Statistical Data Fusion

Benjamin Kedem

Department of Mathematics \& Inst. for Systems Research
University of Maryland, College Park
"Give me a place to stand and rest my lever on, and I can move the Earth", (Archimedes, 287-212 B.C.)

Waseda University, Tokyo, Japan, March 18, 2019

ABSTRACT

The density ratio model provides an inferential framework for semi-parametric inference vis-a-vis fused data.
a. Meteorological satellite data fused with ground truth.
b. Fused data from several sensors.
c. Fused case and control data.
d. Fused real and computer generated data.

Main points:

- Review of the density ratio model and some of its basic underpinnings.
- Bayesian extension applied to radar data.
- Time series prediction by out of sample fusion.
- Augmented reality: Estimation of small tail probabilities.

Statistical Data Fusion

Motivating Example: Satellite sensors likely distortions of ground truth

Reference: Ground truth

Is there a way to relate the distribution of the satellite data to the distribution of the reference ground truth data?

Much of what we shall be dealing with has to do with this fundamental question.

A possible starting point is a density ratio assumption.

A: Review of the Density Ratio Model

Application to Radar Meteorology

Multiple filtering of a signal

$$
\begin{align*}
f_{1}(\omega) & =\left|H_{1}(\omega)\right|^{2} f(\omega) \\
& \cdot \tag{1}\\
& \cdot \\
& \cdot \\
f_{q}(\omega) & =\left|H_{q}(\omega)\right|^{2} f(\omega)
\end{align*}
$$

That is, q "distortions" or multiple "tilting" of the same reference spectral density f.

One-Way ANOVA: Testing Equi-Distribution

$$
\begin{array}{rcl}
x_{11}, & \ldots & , x_{1 n_{1}} \sim g_{1}(x) \\
& \cdot & \\
& \cdot & \\
x_{q 1}, & \ldots & , x_{q n_{q} \sim g_{q}(x)} \\
x_{m 1}, & \ldots & , x_{m n_{m} \sim g_{m}(x)} \\
g_{j}(x) \sim \mathrm{N}(& \mu_{\mathrm{j}}, & \left.\sigma^{2}\right), \quad \mathrm{j}=1, \ldots, \mathrm{~m} .
\end{array}
$$

Then, holding $g_{m}(x) \equiv g(x)$ as a reference:

$$
\begin{aligned}
& g_{1}(x)=\exp \left(\alpha_{1}+\beta_{1} x\right) g(x) \\
& \cdot \\
& g_{q}(x) \cdot \\
& \alpha_{j}=\frac{\mu_{m}^{2}-\mu_{j}^{2}}{2 \sigma^{2}}, \quad \exp \left(\alpha_{q}+\beta_{q} x\right) g(x) \\
& \beta_{j}=\frac{\mu_{j}-\mu_{\mathbf{m}}}{\sigma^{2}}, \quad j=1, \ldots, q
\end{aligned}
$$

Equidistribution testing (FKQS (2001)):

$$
\mu_{1}=\cdots=\mu_{m} \Longleftrightarrow \beta_{1}=\cdots=\beta_{q}=0
$$

Multivariate normal

$g_{j}(\boldsymbol{x}) \sim \mathrm{N}\left(\mu_{j}, \boldsymbol{\Sigma}\right), j=1, \ldots, q, m$. Reference $g_{m}(\boldsymbol{x}) \equiv g(\boldsymbol{x})$,

$$
\begin{gathered}
\frac{g_{j}(\boldsymbol{x})}{g(\boldsymbol{x})}=\exp \left[\left(\boldsymbol{\mu}_{j}-\boldsymbol{\mu}_{m}\right)^{\prime} \boldsymbol{\Sigma}^{-1} \boldsymbol{x}-\frac{1}{2}\left(\boldsymbol{\mu}_{j}^{\prime} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_{j}-\boldsymbol{\mu}_{m}^{\prime} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_{m}\right)\right] . \\
\alpha_{j}=-\frac{1}{2}\left(\boldsymbol{\mu}_{j}^{\prime} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_{j}-\boldsymbol{\mu}_{m}^{\prime} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_{m}\right) \\
\boldsymbol{\beta}_{j}=\boldsymbol{\Sigma}^{-1}\left(\boldsymbol{\mu}_{j}-\boldsymbol{\mu}_{m}\right) \\
g_{j}(\boldsymbol{x})=\exp \left(\alpha_{j}+\boldsymbol{\beta}_{j}^{\prime} \boldsymbol{x}\right) g(\boldsymbol{x}), \quad j=1, \ldots \boldsymbol{q} . \\
\boldsymbol{\mu}_{1}=\cdots=\boldsymbol{\mu}_{m} \Longleftrightarrow \boldsymbol{\beta}_{1}=\cdots=\boldsymbol{\beta}_{q}=0
\end{gathered}
$$

Case-control: Multinomial logistic regression

- RV y s.t. $P(y=j)=\pi_{j}, \quad \sum_{j=1}^{m} \pi_{j}=1$.
- Assume: For $j=1, \ldots, m$, and any $h(x)$,

$$
P(y=j \mid x)=\frac{\exp \left(\alpha_{j}^{*}+\beta_{j} h(x)\right)}{1+\sum_{k=1}^{q} \exp \left(\alpha_{k}^{*}+\beta_{k} h(x)\right)}
$$

- Define: $f(x \mid y=j)=g_{j}(x), \quad j=1, \ldots, m$

Then with $\alpha_{j}=\alpha_{j}^{*}+\log \left[\pi_{m} / \pi_{j}\right], j=1, \ldots, q$, and $g_{m} \equiv g$,

Multinomial logistic regression

$$
\begin{aligned}
& g_{1}(x)=\exp \left(\alpha_{1}+\beta_{1} h(x)\right) g(x) \\
& g_{2}(x)=\exp \left(\alpha_{2}+\beta_{2} h(x)\right) g(x)
\end{aligned}
$$

$$
g_{q}(x)=\exp \left(\alpha_{q}+\beta_{q} h(x)\right) g(x)
$$

Comparison Distributions (Parzen 1977,...,2009)

CDF's: $\left\{F_{1}, \ldots, F_{q}\right\} \ll G$, with cont. densities f_{1}, \ldots, f_{q}, g. Comparison Distributions defined as:

$$
D_{j}\left(u ; G, F_{j}\right)=F_{j}\left(G^{-1}(u)\right), \quad 0<u<1, j=1, \ldots, q
$$

Then by differentiation, with $x=G^{-1}(u)$:

$$
\begin{aligned}
f_{1}(x) & =d\left(G(x) ; G, F_{1}\right) g(x) \\
& \cdot \\
& \cdot \\
f_{q}(x) & =d\left(G(x) ; G, F_{q}\right) g(x)
\end{aligned}
$$

- A general structure emerges of a reference behavior (distribution) and its many distortions:

$$
g_{1}=w_{1} g
$$

$$
g_{q}=w_{q} g
$$

- How can we take advantage of this?
- Assume we have data from each of $g, g_{1}, g_{2}, \ldots, g_{q}$.
- Then, the relationship between a reference distribution and its distortions or tilts opens the door to inference based on fused or combined data from many sources.
- A general structure emerges of a reference behavior (distribution) and its many distortions:

$$
\begin{aligned}
g_{1} & = \\
& w_{1} g \\
& \cdot \\
& \cdot \\
& \cdot \\
g_{q} & = \\
& w_{q} g
\end{aligned}
$$

- How can we take advantage of this?
- Assume we have data from each of $g, g_{1}, g_{2}, \ldots, g_{q}$.
- Then, the relationship between a reference distribution and its distortions or tilts opens the door to inference based on fused or combined data from many sources.
- A general structure emerges of a reference behavior (distribution) and its many distortions:

$$
\begin{aligned}
g_{1} & =w_{1} g \\
& \cdot \\
& \cdot \\
& \cdot \\
g_{q} & =w_{q} g
\end{aligned}
$$

- How can we take advantage of this?
- Assume we have data from each of $g, g_{1}, g_{2}, \ldots, g_{q}$.
- Then, the relationship between a reference distribution and its distortions or tilts opens the door to inference based on fused or combined data from many sources.
- A general structure emerges of a reference behavior (distribution) and its many distortions:

$$
\begin{aligned}
g_{1} & = \\
& w_{1} g \\
& \cdot \\
& \cdot \\
& \cdot \\
g_{q} & = \\
& w_{q} g
\end{aligned}
$$

- How can we take advantage of this?
- Assume we have data from each of $g, g_{1}, g_{2}, \ldots, g_{q}$.
- Then, the relationship between a reference distribution and its distortions or tilts opens the door to inference based on fused or combined data from many sources.

The previous structure suggests the following general semiparametric problem.

- Multiple data sources: $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{q}, \boldsymbol{x}_{m}$.
- Data fusion: $\mathbf{t}=\left(t_{1}, \ldots, t_{n}\right)^{\prime} \equiv\left(\mathbf{x}_{1}^{\prime}, \ldots, \mathbf{x}_{q}^{\prime}, \mathbf{x}_{m}^{\prime}\right)^{\prime}$.
- Fused data length: $n \equiv n_{1}+\cdots+n_{q}+n_{m}$.
- Assume: $\boldsymbol{x}_{j} \sim g_{j}(x), \quad j=1, \ldots, q, m$.
- Reference pdf: $g_{m}(x)=g(x)$.
- Density Ratio Assumption for a known $\boldsymbol{h}(x)$:

$$
g_{j}(x)=\exp \left(\alpha_{j}+\boldsymbol{\beta}_{j}^{\prime} \boldsymbol{h}(x)\right) g(x), \quad j=1, \ldots, q
$$

Problem

Assume DRM:

$$
g_{j}(x)=\exp \left(\alpha_{j}+\boldsymbol{\beta}_{j}^{\prime} \boldsymbol{h}(x)\right) g(x), \quad j=1, \ldots, q
$$

Use the fused data $\mathbf{t}=\left(t_{1}, \ldots, t_{n}\right)^{\prime}$ to:
a. Estimate the reference pdf $g(x)$ and $\operatorname{cdf} G(x)$.
b. Estimate $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{q}\right)^{\prime}, \boldsymbol{\beta}=\left(\boldsymbol{\beta}_{1}^{\prime}, \ldots, \boldsymbol{\beta}_{q}^{\prime}\right)^{\prime}$.
c. Test distribution equality,

$$
\mathrm{H}_{0}: \boldsymbol{\beta}_{1}=\cdots=\boldsymbol{\beta}_{\mathrm{q}}=0
$$

Estimation

Follow Vardi $(1982,1985)$, Qin and Zhang (1997), Owen (2001). MLE of $G(x), \beta$'s, α 's can be obtained by maximizing the empirical likelihood over the class of step cdf's with jumps at the observed values t_{1}, \ldots, t_{n}. Accordingly, if $p_{i}=d G\left(t_{i}\right), i=1, . ., n$:

$$
\begin{aligned}
\mathcal{L}(\boldsymbol{\alpha}, \boldsymbol{\beta}, G)=\prod_{i=1}^{n} p_{i} \prod_{j=1}^{n_{1}} & \exp \left(\alpha_{1}+\boldsymbol{\beta}_{1}^{\prime} \boldsymbol{h}\left(x_{1 j}\right)\right) \cdots \\
& \prod_{j=1}^{n_{q}} \exp \left(\alpha_{q}+\boldsymbol{\beta}_{q}^{\prime} \boldsymbol{h}\left(x_{q j}\right)\right)
\end{aligned}
$$

1. Get p_{i}

Fix $\boldsymbol{\alpha}, \boldsymbol{\beta}$. Maximize $\prod_{i=1}^{n} p_{i}$ subject to the m constraints:

$$
\begin{gathered}
\sum_{i=1}^{n} p_{i}=1, \sum_{i=1}^{n} p_{i}\left[w_{j}\left(t_{i}\right)-1\right]=0, \quad j=1, \ldots, q \\
w_{j}\left(t_{i}\right)=\exp \left(\alpha_{j}+\boldsymbol{\beta}_{j}^{\prime} \boldsymbol{h}\left(t_{i}\right)\right), j=1, \ldots, q
\end{gathered}
$$

Use Lagrange multipliers $\lambda_{0}=n, \quad \lambda_{j}=\nu_{j} n$.

$$
\begin{aligned}
& (\star) \quad p_{i}=\frac{1}{n_{m}} \cdot \frac{1}{1+\rho_{1} w_{1}\left(t_{i}\right)+\cdots+\rho_{q} w_{q}\left(t_{i}\right)} \\
& (\star) \quad \rho_{j}=n_{j} / n_{m}, \quad j=1, \ldots, q .
\end{aligned}
$$

2. Estimate α, β

Profile log-likelihood up to a constant as a function of α, β only:

$$
\begin{aligned}
\ell= & \sum_{j=1}^{n_{1}}\left[\alpha_{1}+\boldsymbol{\beta}_{1}^{\prime} \boldsymbol{h}\left(x_{1 j}\right)\right]+\cdots+\sum_{j=1}^{n_{q}}\left[\alpha_{q}+\boldsymbol{\beta}_{q}^{\prime} \boldsymbol{h}\left(x_{q j}\right)\right] \\
& -\sum_{i=1}^{n} \log \left[1+\rho_{1} w_{1}\left(t_{i}\right)+\cdots+\rho_{q} w_{q}\left(t_{i}\right)\right]
\end{aligned}
$$

Score equations for $j=1, \ldots, q$:

$$
\begin{aligned}
\frac{\partial \ell}{\partial \alpha_{j}}= & -\sum_{i=1}^{n} \frac{\rho_{j} w_{j}\left(t_{i}\right)}{1+\rho_{1} w_{1}\left(t_{i}\right)+\cdots+\rho_{q} w_{q}\left(t_{i}\right)}+n_{j}=0 \\
\frac{\partial \ell}{\partial \beta_{j}}= & -\sum_{i=1}^{n} \frac{\rho_{j} h\left(t_{i}\right) w_{j}\left(t_{i}\right)}{1+\rho_{1} w_{1}\left(t_{i}\right)+\cdots+\rho_{q} w_{q}\left(t_{i}\right)} \\
& +\sum_{i=1}^{n_{j}} h\left(x_{j i}\right)=0
\end{aligned}
$$

With

$$
\nabla \equiv\left(\frac{\partial}{\partial \alpha_{1}}, \ldots, \frac{\partial}{\partial \alpha_{m}}, \frac{\partial}{\partial \boldsymbol{\beta}_{1}} \ldots, \frac{\partial}{\partial \boldsymbol{\beta}_{m}}\right)^{\prime}
$$

Define the matrices

$$
-\frac{1}{n} \nabla \nabla^{\prime} \ell(\boldsymbol{\theta}) \equiv-\frac{1}{n} \boldsymbol{S}_{n} \rightarrow \boldsymbol{S}, \quad n \rightarrow \infty
$$

and

$$
\boldsymbol{\Lambda} \equiv \operatorname{Var}\left[\frac{1}{\sqrt{n}} \nabla \ell(\boldsymbol{\theta})\right]
$$

Observe that \boldsymbol{S}_{n} and $\boldsymbol{\Lambda}$ are $(p+1) q \times(p+1) q$ matrices.

Suppose \boldsymbol{S} is positive definite. Then,
(a) The solution $\hat{\boldsymbol{\theta}}$ of the score equations is strongly consistent.
(b) As $n \rightarrow \infty$,

$$
\begin{equation*}
\sqrt{n}\binom{\hat{\alpha}-\boldsymbol{\alpha}_{0}}{\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}} \xrightarrow{d} \mathrm{~N}_{(p+1) q}(\mathbf{0}, \boldsymbol{\Sigma}), \tag{2}
\end{equation*}
$$

where $\boldsymbol{\Sigma}=\boldsymbol{S}^{-1} \boldsymbol{\Lambda} \boldsymbol{S}^{-1}$.

3. Estimate $g(x), G(x)$

The solution of the score equations gives the maximum likelihood estimators $\hat{\boldsymbol{\alpha}}, \hat{\boldsymbol{\beta}}$, and consequently by substitution also \hat{p}_{i}. Thus,

$$
\begin{gathered}
\hat{p}_{i}=\frac{1}{n_{m}} \cdot \frac{1}{1+\sum_{j=1}^{q} \rho_{j} \exp \left(\hat{\alpha}_{j}+\hat{\boldsymbol{\beta}}_{j}^{\prime} \boldsymbol{h}\left(t_{i}\right)\right)} . \\
\hat{G}(t)=\sum_{i=1}^{n} \mathrm{I}\left(t_{i} \leq t\right) \hat{p}_{i}
\end{gathered}
$$

Fokianos (2004):

$$
\hat{g}(x)=\operatorname{Kernel}\left(\hat{p}_{i}\right)
$$

Everything is estimated from everything

The reference $G(x)$ and all the parameters, and hence all the tilted distributions, are estimated from the entire fused data t. Thus $G(x)$ is estimated from the entire fused data \boldsymbol{t} and not just from the reference sample \boldsymbol{x}_{m}.

Semiparametric multivariate kernel density estimation based on many multivariate samples has been studied and applied in cancer research in Voulgaraki, Kedem, Graubard (2012).

Define the following quantities:

$$
\begin{gathered}
w_{k}(t)=\exp \left(\alpha_{k}+\beta_{k}^{\prime} h(t)\right) \\
A_{j}(t)=\int \frac{w_{j}(y) l(y \leq t)}{\sum_{k=0}^{m} \rho_{k} w_{k}(y)} d G(y), B_{j}(t)=\int \frac{w_{j}(y) h(y) l(y \leq t)}{\sum_{k=0}^{m} \rho_{k} w_{k}(y)} d G(y), \\
\bar{A}(t)=\left(A_{1}(t), \ldots, A_{m}(t)\right)^{\prime}, \quad \bar{B}(t)=\left(B_{1}^{\prime}(t), \ldots, B_{m}^{\prime}(t)\right)^{\prime} \\
\rho=\operatorname{diag}\left\{\rho_{1}, \ldots, \rho_{m}\right\}, \quad \mathbf{1}_{p}=(1, \ldots, 1)^{\prime}
\end{gathered}
$$

$\rho_{j}=n_{j} / n_{m}$ are sample fractions.

The process $\sqrt{n}(\hat{G}(t)-G(t))$ converges weakly to a zero-mean Gaussian process in $D[-\infty, \infty]$, with covariance matrix given by

$$
\begin{align*}
& \operatorname{Cov}\{\sqrt{n}(\hat{G}(t)-G(t)), \sqrt{n}(\hat{G}(s)-G(s))\}= \\
& \quad \sum_{k=0}^{m} \rho_{k}\left(G(t \wedge s)-G(t) G(s)-\sum_{j=1}^{m} \rho_{j} A_{j}(t \wedge s)\right) \\
& \quad+\left(\bar{A}^{\prime}(s) \rho, \bar{B}^{\prime}(s)\left(\boldsymbol{\rho} \otimes \mathbf{1}_{p}\right)\right) s^{-1}\binom{\rho \bar{A}(t)}{\left(\rho \otimes \mathbf{1}_{p}\right) \bar{B}(t)} . \tag{3}
\end{align*}
$$

Estimation of threshold probabilities

- From Theorem 1, $\sqrt{n}(\hat{G}(t)-G(t))$ converges to a zero-mean Gaussian process.
- Let $\hat{V}(t)$ denote the estimated variance of $\hat{G}(t)$ obtained from the theorem by replacing parameters by their estimates.
- A $1-\alpha$ level pointwise confidence interval for $G(t)$ is approximated by

$$
\begin{equation*}
\left(\hat{G}(t)-z_{\alpha / 2} \sqrt{\hat{V}(t)}, \quad \hat{G}(t)+z_{\alpha / 2} \sqrt{\hat{V}(t)}\right) \tag{4}
\end{equation*}
$$

where $z_{\alpha / 2}$ is the upper $\alpha / 2$ point of the standard normal distribution.

- From (4) we obtain confidence intervals for $p=1-G(T)$ for any T, including relatively large T, that is, small p.

Under $\mathrm{H}_{0}: \boldsymbol{\beta}=\left(\boldsymbol{\beta}_{1}^{\prime}, \ldots, \boldsymbol{\beta}_{\mathrm{q}}^{\prime}\right)^{\prime}=\mathbf{0}$, all the moments are taken with respect to the reference g.
Define a $q \times q$ matrix \mathbf{A}_{11} whose j th diagonal element is

$$
\frac{\rho_{j}\left[1+\sum_{k \neq j}^{q} \rho_{k}\right]}{\left[1+\sum_{k=1}^{q} \rho_{k}\right]^{2}} .
$$

For $j \neq j^{\prime}$, the $j j^{\prime}$ element is

$$
\frac{-\rho_{j} \rho_{j^{\prime}}}{\left[1+\sum_{k=1}^{q} \rho_{k}\right]^{2}} .
$$

The elements are bounded by 1 and the matrix is nonsingular,

$$
\left|\mathbf{A}_{11}\right|=\frac{\prod_{k=1}^{q} \rho_{k}}{\left[1+\sum_{k=1}^{q} \rho_{k}\right]^{m}}>0
$$

Under $\mathrm{H}_{0}: \boldsymbol{\beta}=\left(\boldsymbol{\beta}_{1}^{\prime}, \ldots, \boldsymbol{\beta}_{\mathrm{q}}^{\prime}\right)^{\prime}=\mathbf{0}$,

$$
\boldsymbol{S}=\left(\begin{array}{ll}
\boldsymbol{A}_{11} & \boldsymbol{A}_{11} \otimes E\left[\boldsymbol{h}^{\prime}(t)\right] \\
\boldsymbol{A}_{11} \otimes E[\boldsymbol{h}(t)] & \boldsymbol{A}_{11} \otimes E\left[\boldsymbol{h}(t) \boldsymbol{h}^{\prime}(t)\right]
\end{array}\right)
$$

and

$$
\begin{align*}
\boldsymbol{V} & =\left(\begin{array}{ll}
\mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{A}_{11} \otimes \operatorname{Var}[\boldsymbol{h}(t)]
\end{array}\right) \\
(\star) \quad \mathcal{X}_{1} & =n \hat{\boldsymbol{\beta}}^{\prime}\left(\boldsymbol{A}_{11} \otimes \operatorname{Var}[\boldsymbol{h}(t)]\right) \hat{\boldsymbol{\beta}} \tag{5}
\end{align*}
$$

$\operatorname{Var}[\boldsymbol{h}(t)]$ is the covariance matrix of $\boldsymbol{h}(t)$, and all moments are evaluated with respect to the reference distribution.

$$
\mathcal{X}_{1} \longrightarrow \chi_{(q p)}^{2}
$$

Reflectivity data obtained from two different radars (or "algorithms" or "sensors") at two different time periods. Data are random samples of reflectivity.
Kwajalein radar: S-band (10 cm) KPOL radar, located on Kwajalein Island at the southern end of the Kwajalein Atoll, Marshall Islands.
Brown Radar: C-band radar aboard NOAA ship Ronald H. Brown (RHB) at sea near Kwajalein Island.

The data obtained during the first period are referred to suggestively as Kwajalein1, Brown1, and those from the second period are called Kwajalein2, Brown2.
$m=2, n_{1}=n_{2}=500$. The hypothesis that the data come from the same radar (algorithm) is rejected quite conclusively.

	(x)	Data	$\hat{\alpha}_{1}$	$\hat{\beta}_{1}$	\mathcal{X}_{1}
p -value					
x	1	5.323	-0.164	88.332	0
	2	3.975	-0.123	52.279	$4.815 \mathrm{e}-13$
	3	4.695	-0.146	74.950	0
	4	5.016	-0.156	85.325	0
$\log (x)$	1	14.359	-4.142	54.526	$1.534 \mathrm{e}-13$
	2	18.625	-5.367	79.723	0
	3	14.880	-4.302	60.788	$6.328 \mathrm{e}-15$
	4	13.580	-3.921	49.771	$1.727 \mathrm{e}-12$

$m=3, n_{1}=n_{2}=n_{3}=500$. The hypothesis that the data come from the same radar (algorithm) is accepted quite conclusively.

	$\hat{\alpha}_{1}$	$\hat{\alpha}_{2}$	$\hat{\beta}_{1}$	$\hat{\beta}_{2}$	\mathcal{X}_{1}	p -value
Data $h(x)=$	x					
1	0.108	0.049	-0.003	-0.002	0.283	0.868
2	0.065	-0.003	-0.002	0.000	0.135	0.935
3	0.227	-0.041	-0.007	0.001	1.896	0.388
4	0.239	-0.220	-0.008	0.007	4.707	0.095
$h(x)=$	$\log x$					
1	0.453	2.278	-0.132	-0.665	1.929	0.381
2	-0.792	-0.223	0.231	0.065	0.250	0.882
3	-0.359	0.735	0.105	-0.215	0.553	0.758
4	1.665	1.246	-0.485	-0.363	1.014	0.602

Brown1, Kwajalein1, $h=x$

$h(x)=x$

Brown1, Kwajalein1, $h=\log x$

$h(x)=\log (x)$

Brown1, Brown1, $h=\log x$

$h(x)=\log (x)$

Estimated G, G1

Ref Hist \& Est g

Kernel Est g, g1

Dist Hist \& Est g1

B: Bayesian Extension (De Oliveira \& K 2017)

Application to Radar Meteorology

We have $m=q+1$ independent random samples following the sampling distributions

$$
\begin{aligned}
& x_{11}, x_{12}, \ldots, x_{1 n_{1}} \stackrel{\text { iid }}{\sim} G_{1}(x) \\
& x_{21}, x_{22}, \ldots, x_{2 n_{2}} \stackrel{i i d}{\sim} G_{2}(x) \\
& \vdots \\
& x_{q 1}, x_{q 2}, \ldots, x_{q n_{q}} \stackrel{\text { iid }}{\sim} G_{q}(x) \\
& x_{m 1}, x_{m 2}, \ldots, x_{m n_{m}} \stackrel{\text { iid }}{\sim} G(x) \\
& \boldsymbol{t}=\left(t_{1}, \ldots, t_{n}\right)^{\prime} \equiv\left(\boldsymbol{x}_{1}^{\prime}, \ldots, \boldsymbol{x}_{q}^{\prime}, \boldsymbol{x}_{m}^{\prime}\right)^{\prime} \\
& n=\sum_{j=1}^{q+1} n_{j}
\end{aligned}
$$

- For Bayesian analysis we use the parametrization $(\boldsymbol{\beta}, G)$.
- CDF's G_{1}, \ldots, G_{q} are distortions of the reference cdf G.
- Density ratio model (DRM):

$$
\begin{equation*}
d G_{j}(x)=\frac{\exp \left(\beta_{j} h(x)\right) d G(x)}{\int_{-\infty}^{\infty} \exp \left(\beta_{j} h(u)\right) d G(u)}, \quad j=1, \ldots, q, \tag{6}
\end{equation*}
$$

- Let $A=\left\{c_{1}, c_{2}, \ldots, c_{K}\right\}$ be a finite but large set of points in \mathbb{R}, chosen to 'approximate' the support of G.
- Consider the 'nonparametric' family of distributions

$$
\mathcal{G}=\left\{\sum_{k=1}^{K} p_{k} l\left(c_{k} \leq x\right): p_{k}>0 \text { for all } k \text { and } \sum_{k=1}^{K} p_{k}=1\right\} .
$$

- Assume G belongs to \mathcal{G}
- Then from (6) follows that

$$
\begin{equation*}
G_{j}(x)=\sum_{k=1}^{K}\left(\frac{p_{k} e^{\beta_{j} h\left(c_{k}\right)}}{\sum_{l=1}^{K} p_{l} e^{\beta_{j} h\left(c_{l}\right)}}\right) /\left(c_{k} \leq x\right), \quad j=1, \ldots, q . \tag{7}
\end{equation*}
$$

Specialize: Use order statistics (assuming no ties)

$$
A=\left\{t_{(1)}, t_{(2)}, \ldots, t_{(n)}\right\}
$$

Notation:
$p_{k}=d G\left(t_{(k)}\right)$
$\boldsymbol{p}_{-}=\left(p_{1}, \ldots, p_{n-1}\right)^{\prime}, p_{n}=1-\sum_{k=1}^{n-1} p_{k}$
$\boldsymbol{p}=\left(\boldsymbol{p}_{-}^{\prime}, p_{n}\right)^{\prime}$
Then the DRM parametrized by $\left(\boldsymbol{\beta}^{\prime}, \boldsymbol{p}_{-}^{\prime}\right)^{\prime} \in \mathbb{R}^{q} \times \mathbb{S}^{n-1}$, where

$$
\mathbb{S}^{n-1}=\left\{\boldsymbol{p}_{-} \in \mathbb{R}^{n-1}: p_{k}>0 \text { for all } k \text { and } \sum_{k=1}^{n-1} p_{k}<1\right\}
$$

is the unit simplex in \mathbb{R}^{n-1}.

Likelihood

Then the likelihood function of $\left(\boldsymbol{\beta}^{\prime}, \boldsymbol{p}_{-}^{\prime}\right)^{\prime}$ based on the $q+1$ samples is

$$
\begin{align*}
L\left(\boldsymbol{\beta}, \boldsymbol{p}_{-} ; \boldsymbol{t}\right) & =\prod_{k=1}^{n} p_{k} \cdot \prod_{i=1}^{n_{1}} \frac{\exp \left(\beta_{1} h\left(x_{1 i}\right)\right)}{\sum_{l=1}^{n} p_{l} e^{\beta_{1} h\left(t_{(l)}\right)}} \cdots \prod_{i=1}^{n_{q}} \frac{\exp \left(\beta_{q} h\left(x_{q i}\right)\right)}{\sum_{l=1}^{n} p_{l} e^{\beta_{q} h\left(t_{(l)}\right)}} \\
& =\frac{\prod_{k=1}^{n} p_{k} \cdot \exp \left(\boldsymbol{\beta}^{\prime} \boldsymbol{h}_{+}\right)}{\left(\sum_{l=1}^{n} p_{l} e^{\beta_{1} h\left(t_{(l)}\right)}\right)^{n_{1}} \cdots\left(\sum_{l=1}^{n} p_{l} e^{\beta_{q} h\left(t_{(l)}\right)}\right)^{n_{q}}} I\left(\boldsymbol{p}_{-} \in \mathbb{S}^{n-1}\right) \tag{8}
\end{align*}
$$

where $\boldsymbol{\beta} \in \mathbb{R}^{q}, \boldsymbol{p}_{-} \in \mathbb{S}^{n-1}$, and

$$
\boldsymbol{h}_{+}=\left(\sum_{i=1}^{n_{1}} h\left(x_{1 i}\right), \ldots, \sum_{i=1}^{n_{q}} h\left(x_{q i}\right)\right)^{\prime}
$$

Same as the empirical likelihood when the α_{j} are expressed in terms of the β_{j} and \boldsymbol{p}_{-}.

Consider transformations

$$
H: \mathbb{S}^{n-1} \longrightarrow \mathbb{R}^{n-1}
$$

such that

$$
\sum_{k=1}^{n} c_{k} \log \left(p_{k}\right), \quad \text { with } \sum_{k=1}^{n} c_{k}=0
$$

Each such transformation is one-to-one and has Jacobian proportional to $\prod_{k=1}^{n} p_{k}^{-1}$ (O'Hagan, 1994).

The specific case used here is

$$
\begin{equation*}
H\left(\boldsymbol{p}_{-}\right)=\left(\log \left(\frac{p_{1}}{p_{n}}\right), \ldots, \log \left(\frac{p_{n-1}}{p_{n}}\right)\right)^{\prime} \tag{9}
\end{equation*}
$$

which was studied by Aitchison and Shen (1980).

Assume for hyperparameters \boldsymbol{m}_{0} and V_{0},

$$
H\left(\boldsymbol{p}_{-}\right) \sim \mathrm{N}_{n-1}\left(\boldsymbol{m}_{0}, V_{0}\right)
$$

Then the joint pdf of \boldsymbol{p}_{-}is the logistic-normal distribution:

$$
\begin{equation*}
\pi\left(\boldsymbol{p}_{-}\right) \propto\left(\prod_{k=1}^{n} p_{k}\right)^{-1} \exp \left(-\frac{1}{2}\left(H\left(\boldsymbol{p}_{-}\right)-\boldsymbol{m}_{0}\right)^{\prime} V_{0}^{-1}\left(H\left(\boldsymbol{p}_{-}\right)-\boldsymbol{m}_{0}\right)\right) I\left(\boldsymbol{p}_{-} \in \mathbb{S}^{n-1}\right) \tag{10}
\end{equation*}
$$

Then for any $j, k=1, \ldots, n-1$

$$
\begin{equation*}
E\left(\frac{p_{j}}{p_{n}}\right)=\exp \left(\left(\boldsymbol{m}_{0}\right)_{j}+\frac{1}{2}\left(V_{0}\right)_{j j}\right) \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{cov}\left(\frac{p_{j}}{p_{n}}, \frac{p_{k}}{p_{n}}\right)=E\left(\frac{p_{j}}{p_{n}}\right) E\left(\frac{p_{k}}{p_{n}}\right)\left(\exp \left(\left(V_{0}\right)_{j k}\right)-1\right) \tag{12}
\end{equation*}
$$

- Assume the marginal prior $\boldsymbol{\beta} \sim \mathrm{N}_{q}\left(\boldsymbol{b}_{0}, B_{0}\right)$.
- Assume \boldsymbol{p}_{-}and $\boldsymbol{\beta}$ are independent.
- Then finally the prior $\pi\left(\boldsymbol{\beta}, \boldsymbol{p}_{-}\right)$is proportional to

$$
\begin{array}{r}
\left(\prod_{k=1}^{n} p_{k}\right)^{-1} \exp \left\{-\frac{1}{2}\left(\left(\boldsymbol{\beta}-\boldsymbol{b}_{0}\right)^{\prime} B_{0}^{-1}\left(\boldsymbol{\beta}-\boldsymbol{b}_{0}\right)+\left(H\left(\boldsymbol{p}_{-}\right)-\boldsymbol{m}_{0}\right)^{\prime} V_{0}^{-1}\left(H\left(\boldsymbol{p}_{-}\right)-\boldsymbol{m}_{0}\right)\right)\right\} \times \\
I\left(\boldsymbol{p}_{-} \in \mathbb{S}^{n-1}\right)
\end{array}
$$

Posterior

Then the posterior distribution $\pi\left(\boldsymbol{\beta}, \boldsymbol{p}_{-} \mid \boldsymbol{t}\right)$ is proportional to

$$
\frac{\exp \left\{\boldsymbol{\beta}^{\prime} \boldsymbol{h}_{+}-\frac{1}{2}\left(\left(\boldsymbol{\beta}-\boldsymbol{b}_{0}\right)^{\prime} B_{0}^{-1}\left(\boldsymbol{\beta}-\boldsymbol{b}_{0}\right)+\left(H\left(\boldsymbol{p}_{-}\right)-\boldsymbol{m}_{0}\right)^{\prime} V_{0}^{-1}\left(H\left(\boldsymbol{p}_{-}\right)-\boldsymbol{m}_{0}\right)\right)\right\}}{\left(\sum_{l=1}^{n} p_{l} e^{\beta_{1} h\left(t_{l(l)}\right)}\right)^{n_{1}} \cdots\left(\sum_{l=1}^{n} p_{l} e^{\beta_{q} h\left(t_{(l)}\right)}\right)^{n_{q}}} \times
$$

- The posterior distribution (14) is quite non-standard. Consequently, Bayesian inference about ($\boldsymbol{\beta}^{\prime}, \boldsymbol{p}_{-}^{\prime}$) can benefit from the application of Markov chain Monte Carlo (MCMC).
- The underlying idea is to simulate a Markov chain that has an equilibrium distribution which agrees with the posterior distribution of interest.
- To make inference about the model parameters we will use a form of Metropolis-Hasting MCMC algorithm in which the parameters are updated separately in two blocks, $\boldsymbol{\beta}$ and \boldsymbol{p}_{-}.

Block 1

- By inspection of (14), the full posterior distributions of $\boldsymbol{\beta}$ is given by

$$
\pi\left(\boldsymbol{\beta} \mid \boldsymbol{p}_{-}, \boldsymbol{t}\right) \propto \frac{\exp \left(\boldsymbol{\beta}^{\prime} \boldsymbol{h}_{+}-\frac{1}{2}\left(\boldsymbol{\beta}-\boldsymbol{b}_{0}\right)^{\prime} B_{0}^{-1}\left(\boldsymbol{\beta}-\boldsymbol{b}_{0}\right)\right)}{\left(\sum_{l=1}^{n} p_{l} e^{\beta_{1} h\left(t_{(l)}\right)}\right)^{n_{1}} \cdots\left(\sum_{l=1}^{n} p_{l} e^{\beta_{q} h\left(t_{(l)}\right)}\right)^{n_{q}}}
$$

- With tuning constant $c_{1}>0$, simulate a candidate $\boldsymbol{\beta}^{*}$ using a random-walk with proposal

$$
q_{1}\left(\boldsymbol{\beta}, \boldsymbol{\beta}^{*}\right) \sim \mathrm{N}_{\mathrm{q}}\left(\boldsymbol{\beta}, \mathrm{c}_{1} \mathrm{I}_{\mathrm{q}}\right)
$$

- Candidate $\boldsymbol{\beta}^{*}$ is accepted with probability

$$
\begin{equation*}
\alpha_{1}\left(\boldsymbol{\beta}, \boldsymbol{\beta}^{*}\right)=\min \left\{1, \frac{\pi\left(\boldsymbol{\beta}^{*} \mid \boldsymbol{p}_{-}, \boldsymbol{t}\right) q_{1}\left(\boldsymbol{\beta}^{*}, \boldsymbol{\beta}\right)}{\pi\left(\boldsymbol{\beta} \mid \boldsymbol{p}_{-}, \boldsymbol{t}\right) q_{1}\left(\boldsymbol{\beta}, \boldsymbol{\beta}^{*}\right)}\right\}=\min \left\{1, \xi_{1}\right\} \tag{15}
\end{equation*}
$$

If the candidate is not accepted, the next state is set equal to the current state.

Since $q_{1}\left(\boldsymbol{\beta}, \boldsymbol{\beta}^{*}\right)=q_{1}\left(\boldsymbol{\beta}^{*}, \boldsymbol{\beta}\right)$,

$$
\left.\begin{array}{rl}
\xi_{1}= & \left(\frac{\sum_{l=1}^{n} p_{l} e^{\beta_{1} h(t}(l)}{}\right. \\
\sum_{l=1}^{n} p_{l} e^{\beta_{1}^{*} h(t(l))}
\end{array}\right)^{n_{1}} \cdots\left(\frac{\left.\sum_{l=1}^{n} p_{l} e^{\beta_{q} h(t}(l)\right)}{\sum_{l=1}^{n} p_{l} e^{\beta_{q}^{*} h(t(l))}}\right)^{n_{q}} .
$$

Block 2

Likewise, it follows from (14) that the full posterior distributions of \boldsymbol{p}_{-}is

$$
\pi\left(\boldsymbol{p}_{-} \mid \boldsymbol{\beta}, \boldsymbol{t}\right) \propto \frac{\exp \left(-\frac{1}{2}\left(H\left(\boldsymbol{p}_{-}\right)-\boldsymbol{m}_{0}\right)^{\prime} V_{0}^{-1}\left(H\left(\boldsymbol{p}_{-}\right)-\boldsymbol{m}_{0}\right)\right)}{\left(\sum_{l=1}^{n} p_{l} e^{\beta_{1} h\left(t_{(l)}\right)}\right)^{n_{1}} \cdots\left(\sum_{l=1}^{n} p_{l} e^{\beta_{q} h\left(t_{(l)}\right)}\right)^{n_{q}}} I\left(\boldsymbol{p}_{-} \in \mathbb{S}^{n-1}\right)
$$

The candidate for \boldsymbol{p}_{-}is simulated using an independence proposal $q_{2}\left(\boldsymbol{p}_{-}, \boldsymbol{p}_{-}^{*}\right)$ being a scaled version of the logistic-normal prior distribution (10) where V_{0} is replaced by $c_{2} V_{0}$, where $c_{2}>0$ is a tuning constant. After the candidate \boldsymbol{p}_{-}^{*} is simulated, it is accepted with probability

$$
\begin{equation*}
\alpha_{2}\left(\boldsymbol{p}_{-}, \boldsymbol{p}_{-}^{*}\right)=\min \left\{1, \frac{\pi\left(\boldsymbol{p}_{-}^{*} \mid \boldsymbol{\beta}, \boldsymbol{t}\right) q_{2}\left(\boldsymbol{p}_{-}^{*}, \boldsymbol{p}_{-}\right)}{\pi\left(\boldsymbol{p}_{-} \mid \boldsymbol{\beta}, \boldsymbol{t}\right) q_{2}\left(\boldsymbol{p}_{-}, \boldsymbol{p}_{-}^{*}\right)}\right\}=\min \left\{1, \xi_{2}\right\} \tag{16}
\end{equation*}
$$

$$
\begin{aligned}
\xi_{2}= & \prod_{i=1}^{n} \frac{p_{i}^{*}}{p_{i}} \cdot\left(\frac{\left.\sum_{l=1}^{n} p_{l} e^{\beta_{1} h(t(l)}\right)}{\left.\sum_{l=1}^{n} p_{l}^{*} e^{\beta_{1} h(t(l)}\right)}\right)^{n_{1}} \cdots\left(\frac{\left.\sum_{l=1}^{n} p_{l} e^{\beta q^{h(t}(l)}\right)}{\left.\sum_{l=1}^{n} p_{l}^{*} e^{\beta q^{h(t}(l)}\right)}\right)^{n_{q}} \\
& \times \exp \left\{\left(\frac{c_{2}-1}{2 c_{2}}\right)\left(\left(H\left(\boldsymbol{p}_{-}\right)-\boldsymbol{m}_{0}\right)^{\prime} v_{0}^{-1}\left(H\left(\boldsymbol{p}_{-}\right)-\boldsymbol{m}_{0}\right)-\left(H\left(\boldsymbol{p}_{-}^{*}\right)-\boldsymbol{m}_{0}\right)^{\prime} v_{0}^{-1}\left(H\left(\boldsymbol{p}_{-}^{*}\right)-\boldsymbol{m}_{0}\right)\right)\right\} .
\end{aligned}
$$

MCMC algorithm to simulate a Markov chain $\left\{\left(\boldsymbol{\beta}^{(m)}, \boldsymbol{p}_{-}^{(m)}\right): m=1, \ldots, M\right\}$ whose equilibrium distribution is $\pi\left(\boldsymbol{\beta}, \boldsymbol{p}_{-} \mid \boldsymbol{t}\right)$.

Step 1: Choose the hyperparameters $\boldsymbol{b}_{0}, B_{0}, \boldsymbol{m}_{0}, V_{0}$, the tuning constants c_{1}, c_{2}, and the initial state $\left(\boldsymbol{\beta}^{(0)}, \boldsymbol{p}_{-}^{(0)}\right)$.

For $m=1, \ldots, M$ do the following:
Step 2: Simulate independently $\boldsymbol{\beta}^{*} \sim \mathrm{~N}_{q}\left(\boldsymbol{\beta}^{(m-1)}, c_{1} I_{q}\right)$ and $U_{1} \sim \operatorname{unif}(0,1)$, and set

$$
\boldsymbol{\beta}^{(m)}= \begin{cases}\boldsymbol{\beta}^{*} & \text { if } U_{1}<\alpha_{1}\left(\boldsymbol{\beta}^{(m-1)}, \boldsymbol{\beta}^{*}\right) \\ \boldsymbol{\beta}^{(m-1)} & \text { otherwise }\end{cases}
$$

where $\alpha_{1}(\cdot, \cdot)$ is given by (15).

Step 3: Simulate independently $\mathbf{W}=\left(W_{1}, \ldots, W_{n-1}\right)^{\prime} \sim N_{n-1}\left(\boldsymbol{m}_{0}, c_{2} V_{0}\right)$ and $U_{2} \sim \operatorname{unif}(0,1)$, and compute

$$
\boldsymbol{p}_{-}^{*}=\left(1+\sum_{i=1}^{n-1} e^{W_{i}}\right)^{-1}\left(e^{W_{1}}, \ldots, e^{W_{n-1}}\right)^{\prime}
$$

Step 4: Set

$$
\boldsymbol{p}_{-}^{(m)}= \begin{cases}\boldsymbol{p}_{-}^{*} & \text { if } U_{2}<\alpha_{2}\left(\boldsymbol{p}_{-}^{(m-1)}, \boldsymbol{p}_{-}^{*}\right) \\ \boldsymbol{p}_{-}^{(m-1)} & \text { otherwise }\end{cases}
$$

where $\alpha_{2}(\cdot, \cdot)$ is given by (16), and $p_{n}^{(m)}=1-\mathbf{1}^{\prime} \boldsymbol{p}_{-}^{(m)}$.

Bayesian Inference

- Once a large sample $\left\{\left(\boldsymbol{\beta}^{(m)}, \boldsymbol{p}_{-}^{(m)}\right): m=1, \ldots, M\right\}$ from the posterior distribution $\pi\left(\boldsymbol{\beta}, \boldsymbol{p}_{-} \mid \boldsymbol{t}\right)$ is available, Bayesian estimates of the quantities of interest follow easily.
- Point and interval estimates of $\beta_{1}, \ldots, \beta_{q}$ are constructed from sample averages and quantiles of the corresponding chains.
- Bayesian estimate of the reference cdf G is given by its posterior expectation

$$
\hat{G}^{B}(x)=E(G \mid \boldsymbol{t})=\sum_{k=1}^{n} E\left(p_{k} \mid \boldsymbol{t}\right) l\left(t_{(k)} \leq x\right)
$$

using the approximation computed from the simulated chain

$$
E\left(p_{k} \mid \boldsymbol{t}\right) \approx \frac{1}{M} \sum_{m=1}^{M} p_{k}^{(m)}
$$

Bayesian Inference

- Bayesian estimates of the distorted cdfs G_{1}, \ldots, G_{q} are given, using (7), by

$$
\hat{G}_{j}^{B}(x)=E\left(G_{j} \mid \boldsymbol{t}\right)=\sum_{k=1}^{n} E\left(\left.\frac{p_{k} e^{\beta_{j} h\left(t_{(k)}\right)}}{\sum_{l=1}^{n} p_{l} e^{\beta_{j} h\left(t_{(l)}\right)}} \right\rvert\, \boldsymbol{t}\right) l\left(t_{(k)} \leq x\right), \quad j=1, \ldots, q,
$$

using the approximation computed from the simulated chain

$$
E\left(\left.\frac{p_{k} e^{\beta_{j} h\left(t_{(k)}\right)}}{\sum_{l=1}^{n} p_{l} e^{\beta_{j} h\left(t_{l(l)}\right)}} \right\rvert\, \boldsymbol{t}\right) \approx \frac{1}{M} \sum_{m=1}^{M} \frac{p_{k}^{(m)} e^{\beta_{j}^{(m)} h\left(t_{(k)}\right)}}{\sum_{l=1}^{n} p_{l}^{(m)} e^{\beta_{j}^{(m)} h\left(t_{(l)}\right)}} .
$$

Example: Radar Meteorology

- $q=1, m=2, n_{1}=n_{2}=500, n=1000$.
- $\beta_{1} \sim N(0,10)\left(b_{0}=0, v_{0}=10\right)$, independent of
- $H\left(\boldsymbol{p}_{-}\right) \sim \mathrm{N}_{999}\left(-0.005,\left(0.01 \times 0.9^{|j-k|}\right)_{j k}\right), H(\cdot)$ is given in (9).
- $h(x)=x$, and $h(x)=\log x)$.
- Tuning constants $c_{1}=0.0003$ and $c_{2}=1$.
- $M=5000$ iterations, burn-in period 500 .
- β_{1} and \boldsymbol{p}_{-}acceptance rates of 0.32 and 0.41 , respectively.
$\hat{G}^{B}(x)$: Brown (solid), Kwajalein (dashed), $h(x)=x$

$\hat{G}^{B}(x)$: Brown (solid), Kwajalein (dashed), $h(x)=\log x$

Testing Distribution Equality

$$
\mathrm{H}_{0}: \beta_{1}=\cdots=\beta_{\mathrm{q}}=0
$$

- M_{0} the Bayesian model under H_{0}. It has likelihood $L_{0}\left(\boldsymbol{p}_{-} ; \boldsymbol{t}\right)=\prod_{k=1}^{n} p_{k} \cdot I\left(\boldsymbol{p}_{-} \in \mathbb{S}^{n-1}\right)$ and prior $\pi_{0}\left(\boldsymbol{p}_{-}\right)$in (10), with $\boldsymbol{p}_{-} \in \mathbb{S}^{n-1}$.
- M_{1} Bayesian model specified by the likelihood $L_{1}\left(\boldsymbol{\beta}, \boldsymbol{p}_{-} ; \boldsymbol{t}\right)$ in (8) and prior $\pi_{1}\left(\boldsymbol{\beta}, \boldsymbol{p}_{-}\right)$ in (13).
- Testing H_{0} versus H_{1} is then equivalent to choosing between models M_{0} and M_{1}.
- Define Marginal likelihoods $m_{0}(\boldsymbol{t})$ and $m_{1}(\boldsymbol{t})$ under M_{0} and M_{1} :

$$
\begin{gathered}
m_{0}(\boldsymbol{t})=\int_{\mathbb{R}^{n-1}} L_{0}\left(\boldsymbol{p}_{-} ; \boldsymbol{t}\right) \pi_{0}\left(\boldsymbol{p}_{-}\right) d \boldsymbol{p}_{-} \\
m_{1}(\boldsymbol{t})=\int_{\mathbb{R}^{9} \times \mathbb{R}^{n-1}} L_{1}\left(\boldsymbol{\beta}, \boldsymbol{p}_{-} ; \boldsymbol{t}\right) \pi_{1}\left(\boldsymbol{\beta}, \boldsymbol{p}_{-}\right) d \boldsymbol{\beta} d \boldsymbol{p}_{-}
\end{gathered}
$$

Bayes Factor

- π_{0} and $\pi_{1}=1-\pi_{0}$ respective prior probabilities of models M_{0} and M_{1}
- Bayes factor: The Bayes factor in favor of M_{0} is defined as the ratio of posterior to prior odds of M_{0}.

$$
\begin{aligned}
\mathrm{BF}_{01}(\boldsymbol{t}) & =\frac{P\left(\mathrm{M}_{0} \mid \boldsymbol{t}\right) /\left(1-P\left(\mathrm{M}_{0} \mid \boldsymbol{t}\right)\right)}{\pi_{0} /\left(1-\pi_{0}\right)} \\
& \left.=\frac{m_{0}(\boldsymbol{t})}{m_{1}(\boldsymbol{t})} \quad \text { (From Bayes Theorem }\right)
\end{aligned}
$$

$\mathrm{BF}_{01}(\boldsymbol{t})$ is interpreted as the relative evidence in favor of M_{0} over M_{1}. A value of $\mathrm{BF}_{01}(\boldsymbol{t})>1$ points to the conclusion the data lend more support to model M_{0} than to model M_{1}.

For the precipitation radar data the and the density ratio model with $h(x)=x$ and $\pi_{0}=1 / 2$.

$$
\mathrm{BF}_{01}(\boldsymbol{t})=0.0462 \quad \text { and } \quad P\left(\mathrm{M}_{0} \mid \boldsymbol{t}\right) \approx 0.044
$$

Therefore, hypothesis H_{0} is rejected, and we conclude that the data produced by the Kwajalein and Brown radars come from different distributions. This agrees with the frequentist result.

C: TS Prediction by Out of Sample Fusion (OSF).

Consider the following time series regression model,

$$
\begin{equation*}
x_{t+1}=f\left(\boldsymbol{z}_{t}\right)+\epsilon_{t+1}, \quad t=1,2, \ldots, n_{0} \tag{17}
\end{equation*}
$$

- \boldsymbol{z}_{t} contains past values of covariate time series possibly even past values of x_{t}.
- ϵ_{t} is an independent noise component.
- We approach time series prediction through the distribution of the noise component estimated by out of sample fusion (OSF) under a density ratio assumption (K- et al. 2005,2008, K- and Gagnon 2010).

Assume:

- $\epsilon_{t} \sim G$ for every t.
- $\eta_{t}, t=1,2, \ldots n_{1}$ is an additional source of data (real or artificial).
- Fuse the ϵ 's and η 's to get an estimate \hat{G} under a DRM for some tilt function \boldsymbol{h}.
- Denote the combined "data" of size $n=n_{0}+n_{1}$ by

$$
\boldsymbol{\tau}=\left(\tau_{1}, \ldots, \tau_{n}\right) \equiv\left(\epsilon_{1}, \ldots, \epsilon_{n_{0}}, \eta_{1}, \ldots, \eta_{n_{1}}\right)
$$

We obtain the following approximation of the predictive distribution at $t+1$ conditional on \boldsymbol{z}_{t},

$$
\begin{align*}
P\left(x_{t+1} \leq x \mid \boldsymbol{z}_{t}\right) & =G\left(x-f\left(\boldsymbol{z}_{t}\right)\right) \\
& \approx \hat{G}\left(x-\hat{f}\left(\boldsymbol{z}_{t}\right)\right) \\
& =\sum_{i=1}^{n} \hat{p}_{i} l\left(\tau_{i} \leq x-\hat{f}\left(\boldsymbol{z}_{t}\right)\right) \tag{18}
\end{align*}
$$

where \hat{G} is obtained from the entire fused data τ.
(a) From (18) we can estimate various conditional functions of x_{t+1} given \boldsymbol{z}_{t} as byproducts.
(b) This procedure is different from methods which use only $n_{0} \ll n$ observations.

Tackling Dependent Residuals

(a) In practice the ϵ_{t} are replaced by the residuals $\hat{\epsilon}_{t}$.
(b) Since we are only interested in the distribution of $\hat{\epsilon}_{t}$, their sequential order is not important.
(c) Hence, we can use randomly shuffled or sampled residuals to induce approximate independence, while maintaining the marginal distribution.
(d) Approximate residual independence may be achieved by using subsequences $\hat{\epsilon}_{t_{j}}$ where the residuals are spaced sufficiently far apart in time.
(e) Using the raw residuals $\hat{\epsilon}_{t}$ "as is" can still lead to useful results.

Mortality Prediction

Prediction by out of sample fusion is applied here to sampled filtered total mortality data from Los Angeles County, from 01.01.1970 to 12.31.1979 (Shumway et al. 1988).

The original daily data, consisting of a response series (total mortality) and its covariate series (two weather and six pollution series), were lowpass filtered (removing frequencies above 0.10 cycles per day) and then sampled weekly to produce series of length $N=508$ each.

Let $y, T, C O$ denote the filtered total mortality, temperature, and carbon monoxide, respectively. A plot of y_{t} is shown on the next slide displaying a marked oscillation due to filtering.

Figure: Filtered weekly mortality, Los Angeles County, 01.01.1970-12.31.1979 (Shumway et al. 1988).

Regression Model for LA Mortality

From K- and Fokianos (2002):

$$
\begin{equation*}
y_{t}=\exp \left\{\beta_{0}+\beta_{1} y_{t-1}+\beta_{2} y_{t-2}+\beta_{3} T_{t-1}+\beta_{4} \log \left(C O_{t}\right)\right\}+\hat{\epsilon}_{t} \tag{19}
\end{equation*}
$$

Partial likelihood estimates:

$$
\left(\hat{\beta}_{0}, \hat{\beta}_{1}, \hat{\beta}_{2}, \hat{\beta}_{3}, \hat{\beta}_{4}\right)=(4.5051,0.0019,0.0018,-0.0013,0.0468)
$$

Corresponding standard errors:

$$
(0.0694,0.0004,0.0004,0.0004,0.0087)
$$

Residuals acf

QQ-Norm(Residuals)

Figure: Estimated autocorrelation and qqnorm plot of $\hat{\epsilon}_{t}$ from model (19).

The qq-plot suggests fusion of $\hat{\epsilon} \equiv \boldsymbol{x}_{0}$ with i.i.d. $\mathrm{N}($ mean $(\hat{\epsilon}), \operatorname{Var}(\hat{\epsilon}))$:

$$
\eta \equiv \boldsymbol{x}_{1} \sim \mathrm{~N}(0.0016,59.5)
$$

That is: Normal $h(x)=\left(x, x^{2}\right)$ in the DRM:

$$
g_{1}(x)=\exp \left\{\alpha+\beta_{1} x+\beta_{2} x^{2}\right\} g(x) .
$$

Check by goodness of fit (GOF): Qin and Zhang (1997) GOF statistic

$$
\begin{equation*}
\Delta_{n}=\sup _{t} \sqrt{n}|\hat{G}(t)-\tilde{G}(t)|, \tag{20}
\end{equation*}
$$

$\hat{G}(t)$ is the estimated reference CDF from the fused $(\hat{\epsilon}, \eta)$.
$\tilde{G}(t)$ is the empirical distribution from the reference sample \boldsymbol{x}_{0} only.
By bootstrapping: $\Delta_{n} \approx 0.5409109, p$-value of 0.571 .
Thus, $h(x)=\left(x, x^{2}\right)$ is sensible.

One-Step Predictive Distribution

With $\hat{G}(t)$ the estimated reference CDF from the fused $(\hat{\epsilon}, \eta)$ we have the preictive distribution for any level a:

$$
\begin{align*}
& P\left(y_{t}>a \mid y_{t-1}, y_{t-2}, T_{t-1}, \log \left(C O_{t}\right)\right) \approx \\
& \quad 1-\hat{G}\left(a-\exp \left\{\hat{\beta}_{0}+\hat{\beta}_{1} y_{t-1}+\hat{\beta}_{2} y_{t-2}+\hat{\beta}_{3} T_{t-1}+\hat{\beta}_{4} \log \left(C O_{t}\right)\right\}\right) . \tag{21}
\end{align*}
$$

$P(y[t]>180 \mid F[t-1])$

Figure: $P\left(y_{t}>180 \mid y_{t-1}, y_{t-2}, T_{t-1}, \log \left(C O_{t}\right)\right)$
$P(y[t]>200 \mid F[t-1])$

Figure: $P\left(y_{t}>200 \mid y_{t-1}, y_{t-2}, T_{t-1}, \log \left(C O_{t}\right)\right)$

D: Estimation of Small Tail Probabilities.

- Repeated Fusion of Real with "Fake" Data (ROSF)
- "Augmented Reality (AR), Better than Real"

The Economist, Feb. 4, 2017, pp. 67-69.

- We'll use Theorem 1 with misspecified h.
- B-Curve

Main Points

- T is a high threshold.
- We wish to estimate a small tail probability: $p=\operatorname{Pr}(X>T)$.
- Data (e.g. toxicity) $X_{0}=\left(x_{1}, \ldots, x_{n_{0}}\right)$ below or even far below T.
- ROSF: Fuse X_{0} repeatedly with "fake" data X_{1}.
- With ROSF we get a curve which contains a point whose ordinate is p.
- We show how to "capture" p by Down-Up sequences.
- Comparison with an extreme value theory method POT.
- Background: Density ratio model.

Skewed Data Used

Nearly specified case: Gamma(3,1) Data, $p=0.01$
$X_{0} \sim \operatorname{Gamma}(3,1)$ (somewhat long tail).
$h(x)=(x, \log x), T=8.405947, n_{0}=n_{1}=100$.
Fusion: $X_{1} \sim \operatorname{Unif}(0,20)$.
Coverage from 100 Cl's from Theorem 1: 95%.

Moderately misspecified case: $f(2,12)$ Data, $p=0.01$

$X_{0} \sim f(2,12)$ (long tail).
$h(x)=(x, \log x), T=6.926608, n_{0}=n_{1}=100$.
Fusion: $X_{1} \sim \operatorname{Unif}(0,50)$.
Coverage from 100 Cl's from Theorem 1: 86%.

Misspecified case: Log-normal Data, $p=0.01$

$X_{0} \sim L N(1,1)$ (long tail).
$h(x)=(x, \log x), T=27.83649, n_{0}=n_{1}=100$.
Fusion: $X_{1} \sim \operatorname{Unif}(0,120)$.
Coverage from 100 Cl's from Theorem 1: 70\%.

Misspecified case: Inverse-Gaussian Data, $p=0.01$
$X_{0} \sim I G(4,5)$ (long tail).
$h(x)=(x, \log x), T=17.87176, n_{0}=n_{1}=100$.
Fusion: $X_{1} \sim \operatorname{Unif}(0,40)$.
Coverage from 100 Cl's from Theorem 1: 73\%.

We saw that in both the nearly specified and misspecified cases there is a positive chance the upper bound of the semiparametric Cl is above $p=0.01$.

That is all we need.
This leads to the following formulation.

Estimation of Small Tail Probabilities by ROSF

1. Suppose we wish to estimate a small tail probability $p=P(X>T)$ of some distribution and that we have a reference random sample $X_{0} \cdot \max \left(X_{0}\right) \ll T$.
2. Generate a uniform sample X_{1} whose support exceeds T.
3. Fuse X_{0} with X_{1}, and get an upper bound B_{1} for p from Theorem 1. Use $h=(x, \log x)$.
4. This gives a confidence interval $\left[0, B_{1}\right]$ for p.
5. Repeat many times to get $\left[0, B_{1}\right],\left[0, B_{2}\right], \ldots,\left[0, B_{n}\right]$.
6. Conditional on X_{0}, the upper bounds $B_{1}, B_{2}, \ldots, B_{n}$ are iid.
7. Assume that

$$
\begin{equation*}
P\left(B_{1} \geq p\right)>0 \tag{22}
\end{equation*}
$$

8. As $n \rightarrow \infty$, the plot of the ordered sequence $B_{(1)}, B_{(2)}, \ldots, B_{(n)}$ contains a point whose ordinate is p with probability approaching 1 .
9. Call the plot the B-curve.

- Any tilt function $\boldsymbol{h}(x)$ which produces upper bounds B_{i} is appropriate as long as (22) holds.
- Thus, the DRM requirement of a known $\boldsymbol{h}(x)$ can be softened considerably in the present application.

B-Curve $B_{(1)}, \ldots, B_{(10,000)}$, Fused LN(0,1)

$$
\begin{aligned}
& p=0.001, n 0=n 1=100, h(x)=(x, \log x) \\
& T=21.98, \max X_{0}=14.46, X_{1} \sim \operatorname{Unif}(0,30)
\end{aligned}
$$

B-Curve $B_{(1)}, \ldots, B_{(10,000)}$, Fused LN(1,1)

$$
\begin{aligned}
& p=0.001, n 0=n 1=100, h(x)=(x, \log x) \\
& T=59.75, \max X_{0}=25.17, X_{1} \sim \operatorname{Unif}(0,100)
\end{aligned}
$$

B-Curve $B_{(1)}, \ldots, B_{(10,000)}$, Fused Mercury

$$
\begin{aligned}
& p=0.001, n 0=n 1=100, h(x)=(x, \log x) \\
& T=22.41, \max X_{0}=11.4, X_{1} \sim \operatorname{Unif}(1,50)
\end{aligned}
$$

B-Curve $B_{(1)}, \ldots, B_{(10,000)}$, Fused $t_{(3)}$

$$
\begin{aligned}
& p=0.001, n 0=n 1=100, h(x)=(x, \log x) \\
& T=12.79, \max X_{0}=4.860123, X_{1} \sim \operatorname{Unif}(1,20)
\end{aligned}
$$

- The question then is how to find the point $\left(j, B_{(j)}\right)$ closest to the point on the B -curve whose ordinate is p.
- That is, how to find $B_{(j)}$ closest to p.

Fact: We can get F_{B} from many fusions.

- Let B_{1}, \ldots, B_{n} be a random sample of upper bounds from F_{B}.
- Let \hat{F}_{B} be the corresponding empirical distribution.
- By Glivenko-Cantelli Theorem

$$
\hat{F}_{B} \longrightarrow F_{B}
$$

almost surely uniformly as n increases.

- Thus, since we may fuse X_{0} with as many X_{1} as we wish, we know F_{B} for all practical purposes (KPWC, 2016).
- Due to a large number of fusions n, with probability approaching 1

$$
\begin{equation*}
B_{(1)}<p<B_{(n)} . \tag{23}
\end{equation*}
$$

- By the monotonicity of the B-curve as j decreases (e.g. from $n=10,000$), the $B_{(j)}$ approach p from above so that there is a $B_{(j)}$ very close to p.
- The B-curve establishes a relationship between j and p approximations.
- From a basic fact about order statistics it is known that

$$
\begin{equation*}
P\left(B_{(j)}>p\right)=\sum_{k=0}^{j-1}\binom{n}{k}\left[F_{B}(p)\right]^{k}\left[1-F_{B}(p)\right]^{n-k} \tag{24}
\end{equation*}
$$

Recall F_{B} is known for all practical purposes.

- Therefore, as (24) is monotone decreasing, the smallest p which satisfies the inequality

$$
\begin{equation*}
\sum_{k=0}^{j-1}\binom{n}{k}\left[F_{B}(p)\right]^{k}\left[1-F_{B}(p)\right]^{n-k} \leq 0.95 \tag{25}
\end{equation*}
$$

provides another relationship between j and p.

- Iterating between the two monotone relationships is an iterative method (IM).
- The iteration process starts with a sufficiently large j suggested by the B-curve.
- With that $j \equiv j_{1}$ we look for the smallest $p \equiv p_{j_{1}}$ satisfying (25).
- Next, find a $B_{\left(j_{2}\right)}$ on the B-curve closest to $p_{j_{1}}$.
- This gives a new $j \equiv j_{2}$ and the previous steps are repeated until convergence occurs and we keep getting the same p.
- This is a point estimate of the true p obtained from the iterative process. It is not the final estimate.

In symbols:

$$
B_{\left(j_{1}\right)} \rightarrow p_{\left(j_{1}\right)} \rightarrow B_{\left(j_{2}\right)} \rightarrow \cdots B_{\left(j_{k}\right)} \rightarrow p_{j_{k}} \rightarrow B_{\left(j_{k+1}\right)} \rightarrow p_{j_{k}} \rightarrow B_{\left(j_{k+1}\right)} \rightarrow p_{j_{k}} \cdots
$$

until $p_{j_{k}}$ keeps giving the same $B_{\left(j_{k+1}\right)}$

- More succinctly,

$$
j_{1} \rightarrow p_{\left(j_{1}\right)} \rightarrow j_{2} \rightarrow p_{\left(j_{2}\right)} \rightarrow \cdots j_{k} \rightarrow p_{j_{k}} \rightarrow j_{k+1} \rightarrow p_{j_{k}} \rightarrow j_{k+1} \rightarrow p_{j_{k}} \cdots
$$

- Under some computational conditions this iterative process results in a contraction in a neighborhood of the true p.

Proposition (K \& Wang 2018)

Assume that the samples size n_{0} of \boldsymbol{X}_{0} is large enough, and that the number of fusions n is sufficiently large so that $B_{(1)}<p<B_{(n)}$. Consider the smallest $p_{j} \in(0,1)$ which satisfies the inequality

$$
\begin{equation*}
P\left(B_{(j)}>p_{j}\right)=\sum_{k=0}^{j-1}\binom{n}{k}\left[F_{B}\left(p_{j}\right)\right]^{k}\left[1-F_{B}\left(p_{j}\right)\right]^{n-k} \leq 0.95 \tag{26}
\end{equation*}
$$

Then, iterating between (26) and the corresponding B-curve produces "down" and "up" sequences depending on the $B_{(j)}$ relative to p_{j}. In particular, in a neighborhood of the true tail probability p, with a high probability, there are "down" sequences which converge from above and "up" sequences which converge from below to points close to p.

Computation

- The iteration process depends on n and the increments of p at which (26) is evaluated.
- Get F_{B} from a large number of B 's, say, 10,000.
- Sample at random 1000 B's to obtain an approximate B-curve.
- The binomial coefficients $\binom{n}{k}$ are replaced by $\binom{1000}{k}$.
- We iterate between an approximate B-curve and approximate (26) with $n=1000$ until a "down-up" convergence occurs, in which case an estimate \hat{p} for p is obtained.
- This procedure can be repeated many times by sampling repeatedly many different sets of 1000 B's to obtain many point estimates \hat{p} from which interval estimates can then be constructed, as well as variance estimates.

Illustration of ROSF and Iterative Method

Evaluate p along p-increments of order $\mathcal{O}(\bar{B}), p=0.001, n_{0}=n_{1}=100$, $h(x)=(x, \log x) . \ln (26) n=1000$.

- $\mathbf{L N}(1,1), F_{B}$ from 10,000 fusions with $X_{1} \sim \operatorname{Unif}(0,80) . \bar{B}=0.00031$.
$1000 \rightarrow 0.003 \rightarrow 995 \rightarrow 0.0024 \rightarrow 991 \rightarrow 0.002 \rightarrow 986 \rightarrow 0.0018 \rightarrow 977 \rightarrow 0.0016 \rightarrow 965 \rightarrow$ $0.0014 \rightarrow 954 \rightarrow 0.0012 \rightarrow 941 \rightarrow 0.001 \rightarrow 923 \rightarrow 0.001 \cdots$
- $\mathbf{L N}(\mathbf{0}, \mathbf{1}), F_{B}$ from 1,000,000 fusions with $X_{1} \sim \operatorname{Unif}(0,40) . \bar{B}=0.000065$.
$1000 \rightarrow 0.001 \rightarrow 1000 \rightarrow 0.001 \rightarrow 1000 \rightarrow 0.001 \cdots$
- Positive $\mathbf{t}(3), F_{B}$ from 10,000 fusions with $X_{1} \sim \operatorname{Unif}(0,20) . \bar{B}=0.0005744416$.
$1000 \rightarrow 0.0038 \rightarrow 996 \rightarrow 0.003 \rightarrow 992 \rightarrow 0.0028 \rightarrow 986 \rightarrow 0.0024 \rightarrow 977 \rightarrow 0.0022 \rightarrow 964 \rightarrow$ $0.0020 \rightarrow 956 \rightarrow 0.0018 \rightarrow 939 \rightarrow 0.0016 \rightarrow 910 \rightarrow 0.0014 \rightarrow 882 \rightarrow 0.0012 \rightarrow 850 \rightarrow 0.001 \rightarrow$ $815 \rightarrow 0.001 \ldots$
- Mercury, F_{B} from 1,000,000 fusions with $X_{1} \sim \operatorname{Unif}(0,40) . \bar{B}=0.00096$.
$1000 \rightarrow 0.0052 \rightarrow 996 \rightarrow 0.0046 \rightarrow 991 \rightarrow 0.0042 \rightarrow 981 \rightarrow 0.0038 \rightarrow 966 \rightarrow 0.0034 \rightarrow 949 \rightarrow$ $0.0032 \rightarrow 942 \rightarrow 0.0030 \rightarrow 911 \rightarrow 0.0026 \rightarrow 895 \rightarrow 0.0024 \rightarrow 879 \rightarrow 0.0022 \rightarrow 851 \rightarrow 0.0020 \rightarrow$ $829 \rightarrow 0.0018 \rightarrow 801 \rightarrow 0.0016 \rightarrow 768 \rightarrow 0.0014 \rightarrow 732 \rightarrow 0.0014 \cdots$
- Lead, F_{B} from 10,000 fusions with $X_{1} \sim \operatorname{Unif}(0,40)$. p-increment 0.0001 .
$400 \rightarrow 0.0017 \rightarrow 371 \rightarrow 0.0016 \rightarrow 351 \rightarrow 0.0015 \rightarrow 327 \rightarrow 0.0014 \rightarrow 302 \rightarrow 0.0013 \rightarrow 278 \rightarrow$ $0.0012 \rightarrow 252 \rightarrow 0.0011 \rightarrow 229 \rightarrow 0.0011 \cdots$

If we start close to true $p=0.001$.
Convergence is upward:

$$
201 \rightarrow 0.001 \rightarrow 203 \rightarrow 0.001 \ldots
$$

Convergence is downward:

$$
205 \rightarrow 0.001 \rightarrow 203 \rightarrow 0.001 \cdots
$$

- $p=0.01, T=10, n_{0}=n_{1}=100 . \max \left(\boldsymbol{X}_{0}\right)=6.875607<T, h(x)=(x, \log x)$.
- F_{B} from 10,000 fusions with $\boldsymbol{X}_{1} \sim \operatorname{Unif}(0,20), 20>T$.
- Sampling $1000 B_{(j)}$'s from $10,000 B_{(j)}$'s, the IM iterative $\left(j, p_{j}\right)$ sequence along p-increments of $0.001(\bar{B}=0.0035)$ is:

$$
1000 \rightarrow 0.01 \rightarrow 999 \rightarrow 0.009 \rightarrow 998 \rightarrow 0.009 \ldots
$$

so that $\hat{p}=0.009$.

Illustrations of Down-Up Convergence

Lognormal(1,1)

Table: $\mathbf{p}=\mathbf{0 . 0 0 1}, \boldsymbol{x}_{0} \sim L N(1,1), \boldsymbol{x}_{1} \sim \operatorname{Unif}(0,80), \max \left(\boldsymbol{X}_{0}\right)=32.36495, T=59.75377, n_{0}=n_{1}=100$, $h=(x, \log x), p$-increment 0.0001 .

Starting j	Convergence to	Iterations	
1000	0.001199466	21	Down
950	0.001099466	13	Down
900	0.000999465	10	Down
800	0.000999465	5	Down
750	0.000999465	3	Down
700	0.000999465	2	Down
680	0.000999465	2	Up
680	0.000999465	2	Up
670	0.000999465	2	Up

A sensible estimate of $p=0.001$ is the average from the last 6 entries which gives $\hat{p}=0.000999465$ with absolute error of 5.35×10^{-07}.

Lognormal(1,1)

Table: $\mathbf{p}=\mathbf{0 . 0 0 0 1}, \boldsymbol{x}_{0} \sim L N(1,1), \boldsymbol{x}_{1} \sim \operatorname{Unif}(0,130), \max \left(\boldsymbol{X}_{0}\right)=44.82807, T=112.058$, $n_{0}=n_{1}=100, h=(x, \log x), p$-increment 0.000015 .

Starting j	Convergence to	Iterations	
800	0.0001945544	23	Down
500	0.0001795544	10	Down
300	0.0001345544	5	Down
200	0.0001195544	2	Down
170	0.0001045544	2	Down
160	0.0001045544	2	Down
155	0.0001045544	2	Up
152	0.0001045544	2	Up
150	0.0001045544	2	Up

A sensible estimate of $p=0.0001$ is the average from the last 5 entries which gives $\hat{p}=0.0001045544$ with absolute error of 4.5544×10^{-06}.

Lognormal(0,1)

Table: $\mathbf{p}=\mathbf{0 . 0 0 1}, \boldsymbol{x}_{0} \sim L N(0,1), \boldsymbol{x}_{1} \sim \operatorname{Unif}(0,50), \max \left(\boldsymbol{x}_{0}\right)=11.86797, T=21.98218, n_{0}=n_{1}=100$, $h=(x, \log x), p$-increment 0.0001 .

Starting j	Convergence to	Iterations	
1000	0.0010999445	19	Down
900	0.001099445	5	Down
820	0.001099445	2	Down
800	0.000999444	3	Down
790	0.000999444	2	Down
780	0.000999444	2	Up
770	0.000999444	2	Up
760	0.001099445	4	Up

A sensible estimate of $p=0.001$ is the average from the last 5 entries which gives $\hat{p}=0.001019444$ with absolute error of 1.9444×10^{-05}.

Lognormal(0,1)

Table: $\mathbf{p}=\mathbf{0 . 0 0 0 1}, \boldsymbol{x}_{0} \sim L N(0,1), \boldsymbol{x}_{1} \sim \operatorname{Unif}(0,70), \max \left(\boldsymbol{x}_{0}\right)=13.77121, T=41.22383$, $n_{0}=n_{1}=100, h=(x, \log x), p$-increment 0.000015 .

Starting j	Convergence to	Iterations	
900	0.0002392241	28	Down
800	0.0001042241	25	Down
700	0.0001042241	18	Down
500	0.0001192241	6	Down
360	0.0001042241	2	Down
355	0.0001042241	2	Up
350	0.0001042241	2	Up
350	0.0001042241	2	Up

A sensible estimate of $p=0.0001$ is the average from the last 4 entries which gives $\hat{p}=0.0001042241$ with absolute error of 4.2241×10^{-06}.

$\mathrm{f}(2,7)$

Table: $\mathbf{p}=\mathbf{0 . 0 0 1}, \boldsymbol{x}_{0} \sim f(2,7), \boldsymbol{X}_{1} \sim \operatorname{Unif}(0,50), \max \left(\boldsymbol{X}_{0}\right)=12.25072, T=21.689, n_{0}=n_{1}=100$, $h=(x, \log x), p$-increment 0.0001 .

Starting j	Convergence to	Iterations	
500	0.001103351	10	Down
450	0.001003351	9	Down
400	0.001003351	7	Down
300	0.001003351	4	Down
210	0.001003351	2	Up
190	0.000003350	2	Up
180	0.000903350	2	Up

A sensible estimate of $p=0.001$ occurs at the down-up shift which gives $\hat{p}=0.001003351$ with absolute error of 3.351×10^{-06}.

$\mathrm{f}(2,7)$

Table: $\mathbf{p}=\mathbf{0 . 0 0 0 1}, \boldsymbol{x}_{0} \sim f(2,7), \boldsymbol{X}_{1} \sim \operatorname{Unif}(0,70), \max \left(\boldsymbol{X}_{0}\right)=14.62357, T=45.13234, n_{0}=n_{1}=100$, $h=(x, \log x), p$-increment 0.000015 .

Starting j	Convergence to	Iterations	
750	0.0001341104	3	Down
740	0.0001041104	5	Down
730	0.0001041104	4	Down
700	0.0001341104	3	Up
660	0.0001041104	2	Down
650	0.0001041104	2	Up
645	0.0001041104	2	Up
640	0.0001041104	3	Up

A sensible estimate of $p=0.0001$ occurs at the down-up shift which gives $\hat{p}=0.0001041104$ with absolute error of 4.1104×10^{-06}.

Weibull(0.8,2)

Table: $\mathbf{p}=\mathbf{0 . 0 0 1}, \boldsymbol{x}_{0} \sim \operatorname{Weibull}(0.8,2), \boldsymbol{x}_{1} \sim \operatorname{Unif}(0,40), \max \left(\boldsymbol{x}_{0}\right)=8.081707, T=22.39758$, $n_{0}=n_{1}=100, h=(x, \log x), p$-increment 0.0001 .

Starting j	Convergence to	Iterations	
1000	0.001899263	3	Down
1000	0.001099263	8	Down
950	0.000999262	2	Immediate
950	0.000999262	2	Up
940	0.001099263	4	Up
940	0.000999262	3	Up

In the 3rd entry there was an immediate convergence. A sensible estimate of $p=0.001$ is the average from the last 5 entries which gives $\hat{p}=0.001039261$ with absolute error of 3.9261×10^{-05}.

Weibull(0.8,2)

Table: $\mathbf{p}=\mathbf{0 . 0 0 0 1}, \boldsymbol{x}_{0} \sim \operatorname{Weibull}(0.8,2), \boldsymbol{x}_{1} \sim \operatorname{Unif}(0,50), \max \left(\boldsymbol{X}_{0}\right)=12.20032, T=32.09036$, $n_{0}=n_{1}=100, h=(x, \log x), p$-increment 0.000015 .

Starting j	Convergence to	Iterations	
700	0.0002096393	21	Down
400	0.0001196393	11	Down
300	0.0001946393	2	Down
200	0.0001046393	5	Down
130	0.0001046393	2	Down
125	0.0001046393	2	Up
120	0.0001046393	2	Up
115	0.0001046393	2	Up

A sensible estimate of $p=0.0001$ is the average from the last 5 entries which gives $\hat{p}=0.0001046393$ with absolute error of 4.6393×10^{-06}.

NHANES: URX3TB Trichlorophenol

2604 observations of which the proportion exceeding $T=9.5$ is $p=0.001152074$.
The 3rd quartile from 10,000 B's is 0.001225 : Reasonable guess of p.

Table: $\mathbf{p}=\mathbf{0 . 0 0 1 1 5 2 0 7 4}, \boldsymbol{x}_{0}$ a trichlorophenol sample. $\boldsymbol{x}_{1} \sim \operatorname{Unif}(0,30), \max \left(\boldsymbol{x}_{0}\right)=3, T=9.5$, $n_{0}=n_{1}=100, h=(x, \log x), p$-increment 0.0001 .

Starting j	Convergence to	Iterations	
840	0.001099096	8	Down
800	0.000999095	7	Down
760	0.000999095	4	Down
755	0.001099096	2	Down
750	0.001099096	2	Up
740	0.000999095	2	Up
735	0.000999095	2	Up
732	0.001099096	4	Up

The 8 estimates in Table 9 with $\max \left(\boldsymbol{X}_{0}\right)=3$ seem to be in a neighborhood of the true $p=0.001152074$. Their average is $0.001049096 \approx p$ with standard deviation of $0.5345278 \times 10^{-05}$.

NOAA: Mercury (mg/kg)

8,266 observations. Proportion exceeding $T=22.41$ is $p=0.001088797$.
Table: $\mathbf{p}=\mathbf{0 . 0 0 1 0 8 8 7 9 7 ,}, \boldsymbol{x}_{0}$ a mercury sample. $\boldsymbol{x}_{1} \sim \operatorname{Unif}(0,50), \max \left(\boldsymbol{X}_{0}\right)=7.99, T=22.41$, $n_{0}=n_{1}=100, h=(x, \log x), p$-increment 0.0001 .

Starting j	Convergence to	Iterations	
800	0.001099352	14	Down
700	0.001199352	8	Down
600	0.000999351	5	Down
500	0.000999351	2	Down
490	0.000999351	2	Up
480	0.000999351	2	Up
470	0.000999351	2	Up

Table: Do again with different mercury sample $\boldsymbol{X}_{0} . \boldsymbol{X}_{1} \sim \operatorname{Unif}(0,50), \max \left(\boldsymbol{X}_{0}\right)=11.9, T=22.41$, $n_{0}=n_{1}=100, h=(x, \log x), p$-increment 0.0001.

Starting j	Convergence to	Iterations	
800	0.001199501	15	Down
700	0.001199501	12	Down
500	0.001199501	6	Down
400	0.001099501	2	Down
390	0.001099501	2	Up
380	0.001099501	2	Up
375	0.001199501	3	Up
360	0.001099501	3	Up

Mercury Larger Sample

NOAA: Mercury (mg/kg)

8,266 observations. Proportion exceeding $T=22.41$ is $p=0.001088797$.
Table: $\mathbf{p}=\mathbf{0 . 0 0 1 0 8 8 7 9 7}, \boldsymbol{x}_{0}$ a mercury sample. $\boldsymbol{x}_{1} \sim \operatorname{Unif}(0,50), \max \left(\boldsymbol{x}_{0}\right)=13.8, T=22.41$, $n_{0}=n_{1}=200, h=(x, \log x), p$-increment 0.0001 .

Starting j	Convergence to	Iterations	
775	0.002792137	18	Down
600	0.002092137	16	Down
300	0.001492137	9	Down
200	0.001192137	7	Down
100	0.001192137	2	Down
90	0.001192137	2	Up
85	0.001092137	2	Down
84	0.001092137	2	Up
83	0.001092137	2	Up
81	0.001092137	2	Up
80	0.001092137	2	Up

A sensible estimate of $p=0.00108879$ is $\hat{p}=0.001092137$ with absolute error of 3.347×10^{-6}.

Much Smaller $p=0.00001$

LN $(1,1)$

Table: $x_{0} \sim \mathbf{L N}(1,1): p=1-G(T)=0.00001, \max \left(\boldsymbol{X}_{0}\right)=56.53902, T=193.4252, X_{1} \sim \operatorname{Unif}(0,250)$, $n_{0}=n_{1}=500, h(x)=(x, \log x) . p$-increment 0.000001 .

Starting j	Convergence to	Iterations	
950	0.0000140213	12	Down
900	0.0000108643	8	Down
850	0.0000108643	4	Down
800	0.0000108643	1	Down
770	0.0000105312	1	Up
760	0.0000105312	2	Up

Variability of Point Estimates

- For example: $p=0.001$.
- Take different B-samples of size 1,000 taken from, say, $10,000 B^{\prime} s$, to produce tail probability estimates as above from which variance approximations can be obtained.
- With $n_{0}=n_{1}=100$ and $n_{0}=n_{1}=200$, in all cases $\sigma_{\hat{p}}=\mathrm{O}\left(10^{-4}\right)$.
- F_{B} from 1000 fusions.
- Starting $B_{(j)}$ approx 3rd Quartile of observed $1000 B_{i}$.
- From ROSF/IM we get $N \hat{p}$'s and construct Cl for p as $(\min (\hat{p}), \max (\hat{p}))$.
- Mean absolute error (MAE) from 500 runs: $\sum\left(\left|\hat{p}_{i}-p\right|\right) / 500$.

Table: $x_{0} \sim \mathbf{t}_{(1)}>0: p=1-G(T)=0.001, T=631.8645, X_{1} \sim \operatorname{Unif}(0,800)$, $n_{0}=n_{1}, h(x)=(x, \log x) . p$-increment 0.0001 .

Method	N	Coverage	CILength	MAE	Coverage	CILEngth	MAE
POT	-	63.2%	0.00372	0.00149	72.1%	0.00292	0.00122
ROSF \& IM	50	98.2%	0.00213	0.00061	100%	0.00193	0.00051
	100	100%	0.00264	-	100%	0.00241	-

Table: $x_{0} \sim \operatorname{Pareto}(1,4): p=1-G(T)=0.001, T=5.623413$, $\mathrm{X}_{1} \sim \operatorname{Unif}(1,8), n_{0}=n_{1}, h(x)=(x, \log x)$. p-increment 0.0001.

$n_{0}=100$							
Method	N	Coverage	CILength	MAE	Coverage	CI Length	MAE
POT	-	81.8%	0.00419	0.00121	84.5%	0.00337	0.00070
ROSF/IM	50	96.2%	0.00232	0.00052	97.8%	0.00231	0.00041
	100	100%	0.00272	-	100%	0.00269	-

Table: $x_{0} \sim \operatorname{IG}(2,40): p=1-G(T)=0.001, T=3.835791$, $\mathrm{X}_{1} \sim \operatorname{Unif}(0,8), n_{0}=n_{1}, h(x)=(x, \log x) . p$-increment 0.00005.

Method	N	$n_{0}=100$			$n_{0}=200$		
		Coverage	CILength	MAE	Coverage	CILength	MAE
POT	-	69.6\%	0.00324	0.00123	82.3\%	0.00316	0.00092
ROSF/IM	50	100\%	0.00289	0.00047	100\%	0.00206	0.00041
	100	100\%	0.00332	-	100\%	0.00313	-

Table: $x_{0} \sim$ Mercury : $p=1-G(T)=0.001, T=22.41$, $\mathrm{X}_{1} \sim \operatorname{Unif}(0,50), n_{0}=n_{1}, h(x)=(x, \log x) . p$-increment 0.0001 .

Method	N	$n_{0}=100$			$n_{0}=200$		
		Coverage	CILength	MAE	Coverage	CILength	MAE
POT	-	85.3\%	0.00455	0.00130	88.6\%	0.00398	0.00122
ROSF/IM	50	97.5\%	0.00215	0.00048	100\%	0.00197	0.00045
	100	100\%	0.00259	-	100\%	0.00238	-

Table: $x_{0} \sim$ Lead Intake : $p=1-G(T)=0.001, T=25$,
$\mathrm{X}_{1} \sim \operatorname{Unif}(0,30), n_{0}=n_{1}, h(x)=(x, \log x) . p$-increment 0.0001 .

	$n_{0}=100$								$n_{0}=200$		
Method	N	Coverage	CILength	MAE	Coverage	CILength	MAE				
POT	-	84.7%	0.00555	0.00142	87.7%	0.00536	0.00125				
ROSF/IM	50	100%	0.00247	0.00066	100%	0.00229	0.00058				
	100	100%	0.00289	-	100%	0.00268					

Table: $X_{0} \sim \mathbf{F}(2,12): p=1-G(T)=0.0001, T=21.84953, X_{1} \sim \operatorname{Unif}(0,25)$, $n_{0}=n_{1}, h(x)=(x, \log x) . p$-increment 0.00001 .

Method	N	Coverage	Cl Length	MAE	Coverage	CI Length	MAE
POT	-	71.4%	0.00062	0.00052	81.6%	0.00053	0.000045
ROSF/IM	50	95.2%	0.00059	0.00022	96.3%	0.00052	0.000019
	100	100%	0.00082	-	100%	0.00069	-

Table: $X_{0} \sim$ Mercury : $p=1-G(T)=0.0001, T=39.60$, $\mathrm{X}_{1} \sim \operatorname{Unif}(0,80), n_{0}=n_{1}, h(x)=(x, \log x) . p$-increment 0.00001 .

$n_{0}=100$							
Method	N	Coverage	ClLength	MAE	Coverage	$n_{0}=200$	
POTLength	MAE						
ROSF/IM	-	62.4%	0.00059	0.00049	73.4%	0.00051	0.000042
	50	95.2%	0.00056	0.00023	100%	0.00054	0.000019
	100	100%	0.00083	-	100%	0.00079	-

