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In linear regression there are examples where some of the coefficients
are known but are estimated anyway for various reasons not least of
which is failure to recognize any problem. Over-fitting is a special
case. We show that this practice may lead to inefficient estimates.
A simulation study confirms closely the theory.

1 Introduction

Let X = (X1,X2) be a full rank design matrix where X1 and X2 are matrices
of dimensions n × p and n × q, respectively. Consider the linear model

y = X1β1
+ X2β2

+ ǫ (1)

where y is a column vector of observations of length n and where β
1

is a
known column vector of length p, but β

2
is an unknown column vector of

coefficients of length q which must be estimated. Assume that the error
term ǫ has mean 0 and covariance matrix σ2In, In is the identity matrix
of dimension n × n. Since β1 is known it need not be estimated, but the
question is what happens if it is estimated along with β2 anyway?

A special case of this is encountered in over-fitting when β
1

= 0 is a
“known” vector whose inadvertent estimation results in inflated variability
of the components of β̂

2
. See the discussion in [2, Sec. 9.2.2].
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To answer the question we first estimate only the unknown β2 using the
shifted observations y∗ = y − X1β1

in the modified model referred to as
Model I,

Model I : y∗ = X2β2
+ ǫ (2)

and then we estimate both β
1

and β
2

using (1) rewritten as Model II,

Model II : y = (X1,X2)

(

β
1

β
2

)

+ ǫ = Xβ + ǫ (3)

with X = (X1,X2) a full rank n × (p + q) matrix, and β = (β′

1
, β′

2
)′.

2 Estimation of β2

It is helpful to define the matrices

A11 = X′

1
X1, A12 = X′

1
X2, A21 = X′

2
X1, A22 = X′

2
X2

and the partitioned matrix A = X′X = (X1,X2)
′(X1,X2),

A =

(

A11 A12

A21 A22

)

An important role is played by the matrix,

A11.2 = A11 −A12A
−1

22
A21

The assumption that X is of full rank implies that A is nonsingular and
therefore ([1, p. 594])

A−1 =

(

A−1

11.2 −A−1

11.2A12A
−1

22

−A−1

22 A21A
−1

11.2 A−1

22 A21A
−1

11.2A12A
−1

22 + A−1

22

)

2.1 Estimation: Model I

Since X2 has full rank, Model I gives a linear unbiased least square estimator
of β2 in terms of y∗,

β̂
2

= A−1

22
X′

2
y∗ (4)
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with

Var(β̂2) = σ2A−1

22
(5)

and an unbiased estimate for σ2 with n − q degrees of freedom

σ̂2 =
‖y∗ −X2β̂2‖

2

n − q
(6)

2.2 Estimation: Model II

Since X1 and X2 are full rank matrices, the least square estimates of both
β1 and β2 are

(

β̂
1

β̂
2

)

= A−1

(

X′

1
y

X′

2
y

)

(7)

Therefore,

β̂
1

= A−1

11.2
X′

1
y −A−1

11.2
A12A

−1

22
X′

2
y (8)

β̂
2

= −A−1

22
A21A

−1

11.2
X′

1
y +

[

A−1

22
A21A

−1

11.2
A12A

−1

22
+ A−1

22

]

X′

2
y (9)

This estimator is unbiased with covariance matrix

Var(β̂
2
) = σ2A−1

22
A21A

−1

11.2
A12A

−1

22
+ σ2A−1

22
(10)

We observe that since A is positive definite, there is a multivariate nor-
mal distribution with covariance matrix A and therefore A11.2 is the covari-
ance matrix of the corresponding conditional normal distribution. There-
fore A−1

22 A21A
−1

11.2A12A
−1

22 is a covariance matrix as well. It follows that the
variances of the components of β̂2 under Model II are larger than the corre-
sponding variances under Model I, unless the columns of X1 are orthogonal
to the columns of X2 (i.e. A12 = 0) in which case (5) and (10) and also (4)
and (9) are equal.

Thus, in general, estimating known regression coefficients in a model such
as (1) results in a loss of efficiency of the least square estimates.
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Under Model II, an unbiased estimate for σ2 with n − p − q degrees of
freedom is

σ̂2 =
‖y − X1β̂1 − X2β̂2‖

2

n − p − q
(11)

The loss of degrees of freedom may be the cause of efficiency loss when
estimating σ2 as we illustrate in the following example.

3 An Illustrations

3.1 Estimation of the Angle of a Parallelogram

The preceding discussion can be illustrated by a problem from [3, p. 66]
regarding aerial observations of a parallelogram.

Consider a parallelogram with angles θ, π − θ, θ, π − θ, and suppose that
we are given one noisy observation on each angle as follows: y1 = θ + ǫ1,
y2 = π − θ + ǫ2, y3 = θ + ǫ3, and y4 = π − θ + ǫ4, where the ǫi have mean 0
and variance σ2. This can be recorded more conveniently in vector notation
akin to model (1) as











y1

y2

y3

y4











=











0
1
0
1











π +











1
−1

1
−1











θ +











ǫ1

ǫ2

ǫ3

ǫ4











(12)

Then Model I gives from (4)

θ̂ = A−1

22
X′

2
y∗ =

1

4
(1,−1, 1,−1)











y1

y2 − π
y3

y4 − π











=
y1 − y2 + y3 − y4

4
+

π

2
(13)

and

Var(θ̂) = σ2A−1

22
= σ2/4 (14)
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On the other hand, Model II gives

A =

(

2 −2
−2 4

)

, A−1 =

(

1 1/2
1/2 1/2

)

, A11.2 = 1

so that from (9)

θ̂ = −A−1

22
A21A

−1

11.2
X′

1
y +

[

A−1

22
A21A

−1

11.2
A12A

−1

22
+ A−1

22

]

X′

2
y =

y1 + y3

2
(15)

with variance

Var(θ̂) = σ2A−1

22
A21A

−1

11.2
A12A

−1

22
+ σ2A−1

22
= σ2/2 (16)

Substituting y1 ≈ y3 ≈ θ, y2 ≈ y4 ≈ π − θ, we see that both estimators
(13) and (15) are sensible, (y1−y2 +y3−y4)/4+π/2 ≈ θ and (y1 +y3)/2 ≈ θ.
We refer to (13) as the standard estimator and to (15) as the redundant
estimator. Since both estimators are unbiased, we conclude from (14) and
(16) that the standard estimator (13) is twice as efficient as the redundant
one. Interestingly, from (8) π̂ = (y1 + y2 + y3 + y4)/2 ≈ π.

Figure 1 is a bar plot of mean square errors obtained by simulating Models
I and II one million times using uniform, logistic, and normal errors with
mean 0 and standard deviation of 10 degrees. The experimental results in
the top part of Figure 1 verify closely the fact that the standard estimator is
twice as efficient as the redundant estimator. The bottom part points to the
loss of efficiency resulting from the estimation of σ2 under Model II.

3.2 Estimation of the Angles of a Triangle

We close with a similar example concerning the estimation by least squares
of the angles of a triangle. Viewed as a least squares problem with a linear
restriction, this example is also discussed in [2, p. 59], but here, as in the pre-
vious example, we are concerned with the redundant least squares estimation
of π and its consequence when estimating the angles of a triangle.

A surveyor measures once each of the angles α, β, γ of an area that has
the shape of a triangle, and obtains unbiased measurements Y1, Y2, Y3 (in
radians). It is known that Var(Yi) = σ2, i = 1, 2, 3. Then Model I reduces
to







Y1

Y2

Y3 − π





 =







1 0
0 1

−1 −1







(

α
β

)

+







ǫ1

ǫ2

ǫ3
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and the least squares estimates of the unknown angles are
(

α̂

β̂

)

=
1

3

(

2Y1 − Y2 − Y3 + π
2Y2 − Y1 − Y3 + π

)

with covariance matrix

Var

(

α̂

β̂

)

=
σ2

3

(

2 −1
−1 2

)

On the other hand, Model II reduces to






Y1

Y2

Y3





 =







1 0 0
0 1 0

−1 −1 1













α
β
π





+







ǫ1

ǫ2

ǫ3







This time the least squares estimates are different yet sensible,






α̂

β̂
π̂





 =







Y1

Y2

Y1 + Y2 + Y3







and

Var







α̂

β̂
π̂





 = σ2







1 0 1
0 1 1
1 1 3







It follows that if π is estimated then Var(α̂) = Var(β̂) = σ2, whereas if π is
not estimated the estimates are more precise since Var(α̂) = Var(β̂) = 2σ2/3.

4 summary

We have discussed the loss of efficiency resulting from the estimation of known
coefficients in linear regression. Treating the known coefficients as unknown
parameters alters the design matrix and produces inefficient, albeit unbiased,
least square estimates. This of course is unavoidable when over-fitting is not
recognized in time. In the examples, the loss of efficiency is coupled with a
loss of information in the sense that Model I gives estimators that use all the
observations in the estimation of each unknown angle, which is not the case
in Model II where only partial information is used.

Acknowledgment: We wish to thank Victor De Oliveira and Paul Smith
for very useful comments.
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Figure 1: Mean square error results obtained by a simulation.
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