol{\rho} A \boldsymbol{\rho} B^{\prime}\left(\boldsymbol{\rho} \otimes I_{p}\right)-\boldsymbol{\rho} \mathbf{1}_{m} E^{\prime}\left(\boldsymbol{\rho} \otimes I_{p}\right) \\
& +\boldsymbol{\rho} A \boldsymbol{\rho} \mathbf{1}_{m} E^{\prime}\left(\boldsymbol{\rho} \otimes I_{p}\right)+\boldsymbol{\rho} \mathbf{1}_{m} \boldsymbol{\rho} B^{\prime}\left(\boldsymbol{\rho} \otimes I_{p}\right)-\boldsymbol{\rho} A \boldsymbol{\rho} \mathbf{1}_{m} B^{\prime}\left(\boldsymbol{\rho} \otimes I_{p}\right) \\
\Lambda_{21}= & \Lambda_{12}^{\prime}=\left(\boldsymbol{\rho} \otimes I_{p}\right) E A \boldsymbol{\rho}-\left(\boldsymbol{\rho} \otimes I_{p}\right) B \boldsymbol{\rho} A \boldsymbol{\rho}-\left(\boldsymbol{\rho} \otimes I_{p}\right) E \mathbf{1}_{m} \boldsymbol{\rho} \\
& +\left(\boldsymbol{\rho} \otimes I_{p}\right) E \mathbf{1}_{m} \boldsymbol{\rho} A \boldsymbol{\rho}+\left(\boldsymbol{\rho} \otimes I_{p}\right) B \boldsymbol{\rho} \mathbf{1}_{m} \boldsymbol{\rho}-\left(\boldsymbol{\rho} \otimes I_{p}\right) B \mathbf{1}_{m} \boldsymbol{\rho} A \boldsymbol{\rho} \\
\Lambda_{22}= & -\left(\boldsymbol{\rho} \otimes I_{p}\right) C\left(\boldsymbol{\rho} \otimes I_{p}\right)-\left(\boldsymbol{\rho} \otimes I_{p}\right) B \rho B^{\prime}\left(\boldsymbol{\rho} \otimes I_{p}\right) \\
& +\left(\boldsymbol{\rho} \otimes I_{p}\right) B E^{\prime}\left(\boldsymbol{\rho} \otimes I_{p}\right)+\left(\boldsymbol{\rho} \otimes I_{p}\right) E B^{\prime}\left(\boldsymbol{\rho} \otimes I_{p}\right)+\left(\boldsymbol{\rho} \otimes I_{p}\right) V \\
& -\left(\boldsymbol{\rho} \otimes I_{p}\right) E \mathbf{1}_{m} E^{\prime}\left(\boldsymbol{\rho} \otimes I_{p}\right)+\left(\boldsymbol{\rho} \otimes I_{p}\right) B \boldsymbol{\rho} \mathbf{1}_{m} E^{\prime}\left(\boldsymbol{\rho} \otimes I_{p}\right) \\
& +\left(\boldsymbol{\rho} \otimes I_{p}\right) E \mathbf{1}_{m} \boldsymbol{\rho} B^{\prime}\left(\boldsymbol{\rho} \otimes I_{p}\right)-\left(\boldsymbol{\rho} \otimes I_{p}\right) B \boldsymbol{\rho} \mathbf{1}_{m} \rho B^{\prime}\left(\boldsymbol{\rho} \otimes I_{p}\right) .
\end{aligned}
$$

Lemma 2.1 (Connection between S and Λ)

The limit matrix S and the covariance matrix Λ is connected by

$$
\begin{aligned}
& \Lambda_{11}=S_{11}-S_{11}\left(\mathbf{1}_{m}+\rho^{-1}\right) S_{11} \\
& \Lambda_{12}=S_{12}-S_{11}\left(\mathbf{1}_{m}+\rho^{-1}\right) S_{12} \\
& \Lambda_{21}=S_{21}-S_{21}\left(\mathbf{1}_{m}+\rho^{-1}\right) S_{11} \\
& \Lambda_{22}=S_{22}-S_{21}\left(\mathbf{1}_{m}+\rho^{-1}\right) S_{12}
\end{aligned}
$$

Therefore, we have

$$
\Sigma \stackrel{\text { def }}{=} S^{-1} \Lambda S^{-1}=S^{-1}-\sum_{k=0}^{m} \rho_{k}\left(\begin{array}{cc}
\mathbf{1}_{m}+\rho^{-1} & 0 \tag{18}\\
0 & 0
\end{array}\right)
$$

Theorem 2.1 (Asymptotic Theory for $\hat{\boldsymbol{\theta}}$)

Suppose that the density ratio model (6) and the Assumption (14) hold, and S is positive-definite, then
(a) the solution $\hat{\boldsymbol{\theta}}$ to the score equation system (11) is a strongly consistent estimator for $\boldsymbol{\theta}_{0}$.
(b) as $n \rightarrow \infty$,

$$
\begin{equation*}
\sqrt{n}\binom{\hat{\boldsymbol{\alpha}}-\boldsymbol{\alpha}_{0}}{\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}} \xrightarrow{d} N_{(p+1) m}(\mathbf{0}, \Sigma), \tag{19}
\end{equation*}
$$

where $\Sigma=S^{-1} \Lambda S^{-1}$.

A Brief Review of Empirical Process

Let T_{1}, \ldots, T_{n} be a real-valued random sample from a distribution function F.

Empirical measure

$$
P_{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{T_{i}} .
$$

Empirical distribution

$$
F_{n}(t)=P_{n} I_{[x<t]}=\frac{1}{n} \sum_{i=1}^{n} I_{\left[T_{i}<t\right]} .
$$

Consider $F_{n}(t)$ as a random function $F_{n}(t, \omega)$.
Glivenko-Cantelli Theorem (SLLN)

$$
\left|F_{n}-F\right|_{\infty} \xrightarrow{\text { a.s. }} 0
$$

under the supremum norm $\left|F_{n}-F\right|_{\infty}=\sup \left|F_{n}(t)-F(t)\right|$.

Consider $F_{n}(t)$ as a random function $F_{n}(t, \omega)$.
Glivenko-Cantelli Theorem (SLLN)

$$
\left|F_{n}-F\right|_{\infty} \xrightarrow{\text { a.s. }} 0
$$

under the supremum norm $\left|F_{n}-F\right|_{\infty}=\sup \left|F_{n}(t)-F(t)\right|$.

Donsker Theorem (CLT)

$$
\sqrt{n}\left(F_{n}-F\right) \xrightarrow{d} \mathbb{G}_{F}
$$

in the Skorohod space $D[-\infty, \infty]$. The Brownian bridge \mathbb{G}_{F} has mean 0 and covariance

$$
\mathrm{E} \mathbb{G}_{F}(t) \mathbb{G}_{F}(s)=F(t \wedge s)-F(t) F(s)
$$

Define the empirical process of the reference sample:

$$
\tilde{G}(t)=\frac{1}{n_{0}} \sum_{i=1}^{n_{0}} I_{\left[x_{0}<t\right]} .
$$

Define the empirical process of the reference sample:

$$
\tilde{G}(t)=\frac{1}{n_{0}} \sum_{i=1}^{n_{0}} I_{\left[x_{0}<t\right]} .
$$

Procedure to Prove Weak Convergence:

- Approximation: $\hat{G}(t) \approx H_{1}(t)-H_{2}(t)$ uniformly in t.

Define the empirical process of the reference sample:

$$
\tilde{G}(t)=\frac{1}{n_{0}} \sum_{i=1}^{n_{0}} I_{\left[x_{0}<t\right]} .
$$

Procedure to Prove Weak Convergence:

- Approximation: $\hat{G}(t) \approx H_{1}(t)-H_{2}(t)$ uniformly in t.
- Decomposition:

$$
\begin{aligned}
& \sqrt{n}(\hat{G}(t)-G(t))=\sqrt{n}(\hat{G}(t)-\tilde{G}(t))+\sqrt{n}(\tilde{G}(t)-G(t)) \\
& \quad=\sqrt{n}\left(H_{1}(t)-\tilde{G}(t)-H_{2}(t)\right)+\sqrt{n}(\tilde{G}(t)-G(t))
\end{aligned}
$$

Define the empirical process of the reference sample:

$$
\tilde{G}(t)=\frac{1}{n_{0}} \sum_{i=1}^{n_{0}} I_{\left[x_{0}<t\right]} .
$$

Procedure to Prove Weak Convergence:

- Approximation: $\hat{G}(t) \approx H_{1}(t)-H_{2}(t)$ uniformly in t.
- Decomposition:

$$
\begin{aligned}
& \sqrt{n}(\hat{G}(t)-G(t))=\sqrt{n}(\hat{G}(t)-\tilde{G}(t))+\sqrt{n}(\tilde{G}(t)-G(t)) \\
& \quad=\sqrt{n}\left(H_{1}(t)-\tilde{G}(t)-H_{2}(t)\right)+\sqrt{n}(\tilde{G}(t)-G(t))
\end{aligned}
$$

- Covariance Structure and Finite-dimensional Convergence.

Define the empirical process of the reference sample:

$$
\tilde{G}(t)=\frac{1}{n_{0}} \sum_{i=1}^{n_{0}} I_{\left[x_{0}<t\right]} .
$$

Procedure to Prove Weak Convergence:

- Approximation: $\hat{G}(t) \approx H_{1}(t)-H_{2}(t)$ uniformly in t.
- Decomposition:

$$
\begin{aligned}
& \sqrt{n}(\hat{G}(t)-G(t))=\sqrt{n}(\hat{G}(t)-\tilde{G}(t))+\sqrt{n}(\tilde{G}(t)-G(t)) \\
& \quad=\sqrt{n}\left(H_{1}(t)-\tilde{G}(t)-H_{2}(t)\right)+\sqrt{n}(\tilde{G}(t)-G(t))
\end{aligned}
$$

- Covariance Structure and Finite-dimensional Convergence.
- Tightness.

An Approximation of $\hat{G}(t)$

- Define

$$
H_{1}(t ; \boldsymbol{\theta})=\frac{1}{n_{0}} \cdot \sum_{i=1}^{n} \frac{I\left(t_{i} \leq t\right)}{\sum_{k=0}^{m} \rho_{k} w_{k}\left(t_{i} ; \alpha_{k}, \beta_{k}\right)}
$$

Assume $H_{1}(t)=H_{1}\left(t ; \boldsymbol{\theta}_{0}\right) . \hat{G}(t)$ is a realization of $H_{1}(t ; \boldsymbol{\theta})$ at $\hat{\boldsymbol{\theta}}$.

An Approximation of $\hat{G}(t)$

- Define

$$
H_{1}(t ; \boldsymbol{\theta})=\frac{1}{n_{0}} \cdot \sum_{i=1}^{n} \frac{I\left(t_{i} \leq t\right)}{\sum_{k=0}^{m} \rho_{k} w_{k}\left(t_{i} ; \alpha_{k}, \beta_{k}\right)}
$$

Assume $H_{1}(t)=H_{1}\left(t ; \boldsymbol{\theta}_{0}\right) . \hat{G}(t)$ is a realization of $H_{1}(t ; \boldsymbol{\theta})$ at $\hat{\boldsymbol{\theta}}$.

- As $n \rightarrow \infty$, we have, uniformly in t

$$
\begin{aligned}
& \frac{\partial H_{1}\left(t ; \boldsymbol{\theta}_{0}\right)}{\partial \alpha_{j}} \quad \xrightarrow{\text { a.s. }}-\rho_{j} A_{j}(t)=\rho_{j} \int \frac{w_{j}(y) I(y \leq t)}{\sum_{k=0}^{m} \rho_{k} w_{k}(y)} d G(y) \\
& \frac{\partial H_{1}\left(t ; \boldsymbol{\theta}_{0}\right)}{\partial \beta_{j}} \quad \xrightarrow{\text { a.s. }}-\rho_{j} B_{j}(t)=\rho_{j} \int \frac{w_{j}(y) h(y) I(y \leq t)}{\sum_{k=0}^{m} \rho_{k} w_{k}(y)} d G(y) .
\end{aligned}
$$

Denote $\bar{A}(t)=\left(A_{1}(t), \ldots, A_{m}(t)\right)^{\prime}, \quad \bar{B}(t)=\left(B_{1}^{\prime}(t), \ldots, B_{m}^{\prime}(t)\right)^{\prime}$.
Lemma 3.1 (Approximation of $\hat{G}(t)$)
$\hat{G}(t)$ has an approximation uniformly in t,

$$
\hat{G}(t)=H_{1}(t)-H_{2}(t)+R_{n}(t),
$$

where $H_{1}(t)$ is defined as before, and

$$
\begin{equation*}
H_{2}(t)=\frac{1}{n}\left(\bar{A}^{\prime}(t) \boldsymbol{\rho}, \bar{B}^{\prime}(t)\left(\boldsymbol{\rho} \otimes I_{p}\right)\right) S^{-1}\binom{\frac{\partial \ell\left(\boldsymbol{\theta}_{0}\right)}{\partial \boldsymbol{\theta}_{0}}}{\frac{\left.\partial \ell \boldsymbol{\theta}_{0}\right)}{\partial \boldsymbol{\beta}}}, \tag{20}
\end{equation*}
$$

and the remainder term $R_{n}(t)$ satisfies
$\sup _{-\infty<t<\infty}\left|R_{n}(t)\right|=o_{p}\left(n^{-1 / 2}\right)$.

Covariance Structure

Notice that $\mathrm{E}_{\boldsymbol{\theta}_{0}}\left[H_{1}(t)-\tilde{G}\right]=0, \mathrm{E}_{\boldsymbol{\theta}_{0}}\left[H_{2}(t)\right]=0$,

$$
\begin{aligned}
& \operatorname{Cov}\left[\sqrt{n}\left(H_{1}(t)-\tilde{G}(t)-H_{2}(t)\right), \sqrt{n}\left(H_{1}(s)-\tilde{G}(s)-H_{2}(s)\right)\right] \\
&= n\left[\mathrm{E}\left(\left(H_{1}(t)-\tilde{G}(t)\right)\left(H_{1}(s)-\tilde{G}(s)\right)\right)\right. \\
&-\mathrm{E}\left(\left(H_{1}(t)-\tilde{G}(t)\right) H_{2}(s)\right) \\
&\left.-\mathrm{E}\left(H_{2}(t)\left(H_{1}(s)-\tilde{G}(s)\right)\right)+\mathrm{E}\left(H_{2}(t) H_{2}^{\prime}(s)\right)\right] .
\end{aligned}
$$

Covariance Structure

$$
\begin{align*}
\operatorname{Cov} & {\left[\sqrt{n}\left(H_{1}(t)-\tilde{G}(t)-H_{2}(t)\right), \sqrt{n}\left(H_{1}(s)-\tilde{G}(s)-H_{2}(s)\right)\right] } \\
= & \left(\sum_{k=0}^{m} \rho_{k}\right) \sum_{j=1}^{m} \rho_{j} A_{j}(t \wedge s) \\
& -\left[\bar{A}^{\prime}(t) \rho, \bar{B}^{\prime}(t)\left(\boldsymbol{\rho} \otimes I_{p}\right)\right] S^{-1}\left[\begin{array}{c}
\rho \bar{A}(s) \\
\left(\boldsymbol{\rho} \otimes I_{p}\right) \bar{B}(s)
\end{array}\right] . \tag{21}
\end{align*}
$$

Lemma 3.2 (Finite-dimensional Convergence)

For any finite set $\left(t_{1}, \ldots, t_{k}\right)$ of points on the real line, let G_{n} denote $\sqrt{n}\left(H_{1}(t)-\tilde{G}-H_{2}(t)\right)$, then we have

$$
\left(G_{n}\left(t_{1}\right), \ldots, G_{n}\left(t_{k}\right)\right) \xrightarrow{d} N_{k}(0, \Delta),
$$

where N_{k} is a mean-zero k-dimensional multivariate normal distribution with covariance matrix Δ, of which the (i, j) th element is determined by (21).

Techniques for Proving Tightness

Donsker Class
Assume $\sup _{f \in \mathcal{F}}\|f(x)-P f\|<\infty, \quad$ for every x. Under this condition, the empirical process $\left\{P_{n} f: f \in \mathcal{F}\right\}$ can be viewed as a map into $\ell^{\infty}(\mathcal{F})$, where $\ell^{\infty}(\mathcal{F})$ is a set of uniformly bounded real functions in \mathcal{F}.
\mathcal{F} is called P-Donsker class if the empirical processes based on P and indexed by \mathcal{F} satisfy

$$
G_{n}=\sqrt{n}\left(P_{n}-P\right) \xrightarrow{d} G, \quad \text { in } \ell^{\infty}(\mathcal{F}),
$$

where G is a tight Borel measurable element in $\ell^{\infty}(\mathcal{F})$.

Examples of Donsker Classes

- The collection of all indicator functions of the form $I_{(-\infty, t]}$ is a Donsker class.
- If \mathcal{F} is a Donsker class with $\|P\|_{\mathcal{F}}<\infty$ and g is a uniformly bounded, measurable function, then $\mathcal{F} \cdot g$ is a Donsker class.

Refer to Example 2.10.10 of Van der Vaart and Wellner (1996), p. 192

- Any finite dimensional vector space \mathcal{F} of measurable functions is a Donsker class.

Refer to Lemma 2.6.15, Van der Vaart and Wellner (1996) Page 146

Tightness of $\sqrt{n}\left(H_{1}(t)-\tilde{G}(t)\right)$

$$
\begin{aligned}
H_{1}(t)-\tilde{G}(t)= & \frac{1}{n_{0}} \sum_{j=1}^{m} \sum_{i=1}^{n_{j}} \frac{I\left(x_{j i} \leq t\right)}{\sum_{k=0}^{m} \rho_{k} w_{k}\left(x_{j i}\right)} \\
& -\frac{1}{n_{0}} \sum_{i=1}^{n_{0}} \frac{\sum_{k=1}^{m} \rho_{k} w_{k}\left(x_{0 i}\right) I\left(x_{0 i} \leq t\right)}{\sum_{k=0}^{m} \rho_{k} w_{k}\left(x_{0 i}\right)} \\
H_{1 j}(t)= & \frac{1}{n_{0}} \sum_{i=1}^{n_{j}} \frac{I\left(x_{j i} \leq t\right)}{\sum_{k=0}^{m} \rho_{k} w_{k}\left(x_{j i}\right)}, \\
H_{10}(t)= & \frac{1}{n_{0}} \sum_{i=1}^{n_{0}} \frac{\sum_{k=1}^{m} \rho_{k} w_{k}\left(x_{0 i}\right) I\left(x_{0 i} \leq t\right)}{\sum_{k=0}^{m} \rho_{k} w_{k}\left(x_{0 i}\right)}
\end{aligned}
$$

$$
\mathrm{E}\left[H_{1 j}(t)\right]=\rho_{j} A_{j}(t), \quad \mathrm{E}\left[H_{10}(t)\right]=\sum_{j=1}^{m} \rho_{j} A_{j}(t)
$$

$$
H_{1}(t)-\tilde{G}(t)=\sum_{j=1}^{m} H_{1 j}(t)-H_{10}(t)
$$

$$
=\sum_{j=1}^{m}\left[H_{1 j}(t)-\rho_{j} A_{j}(t)\right]-\left[H_{10}(t)-\sum_{j=1}^{m} \rho_{j} A_{j}(t)\right] .
$$

- Let \mathcal{F} be the collection of all indicator functions of the form $I_{(-\infty, t]}$.
- Let \mathcal{F} be the collection of all indicator functions of the form $I_{(-\infty, t]}$.
- $P_{X_{j}}$ is the law of X_{j}, the j th sample, $j=0,1, \ldots, m$.
- Let \mathcal{F} be the collection of all indicator functions of the form $I_{(-\infty, t]}$.
- $P_{X_{j}}$ is the law of X_{j}, the j th sample, $j=0,1, \ldots, m$.
- Define uniformly bounded functions

$$
f_{0}(y)=\frac{\sum_{k=1}^{m} \rho_{k} w_{k}(y)}{\sum_{k=0}^{m} \rho_{k} w_{k}(y)}, \quad f_{j}(y)=\frac{\rho_{j}}{\sum_{k=0}^{m} \rho_{k} w_{k}(y)}
$$

$j=1, \ldots, m$.

- Let \mathcal{F} be the collection of all indicator functions of the form $I_{(-\infty, t]}$.
- $P_{X_{j}}$ is the law of X_{j}, the j th sample, $j=0,1, \ldots, m$.
- Define uniformly bounded functions

$$
f_{0}(y)=\frac{\sum_{k=1}^{m} \rho_{k} w_{k}(y)}{\sum_{k=0}^{m} \rho_{k} w_{k}(y)}, \quad f_{j}(y)=\frac{\rho_{j}}{\sum_{k=0}^{m} \rho_{k} w_{k}(y)}
$$

$j=1, \ldots, m$.

- From the previous example, $\mathcal{F} \cdot f_{i}, i=0,1, \ldots, m$, are $P_{X_{j}}$-Donsker classes, $j=0,1, \ldots, m$

Let $P_{n j}=\frac{1}{n_{j}} \sum_{i=1}^{n_{j}} \delta_{x_{j i}}$ be the empirical measure of the j th sample. Then we have

$$
\begin{aligned}
& \sqrt{n_{j}}\left(P_{n j}-P_{X_{j}}\right)\left(I_{(-\infty, t} f_{j}\right) \\
& =\sqrt{n_{j}}\left[\frac{1}{n_{j}} \sum_{i=1}^{n_{j}} \frac{\rho_{j} I\left(x_{j i} \leq t\right)}{\sum_{k=0}^{m} \rho_{k} w_{k}\left(x_{j i}\right)}-\rho_{j} \int \frac{w_{j}(y) I(y \leq t)}{\sum_{k=0}^{m} \rho_{k} w_{k}(y)} d G(y)\right] \\
& =\left(\rho_{j} / \sum_{k=0}^{m} \rho_{k}\right)^{1 / 2} \sqrt{n}\left(H_{1 j}-\rho_{j} A_{j}(t)\right), \quad j=1, \ldots, m,
\end{aligned}
$$

and, similarly,
$\sqrt{n_{0}}\left(P_{n 0}-P_{X_{0}}\right)\left(I_{(-\infty, t} f_{0}\right)=\left(1 / \sum_{k=0}^{m} \rho_{k}\right)^{1 / 2} \sqrt{n}\left[H_{10}(t)-\sum_{j=1}^{m} \rho_{j} A_{j}(t)\right]$

By Donsker's Theorem,

$$
\sqrt{n_{j}}\left(P_{n j}-P_{X_{j}}\right)\left(I_{(-\infty, t} f_{0}\right) \xrightarrow{d} W_{j} \quad \text { in } D[-\infty, \infty],
$$

where $\mathrm{j}=0,1, \ldots, \mathrm{~m}$, and W_{j} 's are mean-zero Gaussian processes. Therefore,

$$
\sqrt{n}\left(H_{1 j}-\rho_{j} A_{j}(t)\right), j=0,1, \ldots, m, \text { are tight in } D[-\infty, \infty] .
$$

From the decomposition of $\sqrt{n}\left(H_{1}(t)-\tilde{G}(t)\right)$,
Lemma 3.3 Tightness of $\sqrt{n}\left(H_{1}(t)-\tilde{G}(t)\right)$
$\sqrt{n}\left(H_{1}(t)-\tilde{G}(t)\right)$ is tight in $D[-\infty, \infty]$.

Tightness of $\sqrt{n} H_{2}(t)$

- Define functions

$$
U_{l}(y)=\frac{\rho_{l} w_{l}(y)}{\sum_{k=0}^{m} \rho_{k} w_{k}(y)}, \quad V_{l}(y)=\frac{\rho_{l} w_{l}(y) h(y)}{\sum_{k=0}^{m} \rho_{k} w_{k}(y)},
$$

where $l=0,1, \ldots, m$.

Tightness of $\sqrt{n} H_{2}(t)$

- Define functions

$$
U_{l}(y)=\frac{\rho_{l} w_{l}(y)}{\sum_{k=0}^{m} \rho_{k} w_{k}(y)}, \quad V_{l}(y)=\frac{\rho_{l} w_{l}(y) h(y)}{\sum_{k=0}^{m} \rho_{k} w_{k}(y)},
$$

where $l=0,1, \ldots, m$.

- Define spaces

$$
\begin{aligned}
\mathcal{U} & =\operatorname{Span}\left\{U_{k}: k=0,1, \ldots, m\right\} \\
\mathcal{V} & =\operatorname{Span}\left\{V_{k}: k=0,1, \ldots, m\right\}
\end{aligned}
$$

Tightness of $\sqrt{n} H_{2}(t)$

- Define functions

$$
U_{l}(y)=\frac{\rho_{l} w_{l}(y)}{\sum_{k=0}^{m} \rho_{k} w_{k}(y)}, \quad V_{l}(y)=\frac{\rho_{l} w_{l}(y) h(y)}{\sum_{k=0}^{m} \rho_{k} w_{k}(y)},
$$

where $l=0,1, \ldots, m$.

- Define spaces

$$
\begin{aligned}
\mathcal{U} & =\operatorname{Span}\left\{U_{k}: k=0,1, \ldots, m\right\} \\
\mathcal{V} & =\operatorname{Span}\left\{V_{k}: k=0,1, \ldots, m\right\}
\end{aligned}
$$

- \mathcal{U} and \mathcal{V} are both Donsker classes

Let $\left(a_{1}(t), \ldots, a_{m}(t), b_{1}^{\prime}(t), \ldots, b_{m}^{\prime}(t)\right)=\left(\bar{A}^{\prime}(t) \boldsymbol{\rho}, \bar{B}^{\prime}(t)\left(\boldsymbol{\rho} \otimes I_{p}\right)\right) S^{-1}$, Then we have a decomposition for $\sqrt{n} H_{2}(t)$,

$$
\begin{align*}
& \sqrt{n} H_{2}(t)=\frac{\sqrt{n}}{n}\left(a_{1}(t), \ldots, a_{m}(t), b_{1}^{\prime}(t), \ldots, b_{m}^{\prime}(t)\right) \frac{\partial \ell}{\partial \boldsymbol{\theta}} \\
&= \frac{n_{0}}{n}\left[\sum_{j=1}^{m} \frac{\sum_{k=0}^{m} \rho_{k}}{\rho_{j}} \sqrt{n_{j}}\left(P_{n_{j}}-P_{X_{j}}\right)\left(\sum_{\substack{l=0 \\
l \neq j}}^{m} \rho_{j} a_{j}(t) U_{l}\right)\right. \\
& \quad-\sum_{j=1}^{m} \sum_{\substack{l=0 \\
l \neq j}}^{m} \frac{\sum_{k=0}^{m} \rho_{k}}{\rho_{l}} \sqrt{n_{l}}\left(P_{n_{l}}-P_{X_{l}}\right)\left(\rho_{l} a_{j}(t) U_{j}\right) \\
& \quad+\sum_{j=1}^{m} \frac{\sum_{k=0}^{m} \rho_{k}}{\rho_{j}} \sqrt{n_{j}}\left(P_{n_{j}}-P_{X_{j}}\right)\left(\sum_{\substack{l=0 \\
l \neq j}}^{m} \rho_{j} b_{j}^{\prime}(t) V_{l}\right) \\
&\left.\quad-\sum_{j=1}^{m} \sum_{\substack{l=0 \\
l \neq j}}^{m} \frac{\sum_{k=0}^{m} \rho_{k}}{\rho_{l}} \sqrt{n_{l}}\left(P_{n_{l}}-P_{X_{l}}\right)\left(\rho_{l} b_{j}^{\prime}(t) V_{j}\right)\right] . \tag{22}
\end{align*}
$$

Lemma 3.4 Tightness of $\sqrt{n} H_{2}(t)$
 $\sqrt{n} H_{2}(t)$ is tight in $D[-\infty, \infty]$.

Lemma 3.4 Tightness of $\sqrt{n} H_{2}(t)$
$\sqrt{n} H_{2}(t)$ is tight in $D[-\infty, \infty]$.
Theorem 3.1 Weak Convergence of $\sqrt{n}(\hat{G}-\tilde{G})$
The process $\sqrt{n}(\hat{G}-\tilde{G})$ converges weakly to a zero-mean Gaussian process W with continuous sample paths in $D[-\infty, \infty]$, and the covariance matrix is determined by

$$
\begin{aligned}
& \mathrm{E} W(t) W(s)=\left(\sum_{k=0}^{m} \rho_{k}\right) \sum_{j=1}^{m} \rho_{j} A_{j}(t \wedge s) \\
& \quad-\left(\bar{A}^{\prime}(t) \boldsymbol{\rho}, \bar{B}^{\prime}(t)\left(\boldsymbol{\rho} \otimes I_{p}\right)\right) S^{-1}\binom{\rho \bar{A}(s)}{\left(\boldsymbol{\rho} \otimes I_{p}\right) \bar{B}(s)} .
\end{aligned}
$$

Weak Convergence of $\sqrt{n}(\hat{G}(t)-G(t))$:

- Decomposition:

$$
\begin{aligned}
& \sqrt{n}(\hat{G}(t)-G(t))=\sqrt{n}(\hat{G}(t)-\tilde{G}(t))+\sqrt{n}(\tilde{G}(t)-G(t)) \\
& \quad \approx \quad \sqrt{n}\left(H_{1}(t)-\tilde{G}(t)-H_{2}(t)\right)+\sqrt{n}(\tilde{G}(t)-G(t)) .
\end{aligned}
$$

Weak Convergence of $\sqrt{n}(\hat{G}(t)-G(t))$:

- Decomposition:

$$
\begin{aligned}
& \sqrt{n}(\hat{G}(t)-G(t))=\sqrt{n}(\hat{G}(t)-\tilde{G}(t))+\sqrt{n}(\tilde{G}(t)-G(t)) \\
& \quad \approx \quad \sqrt{n}\left(H_{1}(t)-\tilde{G}(t)-H_{2}(t)\right)+\sqrt{n}(\tilde{G}(t)-G(t)) .
\end{aligned}
$$

- Variance-covariance structure and finite-dimensional convergence can be obtained similarly as for $\sqrt{n}(\hat{G}(t)-\tilde{G}(t))$.

Weak Convergence of $\sqrt{n}(\hat{G}(t)-G(t))$:

- Decomposition:

$$
\begin{aligned}
& \sqrt{n}(\hat{G}(t)-G(t))=\sqrt{n}(\hat{G}(t)-\tilde{G}(t))+\sqrt{n}(\tilde{G}(t)-G(t)) \\
& \quad \approx \quad \sqrt{n}\left(H_{1}(t)-\tilde{G}(t)-H_{2}(t)\right)+\sqrt{n}(\tilde{G}(t)-G(t)) .
\end{aligned}
$$

- Variance-covariance structure and finite-dimensional convergence can be obtained similarly as for $\sqrt{n}(\hat{G}(t)-\tilde{G}(t))$.
- Tightness is followed from the fact that both $\sqrt{n}(\hat{G}(t)-\tilde{G}(t))$ and $\sqrt{n}(\tilde{G}(t)-G(t))$ are tight.

Theorem 3.2 Weak Convergence of $\sqrt{n}(\hat{G}-G)$

The process $\sqrt{n}(\hat{G}(t)-G(t))$ converges weakly to a zero-mean Gaussian process in $D[-\infty, \infty]$, with covariance matrix given by

$$
\begin{align*}
& \operatorname{Cov}\{\sqrt{n}(\hat{G}(t)-G(t)), \sqrt{n}(\hat{G}(s)-G(s))\}= \\
& \quad\left(\sum_{k=0}^{m} \rho_{k}\right)\left(G(t \wedge s)-G(t) G(s)-\sum_{j=1}^{m} \rho_{j} A_{j}(t \wedge s)\right) \\
& \quad+\left(\bar{A}^{\prime}(s) \rho, \bar{B}^{\prime}(s)\left(\rho \otimes I_{p}\right)\right) S^{-1}\binom{\rho \bar{A}(t)}{\left(\rho \otimes I_{p}\right) \bar{B}(t)} . \tag{23}
\end{align*}
$$

Outline

Introduction

- A Historic Review of Biased Sampling Models
- Semiparametric Density Ratio Model

- Estimation

2 Asymptotic Theory for $\hat{\theta}$ and \hat{G}

- Asymptotic Theory for $\hat{\boldsymbol{\theta}}$
- Asymptotic Theory for $\hat{G}(t)$

3) Data Analysis

- A Simulation Study for Estimation of Parameters
- Goodness of Fit and Confidence Bands
- An Application to Coronary Heart Disease Data

Simulation Study for Parameters

- Generate random samples $X_{0} \sim N(0,1), X_{1} \sim N(0,2)$ and $X_{2} \sim N(0,4)$ with density functions $g(x), g_{1}(x)$ and $g_{2}(x)$ respectively.

Simulation Study for Parameters

- Generate random samples $X_{0} \sim N(0,1), X_{1} \sim N(0,2)$ and $X_{2} \sim N(0,4)$ with density functions $g(x), g_{1}(x)$ and $g_{2}(x)$ respectively.
- Fit the following density ratio model:

$$
\begin{align*}
& g_{1}(x)=g(x) \exp \left(\alpha_{1}+\beta_{1} x^{2}\right) \\
& g_{2}(x)=g(x) \exp \left(\alpha_{2}+\beta_{2} x^{2}\right) \tag{24}
\end{align*}
$$

Simulation Study for Parameters

- Generate random samples $X_{0} \sim N(0,1), X_{1} \sim N(0,2)$ and $X_{2} \sim N(0,4)$ with density functions $g(x), g_{1}(x)$ and $g_{2}(x)$ respectively.
- Fit the following density ratio model:

$$
\begin{align*}
& g_{1}(x)=g(x) \exp \left(\alpha_{1}+\beta_{1} x^{2}\right) \\
& g_{2}(x)=g(x) \exp \left(\alpha_{2}+\beta_{2} x^{2}\right) \tag{24}
\end{align*}
$$

- True parameters

$$
\left(\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}\right)=(-0.34657,-0.69315,0.25000,0.37500)
$$

Simulation Study for Parameters

- Generate random samples $X_{0} \sim N(0,1), X_{1} \sim N(0,2)$ and $X_{2} \sim N(0,4)$ with density functions $g(x), g_{1}(x)$ and $g_{2}(x)$ respectively.
- Fit the following density ratio model:

$$
\begin{align*}
& g_{1}(x)=g(x) \exp \left(\alpha_{1}+\beta_{1} x^{2}\right) \\
& g_{2}(x)=g(x) \exp \left(\alpha_{2}+\beta_{2} x^{2}\right) \tag{24}
\end{align*}
$$

- True parameters $\left(\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}\right)=(-0.34657,-0.69315,0.25000,0.37500)$.
- Calculate average bias and sample variance based on 1000 combined random samples.

Table: Bias and variance of parameter estimates.

Sample Size	$\operatorname{Bias}\left(\hat{\alpha_{1}}\right)$	$\operatorname{Bias}\left(\hat{\beta_{1}}\right)$	$\operatorname{Bias}\left(\hat{\alpha_{2}}\right)$	$\operatorname{Bias}\left(\hat{\beta_{2}}\right)$
$(50,50,50)$	-0.01663	0.02337	-0.03752	0.03508
$(50,50,100)$	-0.00022	0.00856	-0.02041	0.02142
$(50,100,50)$	-0.01865	0.02550	-0.03797	0.03338
$(100,50,50)$	-0.00326	0.00511	-0.02925	0.01811
$(200,200,200)$	-0.00017	0.00217	-0.00303	0.00439
Sample Size	$\operatorname{Var}\left(\hat{\alpha_{1}}\right)$	$\operatorname{Var}\left(\hat{\beta_{1}}\right)$	$\operatorname{Var}\left(\hat{\alpha_{2}}\right)$	$\operatorname{Var}\left(\hat{\beta_{2}}\right)$
$(50,50,50)$	0.02425	0.01731	0.03362	0.01672
$(50,50,100)$	0.02085	0.01497	0.02276	0.01421
$(50,100,50)$	0.01961	0.01623	0.03168	0.01658
$(100,50,50)$	0.01773	0.00929	0.02674	0.00828
$(200,200,200)$	0.00611	0.00391	0.00837	0.00374

Table: 95% Confidence intervals for parameters.

Sample Size	α_{1}	α_{2}
$(50,50,50)$	$(-0.64010,-0.05305)$	$(-1.04119,-0.34511)$
$(50,50,100)$	$(-0.63505,-0.05810)$	$(-0.98391,-0.40238)$
$(50,100,50)$	$(-0.60031,-0.09284)$	$(-1.02833,-0.35796)$
$(100,50,50)$	$(-0.60319,-0.08996)$	$(-1.00900,-0.37730)$
$(200,200,200)$	$(-0.49333,-0.19981)$	$(-0.86717,-0.51913)$
Sample Size	β_{1}	β_{2}
$(50,50,50)$	$(0.02029,0.47971)$	$(0.14742,0.60258)$
$(50,50,100)$	$(0.02349,0.47651)$	$(0.15889,0.59111)$
$(50,100,50)$	$(0.03402,0.46598)$	$(0.15327,0.59673)$
$(100,50,50)$	$(0.06846,0.43154)$	$(0.19693,0.55307)$
$(200,200,200)$	$(0.13515,0.36485)$	$(0.26121,0.48879)$

Statistic for Goodness-of-fit Test

- Define test statistic

$$
\Delta_{n}(t)=\sqrt{n}|\hat{G}-\tilde{G}|, \quad \Delta_{n}=\sup _{-\infty \leq \leq \leq \infty} \Delta_{n}(t)
$$

Statistic for Goodness-of-fit Test

- Define test statistic

$$
\Delta_{n}(t)=\sqrt{n}|\hat{G}-\tilde{G}|, \quad \Delta_{n}=\sup _{-\infty \leq \leq \leq \infty} \Delta_{n}(t)
$$

- Let w_{α} be the α-quantile of the distribution of $\sup _{-\infty \leq t \leq \infty}|W(t)|$. By weak convergence of $\sqrt{n}(\hat{G}-\tilde{G})$,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} P\left(\Delta_{n} \geq w_{1-\alpha}\right) & =\lim _{n \rightarrow \infty} P\left(\sup _{-\infty \leq t \leq \infty} \sqrt{n}|\hat{G}-\tilde{G}| \geq w_{1-\alpha}\right) \\
& =P\left(\sup _{-\infty \leq t \leq \infty}|W(t)| \geq w_{1-\alpha}\right)=\alpha .
\end{aligned}
$$

Statistic for Goodness-of-fit Test

- Define test statistic

$$
\Delta_{n}(t)=\sqrt{n}|\hat{G}-\tilde{G}|, \quad \Delta_{n}=\sup _{-\infty \leq \leq \leq \infty} \Delta_{n}(t)
$$

- Let w_{α} be the α-quantile of the distribution of $\sup _{-\infty \leq t \leq \infty}|W(t)|$. By weak convergence of $\sqrt{n}(\hat{G}-\tilde{G})$,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} P\left(\Delta_{n} \geq w_{1-\alpha}\right) & =\lim _{n \rightarrow \infty} P\left(\sup _{-\infty \leq t \leq \infty} \sqrt{n}|\hat{G}-\tilde{G}| \geq w_{1-\alpha}\right) \\
& =P\left(\sup _{-\infty \leq t \leq \infty}|W(t)| \geq w_{1-\alpha}\right)=\alpha .
\end{aligned}
$$

- We reject the density ratio model (6) at level α if

$$
\Delta_{n}>w_{1-\alpha} .
$$

Test Procedure Based on Bootstrap

1. Estimate $\hat{G}, \hat{G}_{1}, \ldots, \hat{G}_{m}$ from $\left(X_{0}, X_{1}, \ldots, X_{m}\right)$ and calculate Δ_{n}.

Test Procedure Based on Bootstrap

1. Estimate $\hat{G}, \hat{G}_{1}, \ldots, \hat{G}_{m}$ from $\left(X_{0}, X_{1}, \ldots, X_{m}\right)$ and calculate Δ_{n}.
2. Generate $X_{0}^{*}, X_{1}^{*}, \ldots, X_{m}^{*}$ from $\hat{G}, \hat{G}_{1}, \ldots, \hat{G}_{m}$ respectively.

Test Procedure Based on Bootstrap

1. Estimate $\hat{G}, \hat{G}_{1}, \ldots, \hat{G}_{m}$ from $\left(X_{0}, X_{1}, \ldots, X_{m}\right)$ and calculate Δ_{n}.
2. Generate $X_{0}^{*}, X_{1}^{*}, \ldots, X_{m}^{*}$ from $\hat{G}, \hat{G}_{1}, \ldots, \hat{G}_{m}$ respectively.
3. Obtain the estimate \hat{G}^{*} for \hat{G} based on $\left(X_{0}^{*}, X_{1}^{*}, \ldots, X_{m}^{*}\right)$ and empirical cdf \tilde{G}^{*} for X_{0}^{*}, then calculate

$$
\Delta_{n}^{*}=\sup _{-\infty \leq t \leq \infty} \sqrt{n}\left|\hat{G}^{*}-\tilde{G}^{*}\right|
$$

Test Procedure Based on Bootstrap

1. Estimate $\hat{G}, \hat{G}_{1}, \ldots, \hat{G}_{m}$ from $\left(X_{0}, X_{1}, \ldots, X_{m}\right)$ and calculate Δ_{n}.
2. Generate $X_{0}^{*}, X_{1}^{*}, \ldots, X_{m}^{*}$ from $\hat{G}, \hat{G}_{1}, \ldots, \hat{G}_{m}$ respectively.
3. Obtain the estimate \hat{G}^{*} for \hat{G} based on $\left(X_{0}^{*}, X_{1}^{*}, \ldots, X_{m}^{*}\right)$ and empirical cdf \tilde{G}^{*} for X_{0}^{*}, then calculate

$$
\Delta_{n}^{*}=\sup _{-\infty \leq t \leq \infty} \sqrt{n}\left|\hat{G}^{*}-\tilde{G}^{*}\right|
$$

$!!\sqrt{n}\left(\hat{G}^{*}-\tilde{G}^{*}\right) \xrightarrow{d} W, W$ is also the limit process of $\sqrt{n}(\hat{G}-\tilde{G})$.

Test Procedure Based on Bootstrap

1. Estimate $\hat{G}, \hat{G}_{1}, \ldots, \hat{G}_{m}$ from $\left(X_{0}, X_{1}, \ldots, X_{m}\right)$ and calculate Δ_{n}.
2. Generate $X_{0}^{*}, X_{1}^{*}, \ldots, X_{m}^{*}$ from $\hat{G}, \hat{G}_{1}, \ldots, \hat{G}_{m}$ respectively.
3. Obtain the estimate \hat{G}^{*} for \hat{G} based on $\left(X_{0}^{*}, X_{1}^{*}, \ldots, X_{m}^{*}\right)$ and empirical cdf \tilde{G}^{*} for X_{0}^{*}, then calculate

$$
\Delta_{n}^{*}=\sup _{-\infty \leq t \leq \infty} \sqrt{n}\left|\hat{G}^{*}-\tilde{G}^{*}\right|
$$

$!!\sqrt{n}\left(\hat{G}^{*}-\tilde{G}^{*}\right) \xrightarrow{d} W, W$ is also the limit process of $\sqrt{n}(\hat{G}-\tilde{G})$.
4. Repeat step 3 by bootstrapping from $\left(X_{0}^{*}, X_{1}^{*}, \ldots, X_{m}^{*}\right)$.

Test Procedure Based on Bootstrap

1. Estimate $\hat{G}, \hat{G}_{1}, \ldots, \hat{G}_{m}$ from $\left(X_{0}, X_{1}, \ldots, X_{m}\right)$ and calculate Δ_{n}.
2. Generate $X_{0}^{*}, X_{1}^{*}, \ldots, X_{m}^{*}$ from $\hat{G}, \hat{G}_{1}, \ldots, \hat{G}_{m}$ respectively.
3. Obtain the estimate \hat{G}^{*} for \hat{G} based on $\left(X_{0}^{*}, X_{1}^{*}, \ldots, X_{m}^{*}\right)$ and empirical cdf \tilde{G}^{*} for X_{0}^{*}, then calculate

$$
\Delta_{n}^{*}=\sup _{-\infty \leq t \leq \infty} \sqrt{n}\left|\hat{G}^{*}-\tilde{G}^{*}\right|
$$

$!!\sqrt{n}\left(\hat{G}^{*}-\tilde{G}^{*}\right) \xrightarrow{d} W, W$ is also the limit process of $\sqrt{n}(\hat{G}-\tilde{G})$.
4. Repeat step 3 by bootstrapping from $\left(X_{0}^{*}, X_{1}^{*}, \ldots, X_{m}^{*}\right)$.
5. Thus we can approximate the quantiles of Δ_{n} by those of Δ_{n}^{*}.

Example 1. (Correctly Specified Model)

- Simulated samples $X_{0} \sim N(0,1), X_{1} \sim N(0,2)$ and $X_{2} \sim N(0,4)$ with sample sizes $\left(n_{0}, n_{1}, n_{2}\right)=(50,60,80)$.
- Fit the following model with distortion function $h(x)=x^{2}$

$$
\begin{aligned}
& g_{1}(x)=g(x) \exp \left(\alpha_{1}+\beta_{1} x^{2}\right) \\
& g_{2}(x)=g(x) \exp \left(\alpha_{2}+\beta_{2} x^{2}\right)
\end{aligned}
$$

- $\left(\hat{\alpha}_{1}, \hat{\alpha}_{2}, \hat{\beta}_{1}, \hat{\beta}_{2}\right)=(-0.576,-0.84,0.436,0.535)$. The value of the proposed test statistic $\Delta_{n}=1.05$, and the observed p-value is $P\left(\Delta_{n}^{*}>1.05\right)=0.904$ based on 1000 bootstrap replications of Δ_{n}^{*}.

Figure: \hat{G} (solid curve), \hat{G}_{1} (blue dotted curve), \hat{G}_{2} (red dash-dot curve), empirical cdf \tilde{G} (green dashed curve).

Example 2. (Misspecified Model)

- Use the same data as in Example 1.
- Intentionally fit the following misspecified model with distortion function $h(x)=x$

$$
\begin{aligned}
& g_{1}(x)=g(x) \exp \left(\alpha_{1}+\beta_{1} x\right) \\
& g_{2}(x)=g(x) \exp \left(\alpha_{2}+\beta_{2} x\right)
\end{aligned}
$$

- $\left(\hat{\alpha}_{1}, \hat{\alpha}_{2}, \hat{\beta}_{1}, \hat{\beta}_{2}\right)=(-0.00072,-0.03,-0.0015,0.032)$. The value of the proposed test statistic $\Delta_{n}=2.31$, and the observed p-value is $P\left(\Delta_{n}^{*}>2.31\right)=0.007$ based on 1000 bootstrap replications of Δ_{n}^{*}.

Figure: \hat{G} (solid curve), \hat{G}_{1} (blue dotted curve), \hat{G}_{2} (red dash-dot curve), empirical cdf \tilde{G} (green dashed curve).

Example 3. (With Relaxed Weight Functions)

- Use the same data as in Example 1.
- Fit the following model with distortion function $h(x)=\left(x, x^{2}\right)^{\prime}$

$$
\begin{aligned}
& g_{1}(x)=g(x) \exp \left(\alpha_{1}+\gamma_{1} x+\beta_{1} x^{2}\right), \\
& g_{2}(x)=g(x) \exp \left(\alpha_{2}+\gamma_{2} x+\beta_{2} x^{2}\right) .
\end{aligned}
$$

- $\left(\hat{\alpha}_{1}, \hat{\alpha}_{2}, \hat{\gamma}_{1}, \hat{\gamma}_{2}, \hat{\beta}_{1}, \hat{\beta}_{2}\right)=$
$(-0.562,-0.860,0.023,0.139,0.427,0.539)$. The value of the proposed test statistic $\Delta_{n}=0.92$, and the observed p-value is $P\left(\Delta_{n}^{*}>0.92\right)=0.89$ based on 1000 bootstrap replications of Δ_{n}^{*}.

Confidence Bands (with Equal Widths)

- The limit of $\Delta_{n}=\sup _{-\infty \leq t \leq \infty} \sqrt{n}|\hat{G}(t)-G(t)|$ agrees with the limit of its bootstrap counterpart
$\Delta_{n}^{*}=\sup _{-\infty \leq t \leq \infty} \sqrt{n}\left|\hat{G}^{*}(t)-\hat{G}(t)\right|$ almost surely.
- Approximate the quantiles of Δ_{n} by those of the distribution of Δ_{n}^{*}.
- For $\alpha \in(0,1)$, let

$$
w_{1-\alpha}^{n}=\inf \left\{y \mid P^{*}\left(\Delta_{n}^{*} \leq y\right) \geq 1-\alpha\right\},
$$

then a $1-\alpha$ level bootstrap confidence band for G is given by

$$
\begin{equation*}
\left(\hat{G}(\cdot)-w_{1-\alpha}^{n} / \sqrt{n}, \quad \hat{G}(\cdot)+w_{1-\alpha}^{n} / \sqrt{n}\right) . \tag{25}
\end{equation*}
$$

Pointwise Confidence Intervals

Let $V\left(t_{i}\right)$ be the estimated variance for $\hat{G}\left(t_{i}\right)$ at each point t_{i} from the covariance matrix (23). Then a $1-\alpha$ level pointwise confidence interval for $\hat{G}\left(t_{i}\right)$ is given by

$$
\begin{equation*}
\left(\hat{G}\left(t_{i}\right)-z_{1-\alpha / 2} \sqrt{V\left(t_{i}\right)}, \quad \hat{G}\left(t_{i}\right)+z_{1-\alpha / 2} \sqrt{V\left(t_{i}\right)}\right) \tag{26}
\end{equation*}
$$

where $z_{1-\alpha / 2}$ satisfies $P\left(Z \leq z_{1-\alpha / 2}\right)=1-\alpha / 2$ with $Z \sim N(0,1)$.

Bonferroni Simultaneous Confidence Intervals

The $1-\alpha$ Bonferroni simultaneous confidence intervals given by

$$
\begin{equation*}
\left(\hat{G}\left(t_{i}\right)-t_{1-\alpha / 2 n}^{n-1} \sqrt{V\left(t_{i}\right)}, \quad \hat{G}\left(t_{i}\right)+t_{1-\alpha / 2 n}^{n-1} \sqrt{V\left(t_{i}\right)}\right), \tag{27}
\end{equation*}
$$

where $t_{1-\alpha / 2 n}^{n-1}$ is the $\left(1-\frac{\alpha}{2 n}\right)$ percent cutoff point of the t_{n-1} distribution with degree of freedom $n-1$.

Figure: \hat{G} (black thick curve), 95% CB (blue curve), 95% Bonferroni simultaneous CI (red dotted curve), 95% pointwise CI (green dashed curve).

- Data: Hosmer \& Lemeshow[1989, Ch. 1] used the logistic model to analyse the relationship between age and the status of coronary heart disease based on 100 subjects participating in a study. Let x denote age and $y=1$ or 0 represent the presence or absence of coronary heart disease. $\left(x_{i}, y_{i}\right), i=1, \ldots, 100$.
- Model:

$$
\frac{P(x \mid y=1)}{P(x \mid y=0)}=\exp (\alpha+\beta x)
$$

- Estimation: $(\hat{\alpha}, \hat{\beta})=(-5.0276,0.1109)$. The value of the proposed test statistic $\Delta_{n}=0.2199$, and the observed p-value is $P\left(\Delta_{n}^{*}>0.2199\right)=0.970$ based on 1000 bootstrap replications of Δ_{n}^{*}.

Figure: Solid and dash (red) curves on the upper left represent estimated cdf and empirical cdf for $P(x \mid y=0)$, respectively; solid and dash () curves on the lower right represent estimated cdf and empirical cdf for $P(x \mid y=1)$, respectively.

- Fit a More Complex Model:

$$
\begin{equation*}
\frac{P(x \mid y=1)}{P(x \mid y=0)}=\exp \left(\alpha+\beta x+\gamma x^{2}\right) \tag{28}
\end{equation*}
$$

- Wald Test: When $H_{0}: \gamma=0$ is true under model (28),

$$
\sqrt{n} \hat{\gamma} \rightarrow N\left(0, \sigma_{\gamma}^{2}\right),
$$

where σ_{γ}^{2} is the asymptotic variance of $\hat{\gamma}$. Let $\hat{\sigma}_{\gamma}^{2}$ be the empirical version of σ_{γ}^{2} on the basis of \hat{G}, we can use the statistic

$$
T=\sqrt{n} \frac{\hat{\gamma}}{\hat{\sigma}_{\gamma}^{2}}
$$

to test $H_{0}: \gamma=0$ is true under model (28).

- Estimation: $(\hat{\alpha}, \hat{\beta}, \hat{\gamma})=(-3.9589,0.0613,0.0006)$. The Wald statistic $T=0.2557$, and the observed p-value is 0.798 . This suggests to accept $H_{0}: \gamma=0$.
- Odds-linear Model:

$$
\begin{equation*}
\frac{P(y=1 \mid x)}{1-P(y=1 \mid x)}=\alpha_{0}+\beta_{0} x . \tag{29}
\end{equation*}
$$

This model is equivalent to

$$
\begin{equation*}
\frac{P(x \mid y=1)}{P(x \mid y=0)}=\exp \{\alpha+r(x ; \beta)\} \tag{30}
\end{equation*}
$$

where $r(x ; \beta)=\log \left(1+\left(\beta_{0} / \alpha_{0}\right) x\right)$. The asymptotic results can be easily extended to model (30).

- Estimation: $(\hat{\alpha}, \hat{\beta})=(-7.62,47.47)$. The value of the proposed test statistic $\Delta_{n}=1.55$, and the observed p-value is $P\left(\Delta_{n}^{*}>1.55\right)=0.005$ based on 1000 bootstrap replications of Δ_{n}^{*}.

Billingsley, P. (1999). Convergence of Probability Measures, New York: Wiley.

E- Donsker, M.D. (1952). Justification and extension of Doob's heuristic approach to the Kolmogorov-Smirnov theorems, Annals of Mathematical Statistics, Vol. 23, 277-281.

Ethier, S. N. and Kurtz, T. G. (1985). Markov Processes: Characterization and Convergence, New York: Wiley.

Fokianos, K., Kedem, B., Qin, J., and Short, D.A. (2001). A semiparametric approach to the one-way layout. Technometrics, Vol. 43, 56-65.

Eil Gilbert, P.B. (2000). Large sample theory of maximum likelihood estimates in semiparametric biased sampling models. Annals of Statistics, Vol. 28, 151-194.

R Gilbert, P.B., Lele, S.R. and Vardi, Y. (1999). Maximum likelihood estimation in semiparametric selection bias models with application to AIDS vaccine trials. Biometrika, Vol. 86, 27-43.
E. Gill, R. D., Vardi, Y. and Wellner, J. A. (1988). Large sample theory of empirical distribution in biased sampling models. Annals of Statistics, Vol. 16, 1069-1112.
Prentice, R. L. and Pyke, R. (1979). Logistic disease incidence models and case-control studies. Biometrika, Vol. 66, 403-411.

Ein Oin, J. (1993). Empirical likelihood in biased sample problems. Annals of Statistics, Vol. 21, 1182-1196.
E. Qin, J. (1998). Inferences for case-control and semiparametric two-sample density ratio models. Biometrika, Vol. 85, 619-630

Qin, J. and Lawless, J. F. (1994). Empirical likelihood and general estimating equations. Annals of Statistics, Vol. 22, 300-325.

Ein Qin, J. and Zhang, B. (1997). A Goodness of Fit Test for Logistic Regression Models Based on Case-Control Data. Biometrika, Vol 84, 609-618.
E. Van der Vaart, A. W. (1998). Asymptotic Statistics, Cambridge University Press.

Ean der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes with Applications to Statistics, New York: Springer.

Eardi, Y. (1982). Nonparametric estimation in the presence of length bias. Annals of Statistics, Vol. 10, 616-20.

Eardi, Y. (1985). Empirical distribution in selection bias models. Annals of Statistics, Vol. 13, 178-203.

Rellner, J. A. (1992). Empirical Processes in Action: A Review. International statistical Review, Vol 60, 247-269.

Zhang, B. (2000). A goodness of fit test for multiplicative-intercept risk models based on case-control data. Statistica Sinica, 10, 839-865.

Thank You!

Happy Brithday to Dr. Kedem!

