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ABSTRACT

The density ratio model provides an inferential framework for
semi-parametric inference vis-a-vis fused data.

a. Meteorological satellite data fused with ground truth.
b. Fused data from several sensors.
c. Fused case and control data.
d. Fused real and computer generated data.

Main points:
• Review of the density ratio model and some of its basic underpinnings.

• Bayesian extension applied to radar data.

• Time series prediction by out of sample fusion.

• Augmented reality: Estimation of small tail probabilities.
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Motivating Example: Satellite sensors likely distortions of ground truth
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Reference: Ground truth
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Is there a way to relate the distribution of the satellite data to the distribution
of the reference ground truth data?

Much of what we shall be dealing with has to do with this fundamental
question.

A possible starting point is a density ratio assumption.
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A: Review of the Density Ratio Model

Application to Radar Meteorology
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Multiple filtering of a signal

f1(ω) = |H1(ω)|2f (ω)
.

. (1)

.

fq(ω) = |Hq(ω)|2f (ω)

That is, q “distortions” or multiple “tilting” of the same reference
spectral density f .



UMinformal

One-Way ANOVA: Testing Equi-Distribution

x11, . . . , x1n1∼g1(x)
.

.

xq1, . . . , xqnq∼gq(x)
xm1, . . . , xmnm∼gm(x)

gj(x)∼N( µj, σ
2), j = 1, ...,m.
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Then, holding gm(x) ≡ g(x) as a reference:

g1(x) = exp(α1 + β1x)g(x)
.

.

gq(x) = exp(αq + βqx)g(x)

αj =
µ2

m− µ2
j

2 σ2 , β j =
µj− µm

σ2 , j = 1, ...,q

Equidistribution testing (FKQS (2001)):

µ1 = · · · = µm ⇐⇒ β1 = · · · = βq = 0
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Multivariate normal

gj(x) ∼ N(µj ,Σ), j = 1, ...,q,m. Reference gm(x) ≡ g(x),

gj(x)
g(x)

= exp[(µj − µm)
′Σ−1x − 1

2
(µ′jΣ

−1µj − µ′mΣ−1µm)].

αj = −1
2(µ

′
jΣ
−1µj − µ′mΣ−1µm)

βj = Σ−1(µj − µm)

gj(x) = exp(αj + β′jx)g(x), j = 1, ...q.

µ1 = · · · = µm ⇐⇒ β1 = · · · = βq = 0
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Case-control: Multinomial logistic regression

I RV y s.t. P(y = j) = πj ,
∑m

j=1 πj = 1.
I Assume: For j = 1, ...,m, and any h(x),

P(y = j |x) =
exp( α∗j + β jh(x))

1+
∑q

k=1 exp( α
∗
k+ βkh(x))

I Define: f (x |y = j) = gj(x), j = 1, ...,m

Then with αj = α∗j + log[ πm/πj ], j = 1, ...,q, and gm ≡ g,
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Multinomial logistic regression

g1(x) = exp( α1 + β1h(x))g(x)
g2(x) = exp( α2 + β2h(x))g(x)

.

.

.

gq(x) = exp( αq + βqh(x))g(x)
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Comparison Distributions (Parzen 1977,...,2009)

CDF’s: {F1, ...,Fq} � G, with cont. densities f1, ..., fq,g.
Comparison Distributions defined as:

Dj(u;G,Fj) = Fj(G−1(u)), 0 < u < 1, j = 1, ...,q

Then by differentiation, with x = G−1(u):

f1(x) = d(G(x);G,F1)g(x)
·
·

fq(x) = d(G(x);G,Fq)g(x)
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I A general structure emerges of a reference behavior
(distribution) and its many distortions:

g1 = w1g
·
·
·

gq = wqg

I How can we take advantage of this?

I Assume we have data from each of g,g1,g2, ...,gq .

I Then, the relationship between a reference distribution and its
distortions or tilts opens the door to inference based on fused or
combined data from many sources.
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The previous structure suggests the following general
semiparametric problem.

I Multiple data sources: x1, ...,xq,xm.
I Data fusion: t = (t1, ..., tn)′ ≡ (x′1, ...,x

′
q,x′m)′.

I Fused data length: n ≡ n1 + · · ·+ nq + nm.

I Assume: x j ∼ gj(x), j = 1, ...,q,m.
I Reference pdf: gm(x) = g(x).
I Density Ratio Assumption for a known h(x):

gj(x) = exp( αj+β′jh(x))g(x), j = 1, ...,q.
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Problem

Assume DRM:

gj(x) = exp( αj+β′jh(x))g(x), j = 1, ...,q.

Use the fused data t = (t1, ..., tn)′ to:

a. Estimate the reference pdf g(x) and cdf G(x).
b. Estimate α=( α1, ..., αq)

′, β=(β′1, ..., β
′
q)
′.

c. Test distribution equality,

H0: β1= · · · = βq= 0
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Estimation

Follow Vardi (1982,1985), Qin and Zhang (1997), Owen (2001).
MLE of G(x), β’s, α’s can be obtained by maximizing the empirical
likelihood over the class of step cdf’s with jumps at the observed
values t1, ..., tn. Accordingly, if pi = dG(ti), i = 1, ..,n:

L(α,β,G) =
n∏

i=1

pi

n1∏
j=1

exp( α1 + β′1h(x1j)) · · ·

nq∏
j=1

exp( αq + β′qh(xqj))
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1. Get pi

Fix α,β. Maximize
∏n

i=1 pi subject to the m constraints:

n∑
i=1

pi = 1,
n∑

i=1

pi [wj(ti)− 1] = 0, j = 1, ...,q,

wj(ti) = exp( αj + β′jh(ti)), j = 1, ...,q.

Use Lagrange multipliers λ0 = n, λj = ν jn.

(?) pi =
1

nm
· 1

1 + ρ1w1(ti) + · · ·+ ρqwq(ti)

(?) ρj = nj/nm, j = 1, ...,q.
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2. Estimate α,β

Profile log-likelihood up to a constant as a function of α,β only:

` =

n1∑
j=1

[α1 + β′1h(x1j)] + · · ·+
nq∑

j=1

[αq + β′qh(xqj)]

−
n∑

i=1

log[1 + ρ1w1(ti) + · · ·+ ρqwq(ti)]
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Score equations for j = 1, ...,q:

∂`

∂αj
= −

n∑
i=1

ρj wj (ti )

1 + ρ1w1(ti ) + · · · + ρqwq (ti )
+ nj = 0

∂`

∂βj
= −

n∑
i=1

ρj h(ti )wj (ti )

1 + ρ1w1(ti ) + · · · + ρqwq (ti )

+

nj∑
i=1

h(xji ) = 0
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With

∇ ≡
(

∂

∂α1
, ...,

∂

∂αm
,
∂

∂β1
...,

∂

∂βm

)′
Define the matrices

−
1
n
∇∇′`(θ) ≡ −

1
n

Sn → S, n→∞

and

Λ ≡ Var
[

1
√

n
∇`(θ)

]
Observe that Sn and Λ are (p + 1)q × (p + 1)q matrices.
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Suppose S is positive definite. Then,

(a) The solution θ̂ of the score equations is strongly consistent.

(b) As n→∞,

√
n
(

α̂−α0
β̂ − β0

)
d→ N(p+1)q(0,Σ), (2)

where Σ = S−1ΛS−1.
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3. Estimate g(x),G(x)

The solution of the score equations gives the maximum likelihood estimators α̂, β̂, and
consequently by substitution also p̂i . Thus,

p̂i =
1

nm
·

1

1 +
∑q

j=1 ρj exp(α̂j + β̂′j h(ti ))
.

Ĝ(t) =
n∑

i=1

I(ti ≤ t)p̂i

Fokianos (2004):
ĝ(x) = Kernel(p̂i )
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Everything is estimated from everything

The reference G(x) and all the parameters, and hence all the tilted
distributions, are estimated from the entire fused data t . Thus G(x) is
estimated from the entire fused data t and not just from the reference
sample xm.

Semiparametric multivariate kernel density estimation based on many multivariate

samples has been studied and applied in cancer research in Voulgaraki, Kedem,

Graubard (2012).
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Define the following quantities:

wk (t) = exp(αk + β
′
k h(t)),

Aj (t) =

∫
wj (y)I(y ≤ t)∑m

k=0 ρk wk (y)
dG(y), Bj (t) =

∫
wj (y)h(y)I(y ≤ t)∑m

k=0 ρk wk (y)
dG(y),

Ā(t) = (A1(t), . . . ,Am(t))′, B̄(t) = (B′1(t), . . . ,B′m(t))′.

ρ = diag{ρ1, . . . , ρm}, 1p = (1, ..., 1)′,

ρj = nj/nm are sample fractions.
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Theorem 1 (Y. Vardi 1982, B. Zhang 2000, G. Lu 2007)

The process
√

n(Ĝ(t)− G(t)) converges weakly to a zero-mean Gaussian process in
D[−∞,∞], with covariance matrix given by

Cov{
√

n(Ĝ(t)− G(t)),
√

n(Ĝ(s)− G(s))} =

m∑
k=0

ρk

(
G(t ∧ s)− G(t)G(s)−

m∑
j=1

ρj Aj (t ∧ s)

)

+

(
Ā′(s)ρ, B̄′(s)(ρ⊗ 1p)

)
S−1

(
ρĀ(t)

(ρ⊗ 1p)B̄(t)

)
. (3)
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Estimation of threshold probabilities

• From Theorem 1,
√

n(Ĝ(t)− G(t)) converges to a zero-mean Gaussian process.

• Let V̂ (t) denote the estimated variance of Ĝ(t) obtained from the theorem by
replacing parameters by their estimates.

• A 1− α level pointwise confidence interval for G(t) is approximated by(
Ĝ(t)− zα/2

√
V̂ (t), Ĝ(t) + zα/2

√
V̂ (t)

)
, (4)

where zα/2 is the upper α/2 point of the standard normal distribution.

• From (4) we obtain confidence intervals for p = 1− G(T ) for any T , including
relatively large T , that is, small p.
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Hypothesis testing (FKQS 2001)

Under H0 : β = (β
′
1, ...,β

′
q)′ = 0, all the moments are taken with respect to the

reference g.

Define a q × q matrix A11 whose j th diagonal element is

ρj [1 +
∑q

k 6=j ρk ]

[1 +
∑q

k=1 ρk ]2
.

For j 6= j ′, the jj ′ element is
−ρjρj′

[1 +
∑q

k=1 ρk ]2
.

The elements are bounded by 1 and the matrix is nonsingular,

|A11| =

∏q
k=1 ρk

[1 +
∑q

k=1 ρk ]m
> 0.
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Under H0 : β = (β
′
1, ...,β

′
q)′ = 0,

S =

(
A11 A11 ⊗ E [h′(t)]
A11 ⊗ E [h(t)] A11 ⊗ E [h(t)h′(t)]

)
and

V =

(
0 0
0 A11 ⊗ Var [h(t)]

)

(?) X1 = nβ̂
′
(A11 ⊗ Var [h(t)])β̂ (5)

Var [h(t)] is the covariance matrix of h(t), and all moments are evaluated with respect

to the reference distribution.

X1 −→ χ2
(qp)
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Application to radar meteorology (KWF 2004)

Reflectivity data obtained from two different radars (or “algorithms” or “sensors”) at two
different time periods. Data are random samples of reflectivity.

Kwajalein radar: S-band (10 cm) KPOL radar, located on Kwajalein Island at the
southern end of the Kwajalein Atoll, Marshall Islands.

Brown Radar: C-band radar aboard NOAA ship Ronald H. Brown (RHB) at sea near
Kwajalein Island.

The data obtained during the first period are referred to suggestively as Kwajalein1,
Brown1, and those from the second period are called Kwajalein2, Brown2.
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Kwajalein2, Brown2 (reference)

m = 2, n1 = n2 = 500. The hypothesis that the data come from
the same radar (algorithm) is rejected quite conclusively.

h(x) Data α̂1 β̂1 X1 p-value
x 1 5.323 -0.164 88.332 0

2 3.975 -0.123 52.279 4.815e-13
3 4.695 -0.146 74.950 0
4 5.016 -0.156 85.325 0

log(x) 1 14.359 -4.142 54.526 1.534e-13
2 18.625 -5.367 79.723 0
3 14.880 -4.302 60.788 6.328e-15
4 13.580 -3.921 49.771 1.727e-12
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Kwajalein2, Kwajalein2, Kwajalein2 (reference)

m = 3, n1 = n2 = n3 = 500. The hypothesis that the data come
from the same radar (algorithm) is accepted quite conclusively.

Data α̂1 α̂2 β̂1 β̂2 X1 p-value
h(x) = x

1 0.108 0.049 -0.003 -0.002 0.283 0.868
2 0.065 -0.003 -0.002 0.000 0.135 0.935
3 0.227 -0.041 -0.007 0.001 1.896 0.388
4 0.239 -0.220 -0.008 0.007 4.707 0.095

h(x) = log x
1 0.453 2.278 -0.132 -0.665 1.929 0.381
2 -0.792 -0.223 0.231 0.065 0.250 0.882
3 -0.359 0.735 0.105 -0.215 0.553 0.758
4 1.665 1.246 -0.485 -0.363 1.014 0.602
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Brown1, Kwajalein1, h = x
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Brown1, Kwajalein1, h = log x
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Brown1, Brown1, h = x
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Brown1, Brown1, h = log x

0 10 20 30 40 50

0
.0

0
.4

0
.8

 

 
Estimated G, G1

0 10 20 30 40 50

0
.0

0
0
.0

3
0
.0

6

 

 

Kernel Est g, g1

Ref Hist & Est g

 

 

0 10 20 30 40 50

0
.0

0
0
.0

3
0
.0

6

Dist Hist & Est g1

 

 

0 10 20 30 40 50
0
.0

0
0
.0

3
0
.0

6

h(x)=log(x)



UMinformal

B: Bayesian Extension (De Oliveira & K 2017)

Application to Radar Meteorology
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We have m = q + 1 independent random samples following the sampling
distributions

x11, x12, . . . , x1n1

iid∼ G1(x)

x21, x22, . . . , x2n2

iid∼ G2(x)

...

xq1, xq2, . . . , xqnq
iid∼ Gq(x)

xm1, xm2, . . . , xmnm
iid∼ G(x),

t = (t1, ..., tn)′ ≡ (x ′1, ..., x
′
q , x
′
m)′,

n =

q+1∑
j=1

nj
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• For Bayesian analysis we use the parametrization (β,G).

• CDF’s G1, . . . ,Gq are distortions of the reference cdf G.

• Density ratio model (DRM):

dGj (x) =
exp(βjh(x))dG(x)∫∞
−∞ exp(βjh(u))dG(u)

, j = 1, . . . , q, (6)
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• Let A = {c1, c2, . . . , cK} be a finite but large set of points in R, chosen to
‘approximate’ the support of G.

• Consider the ‘nonparametric’ family of distributions

G =
{ K∑

k=1

pk I(ck ≤ x) : pk > 0 for all k and
K∑

k=1

pk = 1
}
.

• Assume G belongs to G

• Then from (6) follows that

Gj (x) =
K∑

k=1

( pk eβj h(ck )∑K
l=1 pleβj h(cl )

)
I(ck ≤ x), j = 1, . . . , q. (7)
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Specialize: Use order statistics (assuming no ties)

A = {t(1), t(2), . . . , t(n)}

Notation:
pk = dG(t(k))

p− = (p1, . . . , pn−1)′, pn = 1−
∑n−1

k=1 pk

p = (p′−, pn)′

Then the DRM parametrized by (β′,p′−)′ ∈ Rq × Sn−1, where

Sn−1 = {p− ∈ Rn−1 : pk > 0 for all k and
n−1∑
k=1

pk < 1},

is the unit simplex in Rn−1.
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Likelihood

Then the likelihood function of (β′,p′−)′ based on the q + 1 samples is

L(β,p−; t) =
n∏

k=1

pk ·
n1∏

i=1

exp(β1h(x1i ))∑n
l=1 pl e

β1h(t(l))
· · ·

nq∏
i=1

exp(βqh(xqi ))∑n
l=1 pl e

βqh(t(l))

=

∏n
k=1 pk · exp(β′h+)(∑n

l=1 pl e
β1h(t(l)))n1 · · ·

(∑n
l=1 pl e

βqh(t(l)))nq
I(p− ∈ Sn−1), (8)

where β ∈ Rq , p− ∈ Sn−1, and

h+ =
( n1∑

i=1

h(x1i ), . . . ,

nq∑
i=1

h(xqi )
)′

Same as the empirical likelihood when the αj are expressed in terms of the βj and p−.
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Prior

Consider transformations
H : Sn−1 −→ Rn−1

such that
n∑

k=1

ck log(pk ), with
∑n

k=1 ck = 0.

Each such transformation is one-to-one and has Jacobian proportional to
∏n

k=1 p−1
k

(O’Hagan, 1994).

The specific case used here is

H(p−) =
(

log
(p1

pn

)
, . . . , log

(pn−1

pn

))′
, (9)

which was studied by Aitchison and Shen (1980).
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Assume for hyperparameters m0 and V0,

H(p−) ∼ Nn−1(m0,V0)

Then the joint pdf of p− is the logistic-normal distribution:

π(p−) ∝
( n∏

k=1

pk

)−1
exp

(
−

1
2

(H(p−)−m0)′V−1
0 (H(p−)−m0)

)
I(p− ∈ Sn−1). (10)

Then for any j, k = 1, . . . , n − 1

E
( pj

pn

)
= exp

(
(m0)j +

1
2

(V0)jj
)
, (11)

and
cov
( pj

pn
,

pk

pn

)
= E

( pj

pn

)
E
(pk

pn

)(
exp

(
(V0)jk

)
− 1
)
. (12)
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• Assume the marginal prior β ∼ Nq(b0,B0).

• Assume p− and β are independent.

• Then finally the prior π(β,p−) is proportional to

( n∏
k=1

pk

)−1
exp

{
−

1
2

(
(β − b0)′B−1

0 (β − b0) + (H(p−)−m0)′V−1
0 (H(p−)−m0)

)}
×

I(p− ∈ Sn−1)

(13)
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Posterior

Then the posterior distribution π(β,p− | t) is proportional to

exp
{
β′h+ − 1

2

(
(β − b0)′B−1

0 (β − b0) + (H(p−)−m0)′V−1
0 (H(p−)−m0)

)}
(∑n

l=1 pl e
β1h(t(l)))n1 · · ·

(∑n
l=1 pl e

βqh(t(l)))nq
×

I(p− ∈ Sn−1)

(14)
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MCMC

• The posterior distribution (14) is quite non-standard. Consequently, Bayesian
inference about (β′,p′−) can benefit from the application of Markov chain Monte Carlo
(MCMC).

• The underlying idea is to simulate a Markov chain that has an equilibrium distribution
which agrees with the posterior distribution of interest.

• To make inference about the model parameters we will use a form of
Metropolis-Hasting MCMC algorithm in which the parameters are updated separately
in two blocks, β and p−.
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Block 1

• By inspection of (14), the full posterior distributions of β is given by

π(β | p−, t) ∝
exp

(
β′h+ − 1

2 (β − b0)′B−1
0 (β − b0)

)(∑n
l=1 pl e

β1h(t(l)))n1 · · ·
(∑n

l=1 pl e
βqh(t(l)))nq

•With tuning constant c1 > 0, simulate a candidate β∗ using a random-walk with

proposal
q1(β,β∗) ∼ Nq(β, c1Iq)

• Candidate β∗ is accepted with probability

α1(β,β∗) = min
{

1,
π(β∗ | p−, t)q1(β∗,β)

π(β | p−, t)q1(β,β∗)

}
= min{1, ξ1} (15)

If the candidate is not accepted, the next state is set equal to the current state.
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Since q1(β,β
∗) = q1(β

∗,β),

ξ1 =

∑n
l=1 pl e

β1h(t(l))

∑n
l=1 pl e

β∗1 h(t(l))

n1

· · ·

∑n
l=1 pl e

βq h(t(l))

∑n
l=1 pl e

β∗q h(t(l))

nq

× exp
{

(β∗ − β)′h+ −
1

2

(
(β∗ − b0)′B−1

0 (β∗ − b0)− (β − b0)′B−1
0 (β − b0)

)}
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Block 2

Likewise, it follows from (14) that the full posterior distributions of p− is

π(p− | β, t) ∝
exp

(
− 1

2 (H(p−)−m0)′V−1
0 (H(p−)−m0)

)(∑n
l=1 pl e

β1h(t(l)))n1 · · ·
(∑n

l=1 pl e
βqh(t(l)))nq

I(p− ∈ Sn−1).

The candidate for p− is simulated using an independence proposal q2(p−,p∗−) being
a scaled version of the logistic-normal prior distribution (10) where V0 is replaced by
c2V0, where c2 > 0 is a tuning constant. After the candidate p∗− is simulated, it is
accepted with probability

α2(p−,p
∗
−) = min

{
1,
π(p∗− | β, t)q2(p∗−,p−)

π(p− | β, t)q2(p−,p∗−)

}
= min{1, ξ2}, (16)
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ξ2 =
n∏

i=1

p∗i
pi
·

 ∑n
l=1 pl e

β1h(t(l))

∑n
l=1 p∗l e

β1h(t(l))

n1

· · ·

 ∑n
l=1 pl e

βq h(t(l))

∑n
l=1 p∗l e

βq h(t(l))

nq

× exp
{( c2 − 1

2c2

)(
(H(p−)− m0)′V−1

0 (H(p−)− m0)− (H(p∗−)− m0)′V−1
0 (H(p∗−)− m0)

)}
.
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MCMC Algorithm

MCMC algorithm to simulate a Markov chain {(β(m),p(m)
− ) : m = 1, . . . ,M} whose

equilibrium distribution is π(β,p− | t).

Step 1: Choose the hyperparameters b0, B0, m0, V0, the tuning constants c1, c2,
and the initial state (β(0),p(0)

− ).

For m = 1, . . . ,M do the following:

Step 2: Simulate independently β∗ ∼ Nq
(
β(m−1), c1Iq

)
and U1 ∼ unif(0, 1), and set

β(m) =

{
β∗ if U1 < α1(β(m−1),β∗)

β(m−1) otherwise
,

where α1(·, ·) is given by (15).
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Step 3: Simulate independently W = (W1, . . . ,Wn−1)′ ∼ Nn−1
(
m0, c2V0

)
and

U2 ∼ unif(0, 1), and compute

p∗− =
(
1 +

n−1∑
i=1

eWi
)−1(eW1 , . . . , eWn−1

)′
.

Step 4: Set

p(m)
− =

{
p∗− if U2 < α2(p(m−1)

− ,p∗−)

p(m−1)
− otherwise

,

where α2(·, ·) is given by (16), and p(m)
n = 1− 1′p(m)

− .



UMinformal

Bayesian Inference

• Once a large sample {(β(m),p(m)
− ) : m = 1, . . . ,M} from the posterior distribution

π(β,p− | t) is available, Bayesian estimates of the quantities of interest follow easily.

• Point and interval estimates of β1, . . . , βq are constructed from sample averages and
quantiles of the corresponding chains.

• Bayesian estimate of the reference cdf G is given by its posterior expectation

ĜB(x) = E
(
G | t

)
=

n∑
k=1

E(pk | t)I(t(k) ≤ x),

using the approximation computed from the simulated chain

E(pk | t) ≈
1
M

M∑
m=1

p(m)
k
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Bayesian Inference

• Bayesian estimates of the distorted cdfs G1, . . . ,Gq are given, using (7), by

ĜB
j (x) = E

(
Gj | t

)
=

n∑
k=1

E
( pk eβj h(t(k))∑n

l=1 pl e
βj h(t(l))

| t
)

I(t(k) ≤ x), j = 1, . . . , q,

using the approximation computed from the simulated chain

E
( pk eβj h(t(k))∑n

l=1 pl e
βj h(t(l))

| t
)
≈

1
M

M∑
m=1

p(m)
k eβ

(m)
j h(t(k))

∑n
l=1 p(m)

l eβ
(m)
j h(t(l))

.



UMinformal

Example: Radar Meteorology

• q = 1,m = 2, n1 = n2 = 500, n = 1000.

• β1 ∼ N(0, 10) (b0 = 0, v0 = 10), independent of

• H(p−) ∼ N999
(
− 0.005, (0.01× 0.9|j−k|)jk

)
, H(·) is given in (9).

• h(x) = x , and h(x) = log x).

• Tuning constants c1 = 0.0003 and c2 = 1.

• M = 5000 iterations, burn-in period 500.

• β1 and p− acceptance rates of 0.32 and 0.41, respectively.
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ĜB(x): Brown (solid), Kwajalein (dashed), h(x) = x
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ĜB(x): Brown (solid), Kwajalein (dashed), h(x) = log x
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Testing Distribution Equality

H0 : β1 = · · · = βq = 0
• M0 the Bayesian model under H0. It has likelihood

L0(p−; t) =
∏n

k=1 pk · I(p− ∈ Sn−1) and prior π0(p−) in (10), with p− ∈ Sn−1.

• M1 Bayesian model specified by the likelihood L1(β,p−; t) in (8) and prior π1(β,p−)
in (13).

• Testing H0 versus H1 is then equivalent to choosing between models M0 and M1.

• Define Marginal likelihoods m0(t) and m1(t) under M0 and M1:

m0(t) =

∫
Rn−1

L0(p−; t)π0(p−)dp−

m1(t) =

∫
Rq×Rn−1

L1(β,p−; t)π1(β,p−)dβdp−.
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Bayes Factor

• π0 and π1 = 1− π0 respective prior probabilities of models M0 and M1

• Bayes factor: The Bayes factor in favor of M0 is defined as the ratio of posterior to
prior odds of M0.

BF01(t) =
P(M0 | t)/(1− P(M0 | t))

π0/(1− π0)

=
m0(t)

m1(t)
(From Bayes Theorem).

BF01(t) is interpreted as the relative evidence in favor of M0 over M1. A value of
BF01(t) > 1 points to the conclusion the data lend more support to model M0 than to
model M1.
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For the precipitation radar data the and the density ratio model with h(x) = x and
π0 = 1/2.

BF01(t) = 0.0462 and P(M0 | t) ≈ 0.044,

Therefore, hypothesis H0 is rejected, and we conclude that the data produced by the
Kwajalein and Brown radars come from different distributions. This agrees with the
frequentist result.
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C: TS Prediction by Out of Sample Fusion (OSF).

Consider the following time series regression model,

xt+1 = f (z t ) + εt+1, t = 1, 2, ..., n0 (17)

• z t contains past values of covariate time series possibly even past values of xt .

• εt is an independent noise component.

•We approach time series prediction through the distribution of the noise component

estimated by out of sample fusion (OSF) under a density ratio assumption (K- et al.

2005,2008, K- and Gagnon 2010).
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Assume:

• εt ∼ G for every t .

• ηt , t = 1, 2, ...n1 is an additional source of data (real or artificial).

• Fuse the ε’s and η’s to get an estimate Ĝ under a DRM for some tilt function h.

• Denote the combined “data" of size n = n0 + n1 by

τ = (τ1, ..., τn) ≡ (ε1, ..., εn0 , η1, ..., ηn1 )
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We obtain the following approximation of the predictive distribution at t + 1
conditional on z t ,

P(xt+1 ≤ x | z t ) = G(x − f (z t ))

≈ Ĝ(x − f̂ (z t ))

=
n∑

i=1

p̂i I(τi ≤ x − f̂ (z t )), (18)

where Ĝ is obtained from the entire fused data τ .

(a) From (18) we can estimate various conditional functions of xt+1 given z t as
byproducts.

(b) This procedure is different from methods which use only n0 << n observations.
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Tackling Dependent Residuals

(a) In practice the εt are replaced by the residuals ε̂t .

(b) Since we are only interested in the distribution of ε̂t , their sequential order is not
important.

(c) Hence, we can use randomly shuffled or sampled residuals to induce approximate
independence, while maintaining the marginal distribution.

(d) Approximate residual independence may be achieved by using subsequences ε̂tj
where the residuals are spaced sufficiently far apart in time.

(e) Using the raw residuals ε̂t “as is" can still lead to useful results.
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Mortality Prediction

Prediction by out of sample fusion is applied here to sampled filtered total mortality data from Los Angeles County,
from 01.01.1970 to 12.31.1979 (Shumway et al. 1988).

The original daily data, consisting of a response series (total mortality) and its covariate series (two weather and six
pollution series), were lowpass filtered (removing frequencies above 0.10 cycles per day) and then sampled weekly
to produce series of length N = 508 each.

Let y, T ,CO denote the filtered total mortality, temperature, and carbon monoxide, respectively. A plot of yt is
shown on the next slide displaying a marked oscillation due to filtering.
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Figure: Filtered weekly mortality, Los Angeles County, 01.01.1970–12.31.1979 (Shumway et al. 1988).
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Regression Model for LA Mortality

From K- and Fokianos (2002):

yt = exp {β0 + β1yt−1 + β2yt−2 + β3Tt−1 + β4 log(COt )}+ ε̂t (19)

Partial likelihood estimates:

(β̂0, β̂1, β̂2, β̂3, β̂4) = (4.5051, 0.0019, 0.0018,−0.0013, 0.0468)

Corresponding standard errors:

(0.0694, 0.0004, 0.0004, 0.0004, 0.0087)
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Figure: Estimated autocorrelation and qqnorm plot of ε̂t from model (19).
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The qq-plot suggests fusion of ε̂ ≡ x0 with i.i.d. N(mean(ε̂),Var(ε̂)):

η ≡ x1 ∼ N(0.0016, 59.5)

That is: Normal h(x) = (x , x2) in the DRM:

g1(x) = exp{α+ β1x + β2x2}g(x).

Check by goodness of fit (GOF): Qin and Zhang (1997) GOF statistic

∆n = sup
t

√
n |Ĝ(t)− G̃(t)|, (20)

Ĝ(t) is the estimated reference CDF from the fused (ε̂, η).
G̃(t) is the empirical distribution from the reference sample x0 only.

By bootstrapping: ∆n ≈ 0.5409109, p-value of 0.571.

Thus, h(x) = (x , x2) is sensible.
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One-Step Predictive Distribution

With Ĝ(t) the estimated reference CDF from the fused (ε̂, η) we have the preictive
distribution for any level a:

P(yt > a | yt−1, yt−2,Tt−1, log(COt )) ≈

1− Ĝ
(

a− exp
{
β̂0 + β̂1yt−1 + β̂2yt−2 + β̂3Tt−1 + β̂4 log(COt )

})
.

(21)
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More Death in the Winter
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Figure: P(yt > 180 | yt−1, yt−2, Tt−1, log(COt ))
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Figure: P(yt > 200 | yt−1, yt−2, Tt−1, log(COt ))
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D: Estimation of Small Tail Probabilities.

• Repeated Fusion of Real with “Fake" Data (ROSF)

• “Augmented Reality (AR), Better than Real"
The Economist, Feb. 4, 2017, pp. 67-69.

•We’ll use Theorem 1 with misspecified h.

• B-Curve
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Main Points

• T is a high threshold.

•We wish to estimate a small tail probability: p = Pr(X > T ).

• Data (e.g. toxicity) X0 = (x1, ..., xn0 ) below or even far below T .

• ROSF: Fuse X0 repeatedly with “fake" data X1.

•With ROSF we get a curve which contains a point whose ordinate is p.

•We show how to “capture" p by Down-Up sequences.

• Comparison with an extreme value theory method POT.

• Background: Density ratio model.
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Nearly specified case: Gamma(3,1) Data, p = 0.01

X0 ∼ Gamma(3,1) (somewhat long tail).

h(x) = (x , log x), T = 8.405947, n0 = n1 = 100.
Fusion: X1 ∼ Unif (0,20).

Coverage from 100 CI’s from Theorem 1: 95%.
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Moderately misspecified case: f(2,12) Data, p = 0.01

X0 ∼ f (2,12) (long tail).

h(x) = (x , log x), T = 6.926608, n0 = n1 = 100.
Fusion: X1 ∼ Unif (0,50).

Coverage from 100 CI’s from Theorem 1: 86%.
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Misspecified case: Log-normal Data, p = 0.01

X0 ∼ LN(1,1) (long tail).

h(x) = (x , log x), T = 27.83649, n0 = n1 = 100.
Fusion: X1 ∼ Unif (0,120).

Coverage from 100 CI’s from Theorem 1: 70%.
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Misspecified case: Inverse-Gaussian Data, p = 0.01

X0 ∼ IG(4,5) (long tail).

h(x) = (x , log x), T = 17.87176, n0 = n1 = 100.
Fusion: X1 ∼ Unif (0,40).

Coverage from 100 CI’s from Theorem 1: 73%.
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We saw that in both the nearly specified and misspecified cases there is a
positive chance the upper bound of the semiparametric CI is above
p = 0.01.

That is all we need.

This leads to the following formulation.



UMinformal

Estimation of Small Tail Probabilities by ROSF

1. Suppose we wish to estimate a small tail probability p = P(X > T ) of some distribution
and that we have a reference random sample X0. max(X0) << T .

2. Generate a uniform sample X1 whose support exceeds T .

3. Fuse X0 with X1, and get an upper bound B1 for p from Theorem 1. Use h = (x , log x).

4. This gives a confidence interval [0,B1] for p.

5. Repeat many times to get [0,B1], [0,B2], ..., [0,Bn].

6. Conditional on X0, the upper bounds B1,B2, ...,Bn are iid.

7. Assume that

P(B1 ≥ p) > 0. (22)

8. As n→∞, the plot of the ordered sequence B(1),B(2), ...,B(n) contains a point whose
ordinate is p with probability approaching 1.

9. Call the plot the B-curve.
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• Any tilt function h(x) which produces upper bounds Bi is appropriate as
long as (22) holds.

• Thus, the DRM requirement of a known h(x) can be softened considerably
in the present application.
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B-Curve B(1), ...,B(10,000), Fused LN(0,1)

p = 0.001, n0 = n1 = 100, h(x) = (x , log x)

T = 21.98,max X0 = 14.46,X1 ∼ Unif(0, 30)
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B-Curve B(1), ...,B(10,000), Fused LN(1,1)

p = 0.001, n0 = n1 = 100, h(x) = (x , log x)

T = 59.75,max X0 = 25.17,X1 ∼ Unif(0, 100)
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B-Curve B(1), ...,B(10,000), Fused Mercury

p = 0.001, n0 = n1 = 100, h(x) = (x , log x)

T = 22.41,max X0 = 11.4,X1 ∼ Unif(1, 50)
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B-Curve B(1), ...,B(10,000), Fused t(3)

p = 0.001, n0 = n1 = 100, h(x) = (x , log x)

T = 12.79,max X0 = 4.860123,X1 ∼ Unif(1, 20)
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• The question then is how to find the point (j,B(j)) closest to the point on the
B-curve whose ordinate is p.

• That is, how to find B(j) closest to p.
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Fact: We can get FB from many fusions.

• Let B1, ...,Bn be a random sample of upper bounds from FB .

• Let F̂B be the corresponding empirical distribution.

• By Glivenko-Cantelli Theorem

F̂B −→ FB

almost surely uniformly as n increases.

• Thus, since we may fuse X0 with as many X1 as we wish, we know FB for
all practical purposes (KPWC, 2016).
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• Due to a large number of fusions n, with probability approaching 1

B(1) < p < B(n). (23)

• By the monotonicity of the B-curve as j decreases (e.g. from n = 10, 000),
the B(j) approach p from above so that there is a B(j) very close to p.

• The B-curve establishes a relationship between j and p approximations.
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• From a basic fact about order statistics it is known that

P(B(j) > p) =

j−1∑
k=0

(n
k

)
[FB(p)]k [1− FB(p)]n−k . (24)

Recall FB is known for all practical purposes.

• Therefore, as (24) is monotone decreasing, the smallest p which satisfies the
inequality

j−1∑
k=0

(n
k

)
[FB(p)]k [1− FB(p)]n−k ≤ 0.95 (25)

provides another relationship between j and p.
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• Iterating between the two monotone relationships is an iterative method (IM).

• The iteration process starts with a sufficiently large j suggested by the B-curve.

•With that j ≡ j1 we look for the smallest p ≡ pj1 satisfying (25).

• Next, find a B(j2) on the B-curve closest to pj1 .

• This gives a new j ≡ j2 and the previous steps are repeated until convergence occurs
and we keep getting the same p.

• This is a point estimate of the true p obtained from the iterative process. It is not the
final estimate.
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In symbols:

B(j1) → p(j1) → B(j2) → · · ·B(jk ) → pjk → B(jk+1) → pjk → B(jk+1) → pjk · · ·

until pjk keeps giving the same B(jk+1)

• More succinctly,

j1 → p(j1) → j2 → p(j2) → · · · jk → pjk → jk+1 → pjk → jk+1 → pjk · · ·

• Under some computational conditions this iterative process results in a contraction in

a neighborhood of the true p.
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Proposition (K & Wang 2018)

Assume that the samples size n0 of X 0 is large enough, and that the number of fusions
n is sufficiently large so that B(1) < p < B(n). Consider the smallest pj ∈ (0, 1) which
satisfies the inequality

P(B(j) > pj ) =

j−1∑
k=0

(n
k

)
[FB(pj )]k [1− FB(pj )]n−k ≤ 0.95. (26)

Then, iterating between (26) and the corresponding B-curve produces “down" and “up"
sequences depending on the B(j) relative to pj . In particular, in a neighborhood of the
true tail probability p, with a high probability, there are “down" sequences which
converge from above and “up" sequences which converge from below to points close
to p.
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Computation

• The iteration process depends on n and the increments of p at which (26) is
evaluated.

• Get FB from a large number of B’s, say, 10,000.

• Sample at random 1000 B’s to obtain an approximate B-curve.

• The binomial coefficients
(n

k

)
are replaced by

(1000
k

)
.

•We iterate between an approximate B-curve and approximate (26) with n = 1000
until a “down-up" convergence occurs, in which case an estimate p̂ for p is obtained.

• This procedure can be repeated many times by sampling repeatedly many different
sets of 1000 B’s to obtain many point estimates p̂ from which interval estimates can
then be constructed, as well as variance estimates.
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Illustration of ROSF and Iterative Method

Evaluate p along p-increments of order O(B̄), p = 0.001, n0 = n1 = 100,
h(x) = (x , log x). In (26) n = 1000.

• LN(1,1), FB from 10,000 fusions with X1 ∼ Unif(0, 80). B̄ = 0.00031.

1000→ 0.003→ 995→ 0.0024→ 991→ 0.002→ 986→ 0.0018→ 977→ 0.0016→ 965→
0.0014→ 954→ 0.0012→ 941→ 0.001→ 923→ 0.001 · · ·

• LN(0,1), FB from 1,000,000 fusions with X1 ∼ Unif(0, 40). B̄ = 0.000065.

1000→ 0.001→ 1000→ 0.001→ 1000→ 0.001 · · ·

• Positive t(3), FB from 10,000 fusions with X1 ∼ Unif(0, 20). B̄ = 0.0005744416.

1000→ 0.0038→ 996→ 0.003→ 992→ 0.0028→ 986→ 0.0024→ 977→ 0.0022→ 964→
0.0020→ 956→ 0.0018→ 939→ 0.0016→ 910→ 0.0014→ 882→ 0.0012→ 850→ 0.001→
815→ 0.001 · · ·
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• Mercury, FB from 1,000,000 fusions with X1 ∼ Unif(0, 40). B̄ = 0.00096.

1000→ 0.0052→ 996→ 0.0046→ 991→ 0.0042→ 981→ 0.0038→ 966→ 0.0034→ 949→
0.0032→ 942→ 0.0030→ 911→ 0.0026→ 895→ 0.0024→ 879→ 0.0022→ 851→ 0.0020→
829→ 0.0018→ 801→ 0.0016,→ 768→ 0.0014→ 732→ 0.0014 · · ·

• Lead, FB from 10,000 fusions with X1 ∼ Unif(0, 40). p-increment 0.0001.

400→ 0.0017→ 371→ 0.0016→ 351→ 0.0015→ 327→ 0.0014→ 302→ 0.0013→ 278→
0.0012→ 252→ 0.0011→ 229→ 0.0011 · · ·

If we start close to true p=0.001.

Convergence is upward:
201→ 0.001→ 203→ 0.001 · · ·

Convergence is downward:
205→ 0.001→ 203→ 0.001 · · ·
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Lead Intake: a Higher Probability.

• p = 0.01, T = 10, n0 = n1 = 100. max(X 0) = 6.875607 < T , h(x) = (x , log x).

• FB from 10,000 fusions with X 1 ∼ Unif(0, 20), 20 > T .

• Sampling 1000 B(j)’s from 10,000 B(j)’s, the IM iterative (j, pj ) sequence along
p-increments of 0.001 (B̄ = 0.0035) is:

1000→ 0.01→ 999→ 0.009→ 998→ 0.009 · · ·

so that p̂ = 0.009.
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Illustrations of Down-Up Convergence

Lognormal(1,1)

Table: p = 0.001, X0 ∼ LN(1, 1), X1 ∼ Unif (0, 80), max(X0) = 32.36495, T = 59.75377, n0 = n1 = 100,
h = (x, log x), p-increment 0.0001.

Starting j Convergence to Iterations
1000 0.001199466 21 Down
950 0.001099466 13 Down
900 0.000999465 10 Down
800 0.000999465 5 Down
750 0.000999465 3 Down
700 0.000999465 2 Down
680 0.000999465 2 Up
680 0.000999465 2 Up
670 0.000999465 2 Up

A sensible estimate of p = 0.001 is the average from the last 6 entries which gives
p̂ = 0.000999465 with absolute error of 5.35× 10−07.
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Lognormal(1,1)

Table: p = 0.0001, X0 ∼ LN(1, 1), X1 ∼ Unif (0, 130), max(X0) = 44.82807, T = 112.058,
n0 = n1 = 100, h = (x, log x), p-increment 0.000015.

Starting j Convergence to Iterations
800 0.0001945544 23 Down
500 0.0001795544 10 Down
300 0.0001345544 5 Down
200 0.0001195544 2 Down
170 0.0001045544 2 Down
160 0.0001045544 2 Down
155 0.0001045544 2 Up
152 0.0001045544 2 Up
150 0.0001045544 2 Up

A sensible estimate of p = 0.0001 is the average from the last 5 entries which gives
p̂ = 0.0001045544 with absolute error of 4.5544× 10−06.
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Lognormal(0,1)

Table: p = 0.001, X0 ∼ LN(0, 1), X1 ∼ Unif (0, 50), max(X0) = 11.86797, T = 21.98218, n0 = n1 = 100,
h = (x, log x), p-increment 0.0001.

Starting j Convergence to Iterations
1000 0.001099445 19 Down
900 0.001099445 5 Down
820 0.001099445 2 Down
800 0.000999444 3 Down
790 0.000999444 2 Down
780 0.000999444 2 Up
770 0.000999444 2 Up
760 0.001099445 4 Up

A sensible estimate of p = 0.001 is the average from the last 5 entries which gives
p̂ = 0.001019444 with absolute error of 1.9444× 10−05.
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Lognormal(0,1)

Table: p = 0.0001, X0 ∼ LN(0, 1), X1 ∼ Unif (0, 70), max(X0) = 13.77121, T = 41.22383,
n0 = n1 = 100, h = (x, log x), p-increment 0.000015.

Starting j Convergence to Iterations
900 0.0002392241 28 Down
800 0.0001042241 25 Down
700 0.0001042241 18 Down
500 0.0001192241 6 Down
360 0.0001042241 2 Down
355 0.0001042241 2 Up
350 0.0001042241 2 Up
350 0.0001042241 2 Up

A sensible estimate of p = 0.0001 is the average from the last 4 entries which gives
p̂ = 0.0001042241 with absolute error of 4.2241× 10−06.
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f(2,7)

Table: p = 0.001, X0 ∼ f (2, 7), X1 ∼ Unif (0, 50), max(X0) = 12.25072, T = 21.689, n0 = n1 = 100,
h = (x, log x), p-increment 0.0001.

Starting j Convergence to Iterations
500 0.001103351 10 Down
450 0.001003351 9 Down
400 0.001003351 7 Down
300 0.001003351 4 Down
210 0.001003351 2 Up
190 0.000903350 2 Up
180 0.000903350 2 Up

A sensible estimate of p = 0.001 occurs at the down-up shift which gives
p̂ = 0.001003351 with absolute error of 3.351× 10−06.



UMinformal

f(2,7)

Table: p = 0.0001, X0 ∼ f (2, 7), X1 ∼ Unif (0, 70), max(X0) = 14.62357, T = 45.13234, n0 = n1 = 100,
h = (x, log x), p-increment 0.000015.

Starting j Convergence to Iterations
750 0.0001341104 3 Down
740 0.0001041104 5 Down
730 0.0001041104 4 Down
700 0.0001341104 3 Up
660 0.0001041104 2 Down
650 0.0001041104 2 Up
645 0.0001041104 2 Up
640 0.0001041104 3 Up

A sensible estimate of p = 0.0001 occurs at the down-up shift which gives
p̂ = 0.0001041104 with absolute error of 4.1104× 10−06.
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Weibull(0.8,2)

Table: p = 0.001, X0 ∼ Weibull(0.8, 2), X1 ∼ Unif (0, 40), max(X0) = 8.081707, T = 22.39758,
n0 = n1 = 100, h = (x, log x), p-increment 0.0001.

Starting j Convergence to Iterations
1000 0.001899263 3 Down
1000 0.001099263 8 Down
950 0.000999262 2 Immediate
950 0.000999262 2 Up
940 0.001099263 4 Up
940 0.000999262 3 Up

In the 3rd entry there was an immediate convergence. A sensible estimate of
p = 0.001 is the average from the last 5 entries which gives p̂ = 0.001039261 with
absolute error of 3.9261× 10−05.
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Weibull(0.8,2)

Table: p = 0.0001, X0 ∼ Weibull(0.8, 2), X1 ∼ Unif (0, 50), max(X0) = 12.20032, T = 32.09036,
n0 = n1 = 100, h = (x, log x), p-increment 0.000015.

Starting j Convergence to Iterations
700 0.0002096393 21 Down
400 0.0001196393 11 Down
300 0.0001946393 2 Down
200 0.0001046393 5 Down
130 0.0001046393 2 Down
125 0.0001046393 2 Up
120 0.0001046393 2 Up
115 0.0001046393 2 Up

A sensible estimate of p = 0.0001 is the average from the last 5 entries which gives
p̂ = 0.0001046393 with absolute error of 4.6393× 10−06.
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NHANES: URX3TB Trichlorophenol
2604 observations of which the proportion exceeding T = 9.5 is p = 0.001152074.

The 3rd quartile from 10,000 B’s is 0.001225: Reasonable guess of p.

Table: p = 0.001152074, X0 a trichlorophenol sample. X1 ∼ Unif (0, 30), max(X0) = 3, T = 9.5,
n0 = n1 = 100, h = (x, log x), p-increment 0.0001.

Starting j Convergence to Iterations
840 0.001099096 8 Down
800 0.000999095 7 Down
760 0.000999095 4 Down
755 0.001099096 2 Down
750 0.001099096 2 Up
740 0.000999095 2 Up
735 0.000999095 2 Up
732 0.001099096 4 Up

The 8 estimates in Table 9 with max(X 0) = 3 seem to be in a neighborhood of the true
p = 0.001152074. Their average is 0.001049096 ≈ p with standard deviation of
0.5345278× 10−05.
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NOAA: Mercury (mg/kg)
8,266 observations. Proportion exceeding T = 22.41 is p = 0.001088797.

Table: p = 0.001088797, X0 a mercury sample. X1 ∼ Unif (0, 50), max(X0) = 7.99, T = 22.41,
n0 = n1 = 100, h = (x, log x), p-increment 0.0001.

Starting j Convergence to Iterations
800 0.001099352 14 Down
700 0.001199352 8 Down
600 0.000999351 5 Down
500 0.000999351 2 Down
490 0.000999351 2 Up
480 0.000999351 2 Up
470 0.000999351 2 Up

Table: Do again with different mercury sample X0. X1 ∼ Unif (0, 50), max(X0) = 11.9, T = 22.41,
n0 = n1 = 100, h = (x, log x), p-increment 0.0001.

Starting j Convergence to Iterations
800 0.001199501 15 Down
700 0.001199501 12 Down
500 0.001199501 6 Down
400 0.001099501 2 Down
390 0.001099501 2 Up
380 0.001099501 2 Up
375 0.001199501 3 Up
360 0.001099501 3 Up
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Mercury Larger Sample

NOAA: Mercury (mg/kg)
8,266 observations. Proportion exceeding T = 22.41 is p = 0.001088797.

Table: p = 0.001088797, X0 a mercury sample. X1 ∼ Unif (0, 50), max(X0) = 13.8, T = 22.41,
n0 = n1 = 200, h = (x, log x), p-increment 0.0001.

Starting j Convergence to Iterations
775 0.002792137 18 Down
600 0.002092137 16 Down
300 0.001492137 9 Down
200 0.001192137 7 Down
100 0.001192137 2 Down
90 0.001192137 2 Up
85 0.001092137 2 Down
84 0.001092137 2 Up
83 0.001092137 2 Up
81 0.001092137 2 Up
80 0.001092137 2 Up

A sensible estimate of p = 0.00108879 is p̂ = 0.001092137 with absolute error of
3.347× 10−6.
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Much Smaller p = 0.00001

LN(1,1)

Table: X0 ∼ LN(1, 1) : p = 1− G(T ) = 0.00001,max(X0) = 56.53902, T = 193.4252, X1 ∼ Unif(0,250),
n0 = n1 = 500, h(x) = (x, log x). p-increment 0.000001.

Starting j Convergence to Iterations
950 0.0000140213 12 Down
900 0.0000108643 8 Down
850 0.0000108643 4 Down
800 0.0000108643 1 Down
770 0.0000105312 1 Up
760 0.0000105312 2 Up
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Variability of Point Estimates

• For example: p = 0.001.

• Take different B-samples of size 1,000 taken from, say, 10,000 B′s, to produce tail
probability estimates as above from which variance approximations can be obtained.

•With n0 = n1 = 100 and n0 = n1 = 200, in all cases σp̂ = O(10−4).
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ROSF/IM vs POT (K & Wang 2018)

• FB from 1000 fusions.

• Starting B(j) approx 3rd Quartile of observed 1000 Bi .

• From ROSF/IM we get N p̂’s and construct CI for p as (min(p̂),max(p̂)).

• Mean absolute error (MAE) from 500 runs:
∑

(|p̂i − p|)/500.

Table: X0 ∼ t(1) > 0 : p = 1− G(T ) = 0.001, T = 631.8645, X1 ∼ Unif(0,800),
n0 = n1, h(x) = (x, log x). p-increment 0.0001.

n0 = 100 n0 = 200
Method N Coverage CI Length MAE Coverage CI Length MAE

POT - 63.2% 0.00372 0.00149 72.1% 0.00292 0.00122

ROSF & IM 50 98.2% 0.00213 0.00061 100% 0.00193 0.00051
100 100% 0.00264 - 100% 0.00241 -
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Table: X0 ∼ Pareto(1, 4) : p = 1− G(T ) = 0.001, T = 5.623413,
X1 ∼ Unif(1,8), n0 = n1, h(x) = (x, log x). p-increment 0.0001.

n0 = 100 n0 = 200
Method N Coverage CI Length MAE Coverage CI Length MAE

POT - 81.8% 0.00419 0.00121 84.5% 0.00337 0.00070

ROSF/IM 50 96.2% 0.00232 0.00052 97.8% 0.00231 0.00041
100 100% 0.00272 - 100% 0.00269 -

Table: X0 ∼ IG(2, 40) : p = 1− G(T ) = 0.001, T = 3.835791,
X1 ∼ Unif(0,8), n0 = n1, h(x) = (x, log x). p-increment 0.00005.

n0 = 100 n0 = 200
Method N Coverage CI Length MAE Coverage CI Length MAE

POT - 69.6% 0.00324 0.00123 82.3% 0.00316 0.00092

ROSF/IM 50 100% 0.00289 0.00047 100% 0.00206 0.00041
100 100% 0.00332 - 100% 0.00313 -



UMinformal

Table: X0 ∼ Mercury : p = 1− G(T ) = 0.001, T = 22.41,
X1 ∼ Unif(0,50), n0 = n1, h(x) = (x, log x). p-increment 0.0001.

n0 = 100 n0 = 200
Method N Coverage CI Length MAE Coverage CI Length MAE

POT - 85.3% 0.00455 0.00130 88.6% 0.00398 0.00122

ROSF/IM 50 97.5% 0.00215 0.00048 100% 0.00197 0.00045
100 100% 0.00259 - 100% 0.00238 -

Table: X0 ∼ Lead Intake : p = 1− G(T ) = 0.001, T = 25,
X1 ∼ Unif(0,30), n0 = n1, h(x) = (x, log x). p-increment 0.0001.

n0 = 100 n0 = 200
Method N Coverage CI Length MAE Coverage CI Length MAE

POT - 84.7% 0.00555 0.00142 87.7% 0.00536 0.00125

ROSF/IM 50 100% 0.00247 0.00066 100% 0.00229 0.00058
100 100% 0.00289 - 100% 0.00268
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Table: X0 ∼ F(2, 12) : p = 1− G(T ) = 0.0001,T = 21.84953,X1 ∼ Unif(0,25),
n0 = n1, h(x) = (x , log x). p-increment 0.00001.

n0 = 100 n0 = 200
Method N Coverage CI Length MAE Coverage CI Length MAE

POT - 71.4% 0.00062 0.00052 81.6% 0.00053 0.000045

ROSF/IM 50 95.2% 0.00059 0.00022 96.3% 0.00052 0.000019
100 100% 0.00082 - 100% 0.00069 -

Table: X0 ∼ Mercury : p = 1− G(T ) = 0.0001,T = 39.60,
X1 ∼ Unif(0,80), n0 = n1, h(x) = (x , log x). p-increment 0.00001.

n0 = 100 n0 = 200
Method N Coverage CI Length MAE Coverage CI Length MAE

POT - 62.4% 0.00059 0.00049 73.4% 0.00051 0.000042

ROSF/IM 50 95.2% 0.00056 0.00023 100% 0.00054 0.000019
100 100% 0.00083 - 100% 0.00079 -
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