STAT430 Quiz 1

Benjamin Kedem

Quiz 1

Prob. 1. Given the CDF's

> a. Logistic CDF $\quad F(x)=\frac{1}{1+\exp (-x)}$
> b. Standard normal CDF $\quad F(x)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} \exp \left(-z^{2} / 2\right) d z$

Obtain the corresponding pdf's
Prob. 2. If $f(x)=\lambda \exp (-\lambda x)$ what are the cdf, mean, and variance?

Answer Prob. 1: Need to differentiate the CDF's
a. $\quad f(x)=\frac{\exp (-x)}{(1+\exp (-x))^{2}}, x \in(-\infty, \infty)$
b. $\quad f(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-x^{2} / 2\right), x \in(-\infty, \infty)$

Answer Prob. 2: Consider $X \sim \operatorname{Gamma}(r, \lambda)$ defined for $x \geq 0$

$$
\begin{gathered}
f(x)=\frac{\lambda^{r}}{\Gamma(r)} x^{r-1} \exp (-\lambda x), \quad \Gamma(r)=\int_{0}^{\infty} x^{r-1} \exp (-x) d x \\
E(x)=\frac{r}{\lambda}, \quad \operatorname{Var}(X)=\frac{r}{\lambda^{2}}
\end{gathered}
$$

Now take $r=1$. Then we get the exponential distribution,

$$
f(x)=\lambda \exp (-\lambda x), \quad F(x)=1-\exp (-\lambda x)
$$

with

$$
E(X)=1 / \lambda, \quad \operatorname{Var}(X)=1 / \lambda^{2}
$$

Another special case: Chi square distribution with r degrees of freedom:

$$
\begin{gathered}
X \sim \chi_{(r)}^{2} \\
X \sim \operatorname{Gamma}\left(\frac{r}{2}, \frac{1}{2}\right)
\end{gathered}
$$

$E(X)=r, \quad \operatorname{Var}(X)=2 r$
This leads to the important distribution of the ratio,

$$
F_{\left(r_{1}, r_{2}\right)}=\frac{\chi^{2}\left(r_{1}\right) / r_{1}}{\chi^{2}\left(r_{2}\right) / r_{2}}
$$

where $\chi^{2}\left(r_{1}\right)$ and $\chi^{2}\left(r_{2}\right)$ are independent, and

$$
E\left(F_{\left(r_{1}, r_{2}\right)}\right)=\frac{r_{2}}{r_{2}-2}
$$

Note: if $X \sim N\left(\mu, \sigma^{2}\right)$ then

$$
Z=\frac{X-\mu}{\sigma} \sim N(0,1)
$$

and

$$
Z^{2} \sim \chi_{(1)}^{2}
$$

If $Z \sim N(0,1)$ and $V \sim \chi_{(r)}^{2}$ are independent then,

$$
\frac{Z}{\sqrt{V / r}} \sim t_{(r)}
$$

A Property of the Gamma Distribution

Suppose X, Y are independent random variables where $X \sim \operatorname{Gamma}(a, \lambda)$ and $Y \sim \operatorname{Gamma}(b, \lambda)$. Then:

$$
T=X+Y \sim \operatorname{Gamma}(a+b, \lambda), \quad W=\frac{X}{X+Y} \sim \operatorname{Beta}(a, b)
$$

and T, W are independent. Then

$$
E(X)=E\left[(X+Y) \frac{X}{X+Y}\right]=E(X+Y) E\left[\frac{X}{X+Y}\right]
$$

and we get the unusual result about the expectation of a ratio,

$$
\frac{E(X)}{E(X+Y)}=E\left[\frac{X}{X+Y}\right]=\frac{a / \lambda}{(a+b) / \lambda}=\frac{a}{a+b}
$$

which is the mean of $\operatorname{Beta}(a, b)$. In general, however,

$$
E\left[\frac{X}{Y}\right] \neq \frac{E(X)}{E(Y)}
$$

Logistic Distribution vs Normal Distribution

Here is an R code to compare the logistic and normal pdf's and CDF's.

```
x <- seq(-5,5,0.01)
par (cex=1.25)
f <- function(x){exp(-x^2/2)/sqrt(2*pi)}
plot(x,f(x), type="l",col="blue",lwd=2, ylab="")
g <- function(x){exp(-x)/(1+exp(-x))^2}
lines(x,g(x),type="l",col="red", lwd=2)
legend("topleft",
c("Normal","Logistic"),
fill=c("blue","red")
)
title("Normal vs Logstic pdf's")
x <- seq(-5,5,0.01)
par(cex=1.25)
F<- function(x){pnorm(x)}
G <- function(x){1/(1+exp(-x))}
plot(x,F(x),type="l",col="blue",lwd=2,ylab="")
lines(x,G(x),type="l", col="red",lwd=2)
legend("topleft",
c("Normal","Logistic"),
fill=c("blue","red")
)
title("Normal vs Logstic CDF's")
```

