STAT430.Regression

Benjamin Kedem

June 2020

1 The General Problem of Linear Regression

Consider a set of non-random predictors or explanatory variables or covariates x_{1}, \ldots, x_{k} and the corresponding random response variable y. The regression problem is to relate y to its covariates x_{1}, \ldots, x_{k}. That is, we wish to regress y on the corresponding covariates x_{1}, \ldots, x_{k}. This fundamental problem can be approached in a number of ways, one of which is referred to as multiple linear regression, where

$$
E(y)=\beta_{0}+\beta_{1} x_{1}+\cdots \beta_{k} x_{k}
$$

The problem is to estimate the β 's. Many of the ideas of multiple regression are illustrated in terms of simple linear regression.

1.1 Simple Linear Regression

Suppose we decided to to fill a car gas tank with x gallons of gas (added to a constant quantity already in the tank) and measure the corresponding number of travel miles y. Clearly, x is a fixed (i.e. not random) quantity that we control. On the other hand, the number of travel miles y is random. The problem is how to relate a random variable y to a non-random variable x.

Consider the pairs $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$, where x_{1}, \ldots, x_{n} are nonrandom covariates and y_{1}, \ldots, y_{n} are random observations.

Assume the model:

$$
y_{i}=\alpha+\beta\left(x_{i}-\bar{x}\right)+\epsilon_{i}, \quad i=1,2, \ldots, n
$$

where:
$\epsilon_{1}, \ldots, \epsilon_{2}$ are uncorrelated: $\operatorname{Cov}\left(\epsilon_{i}, \epsilon_{j}\right)=0$, for $i \neq j$.
$E\left(\epsilon_{i}\right)=0$
$\operatorname{Var}\left(\epsilon_{i}\right)=\sigma^{2}$ is the same for all i.
$E\left(y_{i}\right)=\alpha+\beta\left(x_{i}-\bar{x}\right)$
$\operatorname{Var}\left(y_{i}\right)=\sigma^{2}$.
Are the y_{i} iid? Are the x_{i} iid?

By centering the x_{i} we gain a mathematical simplification which helps in the description of the main ideas.

1.1.1 Least Squares Estimation

The parameters α, β are estimated by the method of least squares where the sum of squares

$$
\sum_{i=1}^{n} \epsilon_{i}^{2}=\sum_{i=1}^{n}\left[y_{i}-\alpha-\beta\left(x_{i}-\bar{x}\right)\right]^{2}
$$

is minimized w.r.t. α and β.

1. $\frac{\partial}{\partial \alpha} \sum_{i=1}^{n} \epsilon_{i}^{2}=-2 \sum_{i=1}^{n}\left[y_{i}-\alpha-\beta\left(x_{i}-\bar{x}\right)\right]=0$
2. $\frac{\partial}{\partial \beta} \sum_{i=1}^{n} \epsilon_{i}^{2}=-2 \sum_{i=1}^{n}\left[y_{i}-\alpha-\beta\left(x_{i}-\bar{x}\right)\right]\left(x_{i}-\bar{x}\right)=0$

Fact: $\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)=0$
Using the fact: The LSE's are given by
$\hat{\alpha}=\bar{y}$
$\hat{\beta}=\frac{\sum\left(x_{i}-\bar{x}\right) y_{i}}{\sum\left(x_{i}-\bar{x}\right)^{2}}=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}$

Regression line:

$$
\hat{y}=\hat{\alpha}+\hat{\beta}(x-\bar{x})
$$

In particular,

$$
\hat{y}_{i}=\hat{\alpha}+\hat{\beta}\left(x_{i}-\bar{x}\right)
$$

Statistical properties of LSE's:

$\hat{\alpha}$ and $\hat{\beta}$ are LINEAR and UNBIASED:
$E(\hat{\alpha})=\alpha, E(\hat{\beta})=\beta$

$$
\begin{gathered}
\operatorname{Var}(\hat{\alpha})=\frac{1}{n^{2}} \sum \operatorname{Var}\left(y_{i}\right)=\frac{n \sigma^{2}}{n^{2}}=\frac{\sigma^{2}}{n} \\
\operatorname{Var}(\hat{\beta})=\frac{1}{\left[\sum\left(x_{i}-\bar{x}\right)^{2}\right]^{2}} \sum\left(x_{i}-\bar{x}\right)^{2} \sigma^{2}=\frac{\sigma^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}
\end{gathered}
$$

Does it makes sense to choose $x_{i}=7$ for all i ?

Theorem (Gauss-Markov): The variances of the LSE are the smallest in the class of all linear unbiased estimates.

Proof: We want to show $\hat{\beta}$ has the smallest variance in the class of all linear unbiased estimates. So let $b^{\prime}=\sum c_{i} y_{i}$ another linear unbiased estimate. Then, for all β,

$$
E\left(b^{\prime}\right)=\sum c_{i} E\left(y_{i}\right)=\sum c_{i}\left(\alpha+\beta\left(x_{i}-\bar{x}\right)\right)=\alpha \sum c_{i}+\beta \sum\left(x_{i}-\bar{x}\right) c_{i}=\beta
$$

This is an IDENTITY in β !!! Therefore,

$$
\sum c_{i}=0, \quad \sum\left(x_{i}-\bar{x}\right) c_{i}=1
$$

and hence,
$\operatorname{Var}\left(b^{\prime}\right)=\sum c_{i}^{2} \operatorname{Var}\left(y_{i}\right)=\sigma^{2} \sum c_{i}^{2}=\sigma^{2} \sum\left[\left(c_{i}-\frac{x_{i}-\bar{x}}{\sum\left(x_{j}-\bar{x}\right)^{2}}\right)+\frac{x_{i}-\bar{x}}{\sum\left(x_{j}-\bar{x}\right)^{2}}\right]^{2}$
The middle term in 0 . Therefore,

$$
\operatorname{Var}\left(b^{\prime}\right)=\sigma^{2} \sum\left(c_{i}-\frac{x_{i}-\bar{x}}{\sum\left(x_{j}-\bar{x}\right)^{2}}\right)^{2}+\frac{\sigma^{2}}{\sum\left(x_{j}-\bar{x}\right)^{2}}
$$

which is minimized for

$$
c_{i}=\frac{x_{i}-\bar{x}}{\sum\left(x_{j}-\bar{x}\right)^{2}}
$$

Therefore,

$$
b^{\prime}=\sum c_{i} y_{i}=\sum \frac{x_{i}-\bar{x}}{\sum\left(x_{j}-\bar{x}\right)^{2}} y_{i}=\frac{\sum\left(x_{i}-\bar{x}\right) y_{i}}{\sum\left(x_{j}-\bar{x}\right)^{2}}=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{j}-\bar{x}\right)^{2}}=\hat{\beta}
$$

Hence $\hat{\beta}$ has minimum variance.
We can show the same for $\hat{\alpha}$. Suppose $a^{\prime}=\sum c_{i} y_{i}$ is linear unbiased for α. Then

$$
E\left(a^{\prime}\right)=\sum c_{i}\left[\alpha+\beta\left(x_{i}-\bar{x}\right)\right]=\alpha \sum c_{i}+\beta \sum\left(x_{i}-\bar{x}\right) c_{i}=\alpha
$$

This is an identity in α. Therefore

$$
\sum c_{i}=1, \quad \sum\left(x_{i}-\bar{x}\right) c_{i}=0
$$

and

$$
\begin{aligned}
\operatorname{Var}\left(a^{\prime}\right)=\sigma^{2} \sum c_{i}^{2} & =\sigma^{2} \sum\left[\left(c_{i}-1 / n\right)+1 / n\right]^{2} \\
& =\sigma^{2} \sum\left[\left(c_{i}-\frac{1}{n}\right)^{2}+\frac{2}{n}\left(c_{i}-\frac{1}{n}\right)+\frac{1}{n^{2}}\right] \\
& =\sigma^{2}\left[\sum\left(c_{i}-\frac{1}{n}\right)^{2}+\frac{2}{n}(1-1)+\frac{1}{n}\right]
\end{aligned}
$$

which is minimized for $c_{i}=1 / n$. Hence $a^{\prime}=\bar{y}=\hat{\alpha}$ has minimum variance.
This result is stated as follows: The LSE are Best Linear Unbiased Estimates or BLUE.

1.1.2 Basic Decomposition of Total Sum of Squares

To judge the goodness of fit of the linear regression model it is useful to consider the residuals $y_{i}-\hat{y}_{i}, i=1, \ldots, n$. Smaller residuals which do not appear to follow any particular pattern point to a reasonable fit.

Consider now the identity:

$$
y_{i}-\hat{y}_{i}=\left(y_{i}-\bar{y}\right)-\left(\hat{y}_{i}-\bar{y}\right)
$$

Then

$$
\sum\left(y_{i}-\hat{y}_{i}\right)^{2}=\sum\left[\left(y_{i}-\bar{y}\right)-\left(\hat{y}_{i}-\bar{y}\right)\right]^{2}
$$

Since the middle term is equal to $\sum\left(\hat{y}_{i}-\bar{y}\right)^{2}$,

$$
\sum\left(y_{i}-\hat{y}_{i}\right)^{2}=\sum\left(y_{i}-\bar{y}\right)^{2}-2 \sum\left(\hat{y}_{i}-\bar{y}\right)^{2}+\sum\left(\hat{y}_{i}-\bar{y}\right)^{2}
$$

By rearranging terms, we arrive at the basic decomposition of the total sum of squares

$$
\sum\left(y_{i}-\bar{y}\right)^{2}(=S S T)=\sum\left(y_{i}-\hat{y}_{i}\right)^{2}(=S S E)+\sum\left(\hat{y}_{i}-\bar{y}\right)^{2}(=S S R)
$$

From this we define a well known quantity:

$$
R^{2}=\frac{\sum\left(\hat{y}_{i}-\bar{y}\right)^{2}}{\sum\left(y_{i}-\bar{y}\right)^{2}}=\frac{S S R}{S S T}
$$

Obviously,

$$
0 \leq R^{2} \leq 1
$$

The closer R^{2} to 1 , the better is the fit.

$$
R^{2}=\frac{S S R / n}{S S T / n}=\frac{\text { Explained variance }}{\text { Total variance }}
$$

R^{2} is also known as the coefficient of determination.
We observe that in simple linear regression R^{2} is equal to the the sample correlation between x and y squared:

$$
\begin{aligned}
r_{x y}^{2} & =\frac{\left[\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)\right]^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2} \sum\left(y_{i}-\bar{y}\right)^{2}} \times \frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}} \\
& =\frac{\hat{\beta}^{2} \sum\left(x_{i}-\bar{x}\right)^{2}}{\sum\left(y_{i}-\bar{y}\right)^{2}}=\frac{\sum\left(\hat{y}_{i}-\bar{y}\right)^{2}}{\sum\left(y_{i}-\bar{y}\right)^{2}}=R^{2}
\end{aligned}
$$

1.2 Hypothesis Testing

To test hypotheses we need distributions. For that we shall assume that:
The $\epsilon_{i}, i=1, \ldots, n$, are independent $N\left(0, \sigma^{2}\right)$
With this assumption we can get the distributions of test statistics as well as confidence intervals.

1.2.1 Degrees of Freedom

Definition: The number of degrees of freedom of a sum of squares (SS) is the number of variables minus the number of linear relationships between them.

Example: Consider $\sum_{i=1}^{n}(x-\bar{x})^{2}$. This SS has n variables,

$$
\left(x_{1}-\bar{x}\right), \ldots,\left(x_{n}-\bar{x}\right)
$$

which satisfy the linear restriction $\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)=0$. Hence $d f=n-1$.
Example: Consider our centered regression model. We have,

$$
\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}=\sum_{i=1}^{n}\left(\bar{y}-\hat{\beta}\left(x_{i}-\bar{x}\right)-\bar{y}\right)^{2}=\hat{\beta}^{2} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

Only ONE variable is involved $\hat{\beta}$. Therefore the number of df of $\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}$ is 1 .

Example: Consider SSE.

$$
\text { 1. } \sum\left(y_{i}-\hat{y}_{i}\right)=\sum\left[\left(y_{i}-\bar{y}\right)-\hat{\beta}\left(x_{i}-\bar{x}\right)\right]=0
$$

That is, the sum of the residuals is 0 . Therefore,
2. $\sum\left(y_{i}-\hat{y}_{i}\right) x_{i}=\sum\left(y_{i}-\hat{y}_{i}\right)\left(x_{i}-\bar{x}\right)=\sum\left[\left(y_{i}-\bar{y}\right)-\hat{\beta}\left(x_{i}-\bar{x}\right)\right]\left(x_{i}-\bar{x}\right)$
$=\sum y_{i}\left(x_{i}-\bar{x}\right)-\bar{y} \sum\left(x_{i}-\bar{x}\right)-\hat{\beta} \sum\left(x_{i}-\bar{x}\right)^{2}$
$=\sum y_{i}\left(x_{i}-\bar{x}\right)-\hat{\beta} \sum\left(x_{i}-\bar{x}\right)^{2}$
$=\frac{\sum\left(y_{i}-\bar{y}\right)\left(x_{i}-\bar{x}\right)}{\sum\left(x_{j}-\bar{x}\right)^{2}} \sum\left(x_{j}-\bar{x}\right)^{2}-\hat{\beta} \sum\left(x_{i}-\bar{x}\right)^{2}$
$=\hat{\beta} \sum\left(x_{j}-\bar{x}\right)^{2}-\hat{\beta} \sum\left(x_{i}-\bar{x}\right)^{2}=0$
Therefore, $S S E=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}$ has $n-2 \mathrm{df}$.

This gives the basic ANOVA:

Source	SS	df
Model	$\mathrm{SSR}=\sum\left(\hat{y}_{i}-\bar{y}\right)^{2}$	1
Error	$\mathrm{SSE}=\sum\left(y_{i}-\hat{y}_{i}\right)^{2}$	$n-2$
Corrected Total	$\mathrm{SST}=\sum\left(y_{i}-\bar{y}\right)^{2}$	$n-1$

From the normality of the ϵ_{i} we have.
Theorem: The following quantities are independent.
a. $\frac{n(\hat{\alpha}-\alpha)^{2}}{\sigma^{2}} \sim \chi_{(1)}^{2}$
b. $\frac{(\hat{\beta}-\beta)^{2}}{\sigma^{2}} \sum\left(x_{i}-\bar{x}\right)^{2} \sim \chi_{(1)}^{2}$
c. $\frac{\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}}{\sigma^{2}} \sim \chi_{(n-2)}^{2}$

Proof of b: Since the ϵ_{i} are iid $N\left(0, \sigma^{2}\right)$ the y_{i} are independent normal obsrvations. Since $\hat{\beta}$ is linear in the y_{i} 's it is normal as well with mean β and variance (from above) $\sigma^{2} / \sum\left(x_{i}-\bar{x}\right)^{2}$. Therefore

$$
\frac{(\hat{\beta}-\beta)}{\sigma} \sqrt{\sum\left(x_{i}-\bar{x}\right)^{2}} \sim N(0,1)
$$

But the square of $N(0,1)$ is a $\chi_{(1)}^{2}$, hence b.

We now define:

$$
S^{2}=\frac{1}{n-2} \sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}
$$

From c we see that S^{2} is unbiased for σ^{2} :
$E\left(S^{2}\right)=\sigma^{2}$
Also: $\operatorname{Var}\left(S^{2}\right)=\frac{2 \sigma^{4}}{n-2}$

1.2.2 t and F Tests

From the theorem we see that:
$T=\frac{\left(\hat{\beta}-\beta_{0}\right)}{S}\left[\sum\left(x_{i}-\bar{x}\right)^{2}\right]^{1 / 2} \sim t_{(n-2)}$
Hence, in testing $H_{0}: \beta=\beta_{0}$ vs $H_{1}: \beta \neq \beta_{0}, H_{0}$ is rejected when

$$
|T|>t_{(n-2, \alpha / 2)}
$$

Squaring T we get

$$
F=T^{2} \sim F_{(1, n-2)}
$$

Hence, under $H_{0}: \beta=0$,

$$
F=\frac{\hat{\beta}^{2} \sum\left(x_{i}-\bar{x}\right)^{2}}{S^{2}}=\frac{\sum\left(\hat{y}_{i}-\bar{y}\right)^{2} / 1}{\sum\left(y_{i}-\hat{y}_{i}\right)^{2} /(n-2)}=\frac{S S R / 1}{S S E /(n-2)} \sim F_{(1, n-2)}
$$

and we reject for large values. THIS IS THE FIRST TEST PERFORMED BY SAS IN SIMPLE LINEAR REGRESSION.

1.2.3 Prediction Intervals

For a new covariate x_{0} we want to compute a prediction interval for an unobserved y_{0}. Clearly, $E\left(y_{0}-\hat{y}_{0}\right)=0$.

Since y_{0} is independent of $\hat{y}_{0}=\hat{y}_{0}\left(y_{1}, \ldots, y_{n}\right)$,

$$
\operatorname{Var}\left(y_{0}-\hat{y}_{0}\right)=\operatorname{Var}\left(y_{0}\right)+\operatorname{Var}\left(\hat{y}_{0}\right)=\sigma^{2}\left[1+\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}\right]
$$

From the definition of the t distribution,

$$
\frac{y_{0}-\hat{y}_{0}}{S\left[1+\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}\right]^{1 / 2}} \sim t_{(n-2)}
$$

and a 95% prediction interval for y_{0} is

$$
\hat{y}_{0} \pm t_{(0.025, n-2)} S\left[1+\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}\right]^{1 / 2}
$$

SAS output provides plots of such prediction intervals. The prediction intervals are wider than confidence intervals for $E\left(y_{0}\right)$.

1.3 Simple Linear Regression in SAS

Remark: SAS uses the non-centered model

$$
y_{i}=\alpha+\beta x_{i}+\epsilon_{i}
$$

All the above assumptions and results also hold for this model except that

$$
\hat{\alpha}=\bar{y}-\hat{\beta} \bar{x}
$$

From now on we shall use the SAS model as well.

```
    Example: model Weight = Height
    Simple Linear Regression
title 'Simple Linear Regression';
    data Class;
        input Name $ Height Weight Age @@;
        datalines;
    Alfred 69.0 112.5 14 Alice 56.5 84.0 13 Barbara 65.3 98.0 13
    Carol 62.8 102.5 14 Henry 63.5 102.5 14 James 57.3 83.0 12
    Jane 59.8 84.5 12 Janet 62.5 112.5 15 Jeffrey 62.5 84.0 13
    John 59.0 99.5 12 Joyce 51.3 50.5 11 Judy 
    Louise 56.3 77.0 12 Mary 66.5 112.0 15 Philip 72.0 150.0 16
    Robert 64.8 128.0 12 Ronald 67.0 133.0 15 Thomas 57.5 85.0 11
    William 66.5 112.0 15
    ;
    proc reg;
        model Weight = Height;
    run;
The REG Procedure
Model: MODEL1
Dependent Variable: Weight
Number of Observations Read 19
Number of Observations Used 19
Analysis of Variance
\begin{tabular}{|c|c|c|c|c|c|}
\hline Source & DF Sum of & Squares Me & Square & F Value & Pr > F \\
\hline Model & 17193.249 & 12719 & 3.24912 & 57.08 & <. 0001 \\
\hline Error & 172142.487 & & . 02869 & & \\
\hline \multicolumn{6}{|l|}{Correct Total 189335.73684} \\
\hline Root MSE & 11.22625 & R-Squar & e 0.7705 & & \\
\hline Dependent Mean & 100.02632 & Adj R-S & q 0.7570 & & \\
\hline Coeff Var & 11.22330 & & & & \\
\hline \multicolumn{6}{|l|}{Parameter Estimates} \\
\hline Variable DF & Param Est & SE & t Value & \(\operatorname{Pr}>|t|\) & \\
\hline Intercept 1 & -143.02692 & 32.27459 & -4.43 & 0.0004 & \\
\hline Height & 3.89903 & 0.51609 & 7.55 & <. 0001 & \\
\hline
\end{tabular}
```


Example: WEIGHT=HEIGHT

```
DATA SET1;
INPUT GENDER $ HEIGHT WEIGHT AGE;
DATALINES;
M 68 155 23
F 61 99 20
F 63 115 21
M 70 205 45
M 69 170.
F 65 125 30
M 72 220 48
;
PROC REG DATA=SET1;
MODEL WEIGHT=HEIGHT; (Weight = a + b*Height + e)
RUN;
The REG Procedure
Model: MODEL1
Dependent Variable: WEIGHT
Number of Observations Read 7
Number of Observations Used 6
Number of Observations with Missing Values 1
```

Analysis of Variance:

