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Logistic Regression

Qustion: Suppose we have data on texting while driving. How could we use
such data to quantify the effect of texting on the chance of an accident?

Answer: This can be done by logistic regression.

Example: Chance of an accident as a function of covariates.

Define:

y=Accident 1 Accident last year
0 No accident lat year

x2=Age Measured in years
x3=Vision 0 No problem

1 Some problem
x4=Drive Ed 1 Yes

0 No

If p is the probability of an accident, the objective is to get the log-odds
log[p/(1− p)]. Observe that p = E(y), that is, the mean of y.

Logistic regression model:

log

(
p

1− p

)
= log

(
P (accident)

1− P (accident)

)
= β0 + β1Age+ β2V ision+ β3Driv Ed

Since the Accident data are 0-1, we can get the likelihood of the parameters
L(β), and from it get the AIC and BIC.

Fact: Odds = p/(1− p). Then

p =
Odds

1 +Odds

Hence:
Odds↔ p
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Why is this called logistic regression? Since we express p in terms of the
logistic CDF.

log

(
p

1− p

)
= β0 + β1Age+ β2V ision+ β3Drive Ed ≡ β′x

then, solving for p we have:

p = Fl(β
′x) =

1

1 + exp(−β′x)

where Fl(x) is the CDF of the logistic distribution. Observe that:

β′x = log

(
p

1− p

)
= F−1l (p)

So:
g(p) = β′x

That is, a monotone function of the mean of y is modeled as a linear model!!!
This is a special case of GLM.

The function g(·) is called link function.

Observe that p = Fl(β
′x). Hence:

1. 0 ≤ p ≤ 1.
2. F−1l (p) = β′x, that is F−1l is a link function.

DATA LOGISTIC;

INPUT ACCIDENT AGE VISION DRIVE_ED;

DATALINES;

1 17 1 1

1 44 0 0

1 48 1 0

1 55 0 0

1 75 1 1

0 35 0 1

0 42 1 1

0 57 0 0

0 28 0 1

0 20 0 1

0 38 1 0

0 45 0 1

0 47 1 1

0 52 0 0

0 55 0 1
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1 68 1 0

1 18 1 0

1 68 0 0

1 48 1 1

1 17 0 0

1 70 1 1

1 72 1 0

1 35 0 1

1 19 1 0

1 62 1 0

0 39 1 1

0 40 1 1

0 55 0 0

0 68 0 1

0 25 1 0

0 17 0 0

0 45 0 1

0 44 0 1

0 67 0 0

0 55 0 1

1 61 1 0

1 19 1 0

1 69 0 0

1 23 1 1

1 19 0 0

1 72 1 1

1 74 1 0

1 31 0 1

1 16 1 0

1 61 1 0

;

PROC LOGISTIC DATA=LOGISTIC DESCENDING;

MODEL ACCIDENT=AGE VISION DRIVE_ED;

RUN;

QUIT;

Model Fit Statistics
Criterion Intercept Only Intercept and Covariates
AIC 63.827 58.158
SC 65.633 65.385
-2 Log L 61.827 50.15

Note LRT: 61.827 − 50.15 = 11.677 is a value of χ2
(3) with which we test the

hypothesis the global hypothesis:

H0 : β1 = β2 = β3 = 0
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Testing Global Null Hypothesis: BETA=0
Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 11.6682 3 0.0086

Analysis of Maximum Likelihood Estimates
Parameter DF Estimate SE Wald Chi-Square Pr > ChiSq
Intercept 1 -0.1883 0.9945 0.0359 0.8498
AGE 1 0.00656 0.0183 0.1290 0.7195
VISION 1 1.7096 0.7056 5.8708 0.0154
DRIVE ED 1 -1.4937 0.7046 4.4949 0.0340

And we see AGE is not significant! Need to investigate.

PROC LOGISTIC DATA=LOGISTIC DESCENDING;

MODEL ACCIDENT=AGE VISION DRIVE_ED/selection=forward;

RUN;

Analysis of Maximum Likelihood Estimates

After two steps we get:

Wald
Parameter DF Estimate SE Chi-Square Pr > ChiSq
Intercept 1 0.1110 0.5457 0.0414 0.8389
VISION 1 1.7137 0.7049 5.9113 0.0150
DRIVE ED 1 -1.5000 0.7037 4.5440 0.0330

So, the model for the probability of an accident p is:

logit = log

(
p

1− p

)
= log(Odds ofaccident)

= 0.1110 + 1.7137 ∗ V ISION − 1.5000 ∗DRIV E ED

Or

p

1− p
= exp[0.1110 + 1.7137 ∗ V ISION − 1.5000 ∗DRIV E ED]

VISION=0, DRIVE ED=1: ODDS=0.2493245
VISION=1, DRIVE ED=0: ODDS=6.2009345

ODDS RATIO =
6.2009345

0.2493245
= 24.87094

Hence, if there is a vision problem, and no driver’s ed then the odds for an
accident increases almost 25 times.
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VISION DRIVE ED ODDS=p/(1-p)
0 0 1.1173950
1 0 6.2009345—Highest
0 1 0.2493245—Smallest
1 1 1.3836155

We saw that AGE was not included as its β was not significant. Let’s look
at the age distribution sorted by accident.

proc sort data=logistic;

by accident;

run;

proc gchart data=logistic;

vbar age/Midpoints=10 to 90 by 5;

run;

From the plot, the “middle age” class tends to have less accidents. There-
fore, it makes to replace AGE by AGEGROUP.

AGEGROUP =0 if AGE in [20,65] —“Middle age”
AGEGROUP= 1 otherwise. — “Young and old”.

DATA LOGISTIC;

INPUT ACCIDENT AGE VISION DRIVE_ED;

IF AGE < 20 OR AGE > 65 THEN AGEGROUP=1;

ELSE AGEGROUP=0;

DATALINES;

1 17 1 1

1 44 0 0

1 48 1 0

1 55 0 0

1 75 1 1

0 35 0 1

0 42 1 1

0 57 0 0

0 28 0 1

0 20 0 1

0 38 1 0

0 45 0 1

0 47 1 1

0 52 0 0

0 55 0 1

1 68 1 0

1 18 1 0

1 68 0 0
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1 48 1 1

1 17 0 0

1 70 1 1

1 72 1 0

1 35 0 1

1 19 1 0

1 62 1 0

0 39 1 1

0 40 1 1

0 55 0 0

0 68 0 1

0 25 1 0

0 17 0 0

0 45 0 1

0 44 0 1

0 67 0 0

0 55 0 1

1 61 1 0

1 19 1 0

1 69 0 0

1 23 1 1

1 19 0 0

1 72 1 1

1 74 1 0

1 31 0 1

1 16 1 0

1 61 1 0

;

PROC LOGISTIC DATA=LOGISTIC DESCENDING;

MODEL ACCIDENT=AGEGROUP VISION DRIVE_ED/SELECTION=FORWARD;

RUN;

QUIT;

FORWARD selected AGEGROUP and VISION. The MLE’s are:

Parameter DF Estimate SE Wald χ2 Pr > ChiSq
Intercept 1 -1.3334 0.5854 5.1886 0.0227
AGEGROUP 1 2.1611 0.8014 7.2711 0.0070
VISION 1 1.6258 0.7325 4.9265 0.0264

Check:
P (χ2

(1) > 5.1886) = 0.02273552

P (χ2
(1) > 7.2711) = 0.007007288

P (χ2
(1) > 4.9265) = 0.02644783
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This time β of AGEGROUP is significant and the model becomes:

log

(
p

1− p

)
= −1.3334 + 2.1611 ∗AGEGROUP + 1.6258 ∗ V ISION

Young or Old, with a vision problem:
AGEGROUP=1, VISION=1, ODDS=11.62898, p=0.920817
Middle age with good vision:
AGEGROUP=0, VISION=0, ODDS=0.2635796, p=0.2085975

ODDS RATIO: 11.62898/0.2635796=44.11942

Model AIC
Accident=Vision + DR ED 56.2874
Accident=Age+Vision+DR ED 58.1583
Accident=AGEGROUP+Vision 52.4340—Better model

PROC GENMOD

The GENMOD procedure fits generalized linear models, as defined by Nelder
and Wedderburn (1972).

Instead of PROC LOGISTIC we could use PROC GENMOD which is more
general.

DATA LOGISTIC;

INPUT ACCIDENT AGE VISION DRIVE_ED;

DATALINES;

1 17 1 1

1 44 0 0

1 48 1 0

1 55 0 0

1 75 1 1

0 35 0 1

0 42 1 1

0 57 0 0

0 28 0 1

0 20 0 1

0 38 1 0

0 45 0 1

0 47 1 1

0 52 0 0

0 55 0 1

1 68 1 0

1 18 1 0
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1 68 0 0

1 48 1 1

1 17 0 0

1 70 1 1

1 72 1 0

1 35 0 1

1 19 1 0

1 62 1 0

0 39 1 1

0 40 1 1

0 55 0 0

0 68 0 1

0 25 1 0

0 17 0 0

0 45 0 1

0 44 0 1

0 67 0 0

0 55 0 1

1 61 1 0

1 19 1 0

1 69 0 0

1 23 1 1

1 19 0 0

1 72 1 1

1 74 1 0

1 31 0 1

1 16 1 0

1 61 1 0

;

PROC GENMOD DATA=LOGISTIC DESCENDING;

MODEL ACCIDENT=AGE VISION DRIVE_ED/dist = bin

link = logit;

RUN;

QUIT;

Example from SAS Web Page: Five drugs: A,B,C,D,E. Each drug is tested
on a number of different subjects. The outcome of each experiment is the pres-
ence or absence of a positive response in a subject. The following artificial data
represent the number of positive responses r in the n subjects for each of the
five different drugs, labeled A through E. The response is measured for different
levels of a continuous covariate x for each drug.

The drug type and the continuous covariate x are explanatory variables in this
experiment. The number of positive responses r is modeled as a binomial ran-
dom variable for each combination of the explanatory variable values, with the
binomial number of trials parameter equal to the number of subjects n and the
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binomial probability equal to the probability of a response.

A logistic regression for these data is a generalized linear model with response
equal to the binomial proportion r/n. The probability distribution is binomial,
and the link function is logit. For these data, drug and x are explanatory
variables. The probit and the complementary log-log link functions are also
appropriate for binomial data.

PROC GENMOD performs a logistic regression on the data in the following
SAS statements.

data drug;

input drug$ x r n @@;

datalines;

A .1 1 10 A .23 2 12 A .67 1 9

B .2 3 13 B .3 4 15 B .45 5 16 B .78 5 13

C .04 0 10 C .15 0 11 C .56 1 12 C .7 2 12

D .34 5 10 D .6 5 9 D .7 8 10

E .2 12 20 E .34 15 20 E .56 13 15 E .8 17 20

;

proc genmod data=drug;

class drug;

model r/n = x drug / dist = bin

link = logit;

run;
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