STAT430.Multiple.Reg

Benjamin Kedem

June 2020

1 Multiple Regression

We have observations y_{1}, \ldots, y_{n} such that each y_{i} depends on its covariates $x_{1 i}, . ., x_{k i}$ by a linear model:

$$
y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\cdots \beta_{k} x_{k i}+\epsilon_{i}, \quad i=1, \ldots, n
$$

where, as in simple linear regression, the y_{i} are random variables, the x 's are design non-random variables, and the ϵ_{i} are random errors such that:
$E\left(\epsilon_{i}\right)=0$
$\operatorname{Var}\left(\epsilon_{i}\right)=\sigma^{2}$
$\operatorname{Cov}\left(\epsilon_{i}, \epsilon_{j}\right)=0, i \neq j$
So we have:

$$
\begin{aligned}
& y_{1}=\beta_{0}+\beta_{1} x_{11}+\cdots \beta_{k} x_{k 1}+\epsilon_{1} \\
& y_{2}=\beta_{0}+\beta_{1} x_{12}+\cdots \beta_{k} x_{k 2}+\epsilon_{2} \\
& \text {.................................. } \\
& \text {...................................... } \\
& y_{n}=\beta_{0}+\beta_{1} x_{1}+\cdots \beta_{k} x_{k n}+\epsilon_{i}
\end{aligned}
$$

It is convenient to use matrix notation:

$$
\begin{gathered}
\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\cdot \\
\cdot \\
\cdot \\
y_{n}
\end{array}\right)=\left(\begin{array}{ccccccc}
1 & x_{11} & x_{21} & \cdot & \cdot & \cdot & x_{k 1} \\
1 & x_{12} & x_{22} & \cdot & \cdot & \cdot & x_{k 2} \\
& \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
& \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
& \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
1 & x_{1 n} & x_{2 n} & \cdot & \cdot & \cdot & x_{k n}
\end{array}\right)\left(\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\cdot \\
\cdot \\
\cdot \\
\beta_{k}
\end{array}\right)+\left(\begin{array}{c}
\epsilon_{1} \\
\epsilon_{2} \\
\cdot \\
\cdot \\
\cdot \\
\epsilon_{n}
\end{array}\right) \\
\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}
\end{gathered}
$$

Or

To estimate $\boldsymbol{\beta}$ we use the least squares method by minimizing $\boldsymbol{\epsilon}^{\prime} \boldsymbol{\epsilon}$ w.r.t. $\boldsymbol{\beta}$:

$$
\hat{\boldsymbol{\beta}}=\left(X^{\prime} X\right)^{-1} X^{\prime} y
$$

where we assume that X has full rank for the inverse to exist.

We can show:
$E(\hat{\boldsymbol{\beta}})=\beta$
$\operatorname{Var}(\hat{\boldsymbol{\beta}})=\sigma^{2}\left(X^{\prime} X\right)^{-1}$
Gauss-Markov: $\mathbf{c}^{\prime} \hat{\boldsymbol{\beta}}$ is the Best Linear Unbiased Estimate (BLUE) of $\mathbf{c}^{\prime} \boldsymbol{\beta}$.
Again, we have the same basic decomposition of the total (corrected) sum of squares:

$$
\sum\left(y_{i}-\bar{y}\right)^{2}=\sum\left(y_{i}-\hat{y}_{i}\right)^{2}+\sum\left(\hat{y}_{i}-\bar{y}\right)^{2}
$$

Or with $p=k+1, k=p-1$ (number of slopes),

$$
S S T(d f=n-1)=S S E(d f=n-p)+S S R(p-1)
$$

and to test $H_{0}: \beta_{1}=\cdots \beta_{k}=0$ we use the test statistics,

$$
\frac{S S R / k}{S S E /(n-p)} \sim F_{k, n-p}
$$

Example: Antelope

```
The data (X1, X2, X3, X4) are for each year.
X1 = spring fawn count/100
X2 = size of adult antelope population/100
X3 = annual precipitation (inches)
X4 = winter severity index (1=mild,
5=severe)
DATA ANTELOPE;\\
INPUT X1 X2 X3 X4;\\
DATALINES;\\
2.9 9.2 13.2 2
2.4 8.7 11.5 3
2.07.2 10.84
2.3 8.5 12.3 2
3.2 9.6 12.6 3
1.9 6.8 10.6 5
3.4 9.7 14.1 1
2.17.9 11.2 3
;
PROC REG DATA=ANTELOPE;
/*PRESICTED, RESIDUALS*/
MODEL X1=X2 X3 X4/P R;
RUN;
```


The REG Procedure
Model: MODEL1
Dependent Variable: x1
Output Statistics

Obs	y	\hat{y}	SE \hat{y}	Resid	SE Resid	Student Resid	Cook's D
1	2.9	3.0153	0.0645	-0.1153	0.102	-1.128	0.126
2	2.4	2.4266	0.0847	-0.0266	0.0863	-0.308	0.023
3	2.0	1.9012	0.0684	0.0988	0.0997	0.991	0.116
4	2.3	2.4172	0.0728	-0.1172	0.0965	-1.214	0.210
5	3.2	3.1727	0.1054	0.0273	0.0593	0.461	0.167
6	1.9	1.9485	0.1058	-0.0485	0.0585	-0.830	0.564
7	3.4	3.2828	0.0955	0.1172	0.0742	1.580	1.034
8	2.1	2.0356	0.0758	0.0644	0.0943	0.683	0.075

Application of Multiple Regression: Fitting a Sinusoid

We wish to fit a sinusoid to data x_{t}.

$$
x_{t}=\mu+\alpha \cos (\omega t)+\beta \sin (\omega t)+\epsilon_{t}, \quad t=1, \ldots N
$$

where ϵ_{t} are iid $N\left(0, \sigma^{2}\right)$, and N is even.
The problem is to estimate ω. For that, we'll fix ω and first estimate μ, α, β by least squares. This will give us a clue as to how to estimate ω.

For $\omega, \lambda \in \Omega=\left\{\frac{2 \pi k}{N}, k=1, \ldots, \frac{N}{2}-1\right\}$ we have the following orthogonality relationships.

$$
\begin{aligned}
\sum_{t=1}^{N} \cos (\omega t)=\sum_{t=1}^{N} \sin (\omega t)=0 & \\
\sum_{t=1}^{N} \cos (\omega t) \sin (\lambda t)=0, \forall \lambda, \omega \in \Omega & \\
\sum_{t=1}^{N} \cos (\omega t) \cos (\lambda t) & =0, \lambda \neq \omega \\
& =N / 2, \lambda=\omega \\
\sum_{t=1}^{N} \sin (\omega t) \sin (\lambda t) & =0, \lambda \neq \omega \\
& =N / 2, \lambda=\omega
\end{aligned}
$$

Now, in matrix notation we have,

$$
\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\cdot \\
\cdot \\
\cdot \\
x_{N}
\end{array}\right)=\left(\begin{array}{ccc}
1 & \cos (\omega) & \sin (\omega) \\
1 & \cos (2 \omega) & \sin (2 \omega) \\
& \cdot & \cdot \\
& \cdot & \cdot \\
1 & \cdot & \cdot \\
1 & \cos (N \omega) & \sin (N \omega)
\end{array}\right)\left(\begin{array}{c}
\mu \\
\alpha \\
\beta
\end{array}\right)+\left(\begin{array}{c}
\epsilon_{1} \\
\epsilon_{2} \\
\cdot \\
\cdot \\
\cdot \\
\epsilon_{N}
\end{array}\right)
$$

Or

$$
\boldsymbol{x}=\boldsymbol{A} \boldsymbol{\theta}+\boldsymbol{\epsilon}
$$

Therefore

$$
\hat{\boldsymbol{\theta}}=\left(A^{\prime} A\right)^{-1} A^{\prime} x
$$

Applying the orthogonality relationships we get:

$$
\hat{\theta}=\left(\begin{array}{c}
\hat{\mu} \\
\hat{\alpha} \\
\hat{\beta}
\end{array}\right)=\left(\begin{array}{c}
\bar{x} \\
\frac{2}{N} \sum_{t=1}^{N} x_{t} \cos (\omega t) \\
\frac{2}{N} \sum_{t=1}^{N} x_{t} \sin (\omega t)
\end{array}\right)
$$

Therefore,

$$
R^{2}=\frac{\sum_{t=1}^{N}\left(\hat{x}_{t}-\bar{x}\right)^{2}}{\sum_{t=1}^{N}\left(x_{t}-\bar{x}\right)^{2}}=\frac{\frac{N}{2}\left(\hat{\alpha}^{2}+\hat{\beta}^{2}\right)}{\sum_{t=1}^{N}\left(x_{t}-\bar{x}\right)^{2}}
$$

But $\hat{\alpha}, \hat{\beta}$ are functions of ω ! Therefore

$$
R^{2}=R^{2}(\omega)
$$

and we choose ω which maximizes $R^{2}(\omega)$.
We can show that

$$
R^{2}(\omega) \propto \frac{2}{N}\left|\sum_{t=1}^{N} x_{t} \exp (i \omega t)\right|^{2}
$$

The resulting estimate $\hat{\omega}$ is very precise.

An Unbiased Estimate for σ^{2}

Using non-bold notation:
$e=x-\hat{x}=A \theta+\epsilon-A \hat{\theta}=A \theta+\epsilon-A\left[\left(A^{\prime} A\right)^{-1} A^{\prime}(A \theta+\epsilon)\right]=\left[I-A\left(A^{\prime} A\right)^{-1} A^{\prime}\right] \epsilon$
Or with idempotent $M=I-A\left(A^{\prime} A\right)^{-1} A^{\prime}$,

$$
e=M \epsilon
$$

Hence,

$$
E\left(e^{\prime} e\right)=E\left[\operatorname{tr}\left(\epsilon^{\prime} M \epsilon\right)\right]=E\left[\operatorname{tr}\left(M \epsilon \epsilon^{\prime}\right)\right]=\operatorname{tr}\left(\sigma^{2} M\right)
$$

Or

$$
E\left(e^{\prime} e\right)=\sigma^{2}\left[\operatorname{tr}(I)-\operatorname{tr}\left[\left(A^{\prime} A\right)^{-1} A^{\prime} A\right]\right]=\operatorname{tr}\left[I_{(N \times N)}\right]-\operatorname{tr}\left[I_{(3 \times 3)}\right]=\sigma^{2}(N-3)
$$

Therefore,

$$
S^{2}=\frac{e^{\prime} e}{N-3}
$$

is unbiased for σ^{2}. In general, in the full rank case with $p \beta$'s (including intercept):

$$
S^{2}=\frac{e^{\prime} e}{n-p}
$$

is unbiased for σ^{2}.

Model Selection Methods

When fitting a regression model, it is a good idea to fit several models and select the "best" model based on some criterion. SAS offsrs several criteria as follows.

1. Forward selection. It is a step-wise selection method by which a variable which enters never leaves when other variables are entertained.
2. Stepwise selection. It is a step-wise selection method by which a variable which enters could leave the model in subsequent steps.
3. A Information Criterion (AIC) invented by Hirotugo Akaike (1927-2009). We choose a model which minimizes with respect to p the quantity:

$$
A I C(p)=-2 \log L(\hat{\boldsymbol{\beta}})+2 p
$$

where $\boldsymbol{\beta}$ is p-dimensional. Thus, p is the number of estimated parameters. Note that as p increases, $-2 \log L(\hat{\boldsymbol{\beta}})$ decreases while the "penalty" term $2 p$ increases.
4. Bayesian Information Criterion (BIC) invented by Gideon Schwartz (19332007). As in the AIC, we choose a model which minimizes with respect to p the quantity:

$$
B I C(p)=-2 \log L(\hat{\boldsymbol{\beta}})+p \log (N)
$$

where N is the number of data points. In general, the AIC and BIC results are close. That is, the optimal models are similar.
5. Mallows' C_{p} invented by Colin Mallows (1930-). It is a predecessor of the AIC. Again we choose a model which minimizes with respect to p the quantity:

$$
C_{p}=\frac{S S E_{p}}{S^{2}}-N+2 p
$$

where $S S E_{p}$ is the residual SS from a reduced model with p parameters, N is the number of data points, and $S^{2}=\hat{\sigma}^{2}$ from the full model with all the covariates.

Cook's distance D

Cook's distance D_{i} measures the influence of an observation y_{i} on the regression estimates. That is, D_{i} tells us if y_{i} stands out. $\left|D_{i}\right|>2$ is considered large. If so, y_{i} deserves some special scrutiny.

Get the j th predicted value \hat{y}_{j} from y_{1}, \ldots, y_{n}. Similarly, get the predicted value $\hat{y}_{j(i)}$ after deleting y_{i}. Then,

$$
D_{i}=\frac{\sum_{i=j}^{n}\left(\hat{y}_{j}-\hat{y}_{j(i)}\right)^{2}}{p S^{2}}
$$

where

$$
S^{2}=\hat{\sigma}^{2}=\frac{1}{n-p} \sum_{j=1}^{n}\left(y_{j}-\hat{y}_{j}\right)^{2}
$$

