STAT430, B. Kedem
Problem: Estimate $\phi=0.8$ in $\operatorname{AR}(1)$:

$$
Z_{t}=0.8 * Z_{t-1}+e_{t}, \quad t=1, \ldots, 1000, \quad e_{t} \sim N\left(0, \sigma^{2}\right)
$$

using the zero-crossings (ZC) estimator

$$
\hat{\phi}_{z c}=\cos (\pi D / 999)
$$

where D is the number of zero-crossings observed in a plot of $Z_{t}, t=$ $1, \ldots, 1000$, and also by least squares (LS),

$$
\hat{\phi}_{l s}=\frac{\sum_{t=2}^{1000} Z_{t} Z_{t-1}}{\sum_{t=2}^{1000} Z_{t}^{2}}
$$

and get the mean square error (MSE) from 500 time series each of length 1000.

From ZC you get estimates: $\hat{\phi}_{z c}(1), \ldots, \hat{\phi}_{z c}(500)$, each approximating 0.8 . From LS you get estimates: $\hat{\phi}_{l s}(1), \ldots, \hat{\phi}_{l s}(500)$, each approximstong 0.8

Compute two MSE's:

$$
\begin{aligned}
& M S E(Z C)=\sum_{i=1}^{500}\left(\hat{\phi}_{z c}(i)-0.8\right)^{2} / 500 \\
& M S E(L S)=\sum_{i=1}^{500}\left(\hat{\phi}_{l s}(i)-0.8\right)^{2} / 500
\end{aligned}
$$

See which estimator gives a smaller MSE.
Use SAS code with do-loops as needed.

