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Abstract

We advance the theory of signal extraction by developing the optimal
treatment of nonstationary vector time series that may have common
trends. We present new formulas for exact signal estimation for both
theoretical bi-infinite and finite samples. The formulas reveal the specific
roles of inter-relationships among variables for sets of optimal filters, which
makes fast and direct calculation feasible, and shows rigorously how the
optimal asymmetric filters are constructed near the end points for a set
of series. We develop a class of model-based low-pass filters for trend
estimation and illustrate the methodology by studying statistical estimates
of trend inflation.



Outline

• Trends of inflation: a data example to motivate results

• Multivariate filtering in frequency domain

• Time domain formulation of results

• Common trends models



Inflation

Year

1990 1995 2000 2005 2010

−0
.0

6
−0

.0
4

−0
.0

2
0.

00
0.

02
0.

04
0.

06

Total
Core

Figure 1: Core and Total PCE inflation, 1986 through 2010.



Inflation Data

• The underlying trend rate in inflation is monitored by central banks, and
has a significant impact on monetary policy decisions.

• Core inflation excludes food and energy, and is less volatile. But Total
inflation includes gasoline prices, and seems important too. We expect
both series to be highly correlated in their movements

• Can we assess the trend via Total inflation, but with added information
from Core inflation?

• We use the Personal Consumption Expenditures (PCE) Core price index
and Total index, source is Bureau of Economic Analysis, quarterly from
1986 through end of 2010.



Common Trends in Inflation

• We might expect correlated trends: when correlation is full (between
trend component innovations), we say there is a common trend; else we
say there are similar trends.

• We want a trend estimation (or signal extraction) method that utilizes a
bivariate time series model.

• Simple trend-plus-noise models are the Local Level Model (LLM) and
the Smooth Trend Model (STM) of Harvey (1989). We can consider
either similar or common trends for either, giving 4 models total.

• Given the specified model, we need to: (i) fit it, (ii) build the signal
extraction filters, and (iii) compute the trends along with their standard
errors. Our research describes (i), (ii), and (iii).



Unrelated Trends (LLM): Total PCE
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Figure 2: Trend estimates for the unrelated trends LLM model for Total
inflation, with 2 SE confidence intervals.



Unrelated Trends (LLM): Core PCE
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Figure 3: Trend estimates for the unrelated trends LLM model for Core
inflation, with 2 SE confidence intervals.



Similar Trends (LLM): Total PCE
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Figure 4: Trend estimates for the similar trends LLM model for Total
inflation, with 2 SE confidence intervals.



Similar Trends (LLM): Core PCE
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Figure 5: Trend estimates for the similar trends LLM model for Core
inflation, with 2 SE confidence intervals.



Common Trends (LLM): Total PCE
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Figure 6: Trend estimates for the common trends LLM model for Total
inflation, with 2 SE confidence intervals.



Common Trends (LLM): Core PCE

Year

1990 1995 2000 2005 2010

−0
.0

6
−0

.0
4

−0
.0

2
0.

00
0.

02
0.

04
0.

06

Core
Trend
CIs

Figure 7: Trend estimates for the common trends LLM model for Core
inflation, with 2 SE confidence intervals.



Unrelated Trends (LLM): Total and Core
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Figure 8: Trend estimates for the unrelated trends LLM models for Total
and Core inflation juxtaposed.



Similar Trends (LLM): Total and Core
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Figure 9: Trend estimates for the similar trends LLM models for Total and
Core inflation juxtaposed.



Unrelated Trends (STM): Total PCE
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Figure 10: Trend estimates for the unrelated trends STM model for Total
inflation, with 2 SE confidence intervals.



Unrelated Trends (STM): Core PCE
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Figure 11: Trend estimates for the unrelated trends STM model for Core
inflation, with 2 SE confidence intervals.



Similar Trends (STM): Total PCE
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Figure 12: Trend estimates for the similar trends STM model for Total
inflation, with 2 SE confidence intervals.



Similar Trends (STM): Core PCE
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Figure 13: Trend estimates for the similar trends STM model for Core
inflation, with 2 SE confidence intervals.



Common Trends (STM): Total PCE
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Figure 14: Trend estimates for the common trends STM model for Total
inflation, with 2 SE confidence intervals.



Common Trends (STM): Core PCE
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Figure 15: Trend estimates for the common trends STM model for Core
inflation, with 2 SE confidence intervals.



Unrelated Trends (STM): Total and Core

Year

1990 1995 2000 2005 2010

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0
0.

03
5

0.
04

0

Total
Core

Figure 16: Trend estimates for the unrelated trends STM models for Total
and Core inflation juxtaposed.



Similar Trends (STM): Total and Core
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Figure 17: Trend estimates for the similar trends STM models for Total and
Core inflation juxtaposed.



Common Trends (STM): Total and Core
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Figure 18: Trend estimates for the common trends STM models for Total
and Core inflation juxtaposed.



Features of Inflation Trends

• Both trends and their confidence intervals (2 SE) are produced. Models
allow us to quantify uncertainty.

• The SEs are much smaller for the common trends, vs. the similar and
unrelated trends. This is because the correlations in similar trends models
are almost full, so there is no loss in the simpler common trends model,
and uncertainty is reduced.

• The trends are smoother in the STM vs. the LLM. The STM uses a twice-
integrated random walk for the trend, while LLM uses a once-integrated
random walk.

• The trend estimates for Total and Core behave similarly, depending on
model.



Multivariate Signal Extraction

• We have signal S (trend in our case) and noise N for each of several
time series. These signals may be cross-correlated among one another,
but are independent of the noises.

• One way to think about this: say the vector signal process {St} is driven
by a vector innovation process, which is a multivariate white noise. Its
covariance matrix Σ may be non-diagonal (implies similar signals) and
may even have some zero eigenvalues (implies common signals, and
non-full rank).

• Signal and noise processes are nonstationary, and they can be temporally
differenced to a stationary process. E.g., a vector random walk.



Multivariate Filtering

Suppose we have N time series, or N components to our vector time series.
A multivariate filter is written

F (L) =
∞∑

j=−∞
W jL

j (1)

where L is the standard lag operator, and W j is the N × N matrix of
coefficients for lag j. The cross-elements W IJ

j and W JI
j are generally

unequal.



Multivariate Filtering

The bi-infinite assumption represents a useful hypothetical case for a
theoretical analysis. Given {yt} = {yt, t = −∞, · · · ,∞} an N × 1
vector series, the filter produces output zt as follows:

zt = F (L)yt =
∞∑

j=−∞
W jL

jyt =
∞∑

j=−∞
W jyt−j. (2)

The filter output for each I equals a sum of N terms, each given by a
weighting kernel applied to an element series. For I = J , we will call the
profile of weights a self- or own-filter. We now have N input series for
each output series, so there are N2 filters to consider.



Spectral Representation

The spectral representation for a stationary multivariate time series involves
a vector-valued orthogonal increments process dZ(λ) for frequencies λ ∈
[−π, π]:

yt =
∫ π

−π
eitλdZ(λ) zt =

∫ π

−π
eitλF (e−iλ)dZ(λ). (3)

The quantity F (e−iλ) is the definition of the multivariate frequency response
function (frf), equal to the Fourier Transform (FT) of the weights sequence
W j.



Spectral Representation

A comparison of input and output in (3) indicates that the new orthogonal
increments process for {zt} is F (e−iλ)dZ(λ); hence, the spectral density
matrix of the output process is F (e−iλ)f(λ)F ′(eiλ). The diagonal entries
of this matrix are the spectral densities of the component processes of
{zt}, whereas the off-diagonal entries are cross-spectral densities, which are
potentially complex-valued. If we examine the action on the Ith component
output process, we have

z(I)
t =

N∑
J=1

∫ π

−π
eitλF IJ(e−iλ)dZJ(λ)



Autocovariance Generating Function

The spectral density f gives information about the second order structure of
our vector time series. An equivalent tool is the multivariate autocovariance
generating function (ACGF), which for any mean zero stationary series xt
is written as

Gx(L) =
∞∑

j=−∞
ΓjLj,

where Γj = E(xtxt−j) is the covariance between xt and xt−j. Therefore,
Gx(L) contains information about the autocovariances of each component
of the vector process, as well as the cross-covariances of the various elements
at different lags. It is immediate that Gx(e−iλ) = f(λ).



VARMA Example

As an example, consider the stationary VARMA process (cf. Brockwell and
Davis (1991)) written

Φ(L)xt = Θ(L)κt, κt ∼WN(0,Σκ).

Then the ACGF is

Gx(L) = Φ−1(L)Θ(L)ΣκΘ′(L−1)Φ†(L−1), (4)

where † stands for inverse transpose. The spectrum is given by substituting
L = e−iλ in the above expression.



Signal Extraction Filters

Now suppose that the observed time series {yt} can be decomposed in
terms of unobserved signal and noise:

yt = st + nt, (5)

for t = −∞, ...,∞, where {st} and {nt} are both stationary, have dimension
N × 1, and are uncorrelated with one another. The (classical) problem of
multivariate signal extraction is to compute, for each I and at each time t,

E[s(I)
t |{yt}], the estimate that minimizes the Mean Squared Error (MSE)

criterion.



Signal Extraction Filters, Stationary Case

In the case that both the signal and noise processes are stationary, the
optimal filter for extracting the signal vector (Gómez, 2006) is

FWK(L) = Gs(L)[Gs(L) +Gn(L)]−1, (6)

where WK stands for the Wiener-Kolmogorov filter (see Wiener (1949) for
the classic univariate case). The filter for the noise is Gn(L)[Gs(L) +
Gn(L)]−1, which is 1N − FWK(L) – here and throughout 1N denotes an
N ×N identity matrix.



Signal Extraction Filters, Stationary Case

Now (6) gives the time-domain characterization. To convert to the frequency
domain, substitute e−iλ for L, which then produces the WK frf:

FWK(e−iλ) = Gs(e−iλ)[Gs(e−iλ) +Gn(e−iλ)]−1,

where the quantities Gs(e−iλ) and Gn(e−iλ) are the multivariate spectral
densities of signal and noise, respectively. Clearly, the multivariate WK
filter depends on the relationships between component series, expressed in
the cross-correlations of components, as well as on the individual dynamic
properties within each series.



Signal Extraction Filters, Non-stationary Case

Now suppose that signal and noise are difference-stationary processes:

for the Jth observed process {y(J)
t } suppose there exists an order dJ

polynomial δ(J) in the lag operator L such that {w(J)
t } = {δ(J)(L)y(J)

t } is
covariance stationary. We suppose similarly that there are signal and noise
differencing polynomials δ(J)

s and δ(J)
n that render them stationary, so that

{u(J)
t } = {δ(J)

s (L)s(J)
t } and {v(I)

t = δ(J)
n (L)n(J)

t } have an autocovariance
function well-defined at all lags and a spectrum that exists at all frequencies.
When the signal and noise differencing operators do not depend on J , so
that they are the same for each series (though they still differ for signal
versus noise), we refer to this situation as “uniform differencing operators.”



Signal Extraction Filters, Non-stationary Case

Let f IJu , f IJv , and f IJw denote the cross-spectral density functions for the Ith
and Jth processes for the signal, noise, and observed processes, respectively.
We suppose that the set Ω of frequencies where fw is noninvertible has
Lebesgue measure zero. Define the so-called “over-differenced” processes
given by

∂u(I)
t = δ(I)(L)s(I)

t = δ(I)n (L)u(I)
t

∂v(I)
t = δ(I)(L)n(I)

t = δ(I)s (L)v(I)
t .

These occur when the full-differencing operator δ(I)(L) is applied to signal
plus noise, resulting in a covariance stationary process with zeroes in its
spectral density.



Signal Extraction Filters, Non-stationary Case

We require some technical assumptions. First, each nonstationary process

{y(I)
t } can be generated from dI initial values y(I)

∗ together with the

difference-stationary process {w(I)
t }, for each I, in the manner elucidated

in Bell (1984). The information contained in {y(I)
t } is equivalent to that

in {w(I)
t } ∪ y(I)

∗ for the purposes of linear projection, since the former is
expressible as a linear transformation of the latter, for each I.



Signal Extraction Filters, Non-stationary Case

Assumption M∞. Suppose that, for each I = 1, 2, · · · , N , the initial

values y(I)
∗ are uncorrelated with the vector signal and noise disturbance

processes {ut} and {vt}.

We also assume that the vector processes {ut} and {vt} are uncorrelated
with one another.



Signal Extraction Filters, Non-stationary Case

Set z = e−iλ and z = eiλ, and consider the filter Ψ(L) defined as follows:
it has frf defined via the formula

Ψ(z) = G∂u(z)G−1
w (z) = f∂u(λ) f−1

w (λ) (7)

for λ ∈ Ω, and by the limit of such for λ 6∈ Ω. Then when differencing
operators are uniform, the optimal estimate of the signal at time t is given
by ŝt = Ψ(L)yt.



Signal Extraction Filters, Non-stationary Case

Since Gw = G∂u + G∂v, (7) generalizes (6) to the nonstationary case.
If some of the differencing polynomials are unity (i.e., no differencing is
required to produce a stationary series), the formula collapses down to the
classical case. In the extreme case that all the series are stationary, trivially
∂ut = st and ∂vt = nt for all times t. The second expression for the frf in
(7) shows how this is a direct multivariate generalization of the univariate
frf in Bell (1984), which has the formula |δn(z)|2fu(λ)/fw(λ).



How Does it Apply?

This result is worded so as to include the important case of co-integrated
vector time series (Engle and Granger, 1987). The main issue: for these
processes, there exist a finite set of λ for which fw(λ) is singular. Since the
problem occurs on a set of measure zero, it has no impact on defining the
optimal filters.

We next show that the key assumptions on the structure of Ψ(z) are
satisfied for a very wide class of co-integrated processes. We present our
discussion in the context of uniform differencing operators.



Filters for Co-Integrated Processes

Assume the vector signal and noise processes satisfy δs(L)st = ut and
δn(L)nt = vt, and that

ut = Ξ(L)ζt vt = Ω(L)κt, (8)

where {ζt} and {κt} are multivariate white noise processes. The MA filters
Ξ(z) and Ω(z) but are linear and invertible by assumption.

We assume that the white noise covariance matrices Σζ and Σκ are non-
negative definite, but whereas Σκ is positive definite, some zero eigenvalues
are present in Σζ.



Filters for Co-Integrated Processes

Result: Suppose that the differencing operators are common and that the
disturbances follow (8). Also suppose that Σκ is positive definite, but that
some of the eigenvalues of Σζ are zero. Then Ψ(z) defined in (7) can be
continuously extended from its natural domain Ω to all of [−π, π].



Filters for Co-Integrated Processes

Hence the formula for the WK frf is well-defined and (7) can be used to give
a compact expression for the filter, formally substituting L for z = e−iλ:

Ψ(L) = G∂u(L) [G∂u(L) + G∂v(L)]−1
. (9)

This expresses the filter in terms of the ACGFs of the over-differenced signal
and noise processes.

The components of the frf, when real-valued, are interpretable as “gain”
functions, multiplying the input spectral density.



Gain Graphs
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Figure 19: Gain plots for Core and Total. The legend reads with output
series on the left, input series on the right. Model is LLM similar trends.



Gain Graphs
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Figure 20: Gain plots for Core and Total. The legend reads with output
series on the left, input series on the right. Model is LLM common trends.



Gain Graphs
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Figure 21: Gain plots for Core and Total. The legend reads with output
series on the left, input series on the right. Model is STM similar trends.



Gain Graphs

Lambda

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Core−Core
Core−Total
Total−Core
Total−Total

Figure 22: Gain plots for Core and Total. The legend reads with output
series on the left, input series on the right. Model is STM common trends.



Summary of Gains

• All frfs are real-valued for these models, and hence equal to Gain.

• Weird behavior at frequency zero for similar trends models. This is due to
ill-conditioning in the trend innovation variance matrix – the correlation
is over .999 in both cases! Nicer behavior in common trends model,
because collinearity in parameters has been accounted for in the model.

• Core is primarily determining the trends for both Core and Total. But
Total is less relevant, and has a negative effect.

• All four filters are smoothers, since they die towards zero as frequency
increases.



Finite versus Infinite Sample

• So far we have looked at the filtering of a bi-infinite sample. Then the
filters can be examined in terms of frf, which is useful for understanding
the long-term properties of a filter.

• In practice we want time-varying finite-sample filters, i.e., matrices acting
on our data vector. Then we can get trends like at the start of the talk.
The main issue is handling beginning and end of sample.

• So we now proceed to exposit this. All this can be done in a State Space
Formulation (SSF), but we provide explicit formulas; plus there is no
confusion about initializing the Kalman filter – matrix formulas are exact
mathematically and fast in practice. Also more general than SSF, since
they can handle long memory processes.



Signal Extraction, Finite Sample

Consider N time series {y(I)
t } for 1 ≤ I ≤ N . Furthermore, each series

can be written as the sum of unobserved signal and noise components,

denoted {s(I)
t } and {n(I)

t }, such that (5) holds for all t. While previously
we considered t unbounded in both directions, here we suppose the sample
consists of t = 1, 2, · · · , T . We will express the samples of each series

as a length-T vector, namely y(I) = [y(I)
1 , y

(I)
2 , ..., y

(I)
T ]
′
, and similarly for

signal, s(I), and noise, n(I). For each I, the estimate that minimizes the
MSE criterion is E[s(I)|y(1),y(2), · · · ,y(N)]. If the samples are Gaussian
then it suffices to consider linear estimators of the signal. For a general
distribution, we can instead seek optimal linear MSE estimators.



Signal Extraction, Finite Sample

So our estimate ŝ(I) can be expressed as a T × (NT ) matrix acting on all
the data vectors stacked up, or equivalently as

ŝ(I) =
N∑
J=1

F IJy(J).

Each matrix F IJ is T × T dimensional.

Our task is to compute the entries of F IJ such that the MSE, i.e., the
covariance matrix of ŝ(I) − s(I), is minimized over the class of estimators
that are linear in the data.



Signal Extraction, Finite Sample

We may express the specification of the finite series in matrix notation with
∆(J)y(J) being a stationary vector, where ∆(J) is a T −dJ ×T dimensional
matrix whose rows consist of the coefficients of δ(J), appropriately shifted.
The application of each ∆(J) yields a stationary vector, called w(J), which

has length T − dJ (so w(J) = [w(J)

dJ+1
, · · · ,w(J)

T ]
′
). These vectors may be

correlated with one another and among themselves, which is summarized in

the notation E[w(I)w(J)′] = ΣIJw . We further suppose that the differencing
is taken such that all random vectors have mean zero. Note that this
definition includes processes that are nonstationary only in second moments,
i.e., heteroskedastic.



Signal Extraction, Finite Sample

Extending to signal and noise components, we form the matrices ∆(J)
s and

∆(J)
n corresponding to the signal and noise differencing polynomials δ(J)

s

and δ(J)
n . Let u(J) = ∆(J)

s s(J) and v(J) = ∆(J)
n n(J), with cross-covariance

matrices denoted ΣIJu and ΣIJv . Now assume there are no common roots

among δ(J)
s and δ(J)

n , so that δ(J)(L) = δ(J)
s (L)δ(J)

n (L). Then

∆(J) = ∆(J)
n ∆(J)

s = ∆(J)
s ∆(J)

n , (10)

where ∆(J)
n and ∆(J)

s are similar differencing matrices of reduced dimension,
having T − dJ rows.



Signal Extraction, Finite Sample

It follows that

w(J) = ∆(J)y(J) = ∆(J)
n u(J) + ∆(J)

s v(J), (11)

and hence – if u(I) and v(J) are uncorrelated for all I, J –

ΣIJw = ∆(I)
n ΣIJu ∆(J)

n
′
+ ∆(I)

s ΣIJv ∆(J)
s
′
.



Signal Extraction, Finite Sample

We can splice all these ΣIJw matrices together as block matrices in one large
matrix Σw, which is also the covariance matrix of w, the vector composed by
stacking all the w(J). A key condition for optimal filtering is the invertibility
of Σw. Further, the Gaussian likelihood function for the differenced
sample involves the quadratic form w′Σ−1

w w, so parameter estimation on
this basis also requires a invertible covariance matrix. For signal-noise
decompositions and homoskedastic disturbances, the invertibility of Σw is
guaranteed (derivation in the paper).



Some Technical Assumptions

For the signal extraction formula below, we require a few additional
assumptions: let ΣJJu and ΣJJv be invertible matrices for each J , assume
that u(I) and v(J) are uncorrelated with one another for all I, J , and
suppose that the initial values of y(I) are uncorrelated with u(J) and v(J)

for all J . These initial values consist of all the first dI values of each series
y(I). This type of assumption is less stringent than M∞ of the previous
subsection, and will be called Assumption MT instead.

Assumption MT . Suppose that, for each I = 1, 2, · · · , N , the initial
values of y(I) are uncorrelated with u and v.



Signal Extraction, Finite Sample

We use the notation G̃ for a block-matrix of the same dimension as a given
block-matrix G, where G̃ consists of only the block-diagonal matrices. Let

M II = ∆(I)
n
′
ΣIIv
−1

∆(I)
n + ∆(I)

s
′
ΣIIu
−1

∆(I)
s .

Fact: M II is invertible.
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With ŝ = Fy, a compact matrix formula for F is given as follows.
Define block-matrices A,B,C,D that have IJth block matrix entries
given, respectively, by
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Also let ∆̃ denote a block diagonal matrix with the matrix ∆(I) in the Ith
diagonal. Then

M = Ã+ B̃

F = M−1
[
B̃ + (C −D) Σ−1

w ∆̃
]

V = A+B + (C −D)Σ−1
w (C −D)′,

and the covariance matrix of the error vector is M−1VM−1.



Commentary

These formulas tell us exactly how each series y(J) contributes to the
component estimate ŝ(I). When there is no cross-series information, i.e.,
ΣIJu and ΣIJv are zero for I 6= J , then clearly C and D are zero, and F

reduces to an N -fold stacking of the univariate filter (M−1B̃ is just the
stacking of the univariate matrix filters of McElroy (2008)).

When C 6= D, there is cross-series information entering into the filters,
which also increases the uncertainty.



Commentary

Since Σw is invertible for processes consisting of co-integrated signal
and non-co-integrated noise (or vice versa), this indicates that maximum
likelihood estimation is viable; the Gaussian log likelihood is −2 times

w′Σ−1
w w + log |Σw|,

up to irrelevant constants, once we factor out the initial value vectors
utilizing Assumption MT . It is interesting that the Whittle likelihood is not
well-defined since fw is not invertible at all frequencies.



Implementation

• For the particular LLM and STM models (more details below), we have
R code to fit via mle.

• Matrix formulas for signal extraction are very fast for moderate time
series, and code is also written in R. All figures were produced this way.

• We also did all the same calculations in Ox, using SSF, to check our
results. Initializing the Kalman filter was a tricky business, but no such
tinkering is needed with our direct matrix approach.



Models for Multivariate Trends

Define the N×1 vector process µt = (µ1
t , ..., µ

N
t )′ as the trend, εt = (ε1t , ...,

εNt )′ as the N × 1 irregular, and yt = (y1
t , ..., y

N
t )′ as the N × 1 observed

series. Then the multivariate local level model specifies

yt = µt + εt, εt ∼ WN(0,Σε), (12)

µt = µt−1 + ηt−1, ηt ∼WN(0,Ση)

where WN(0,Σε) denotes that the vector is white noise, i.e., serially
uncorrelated with zero mean vector and N × N positive semi-definite
covariance matrix Σε.



Models for Multivariate Trends

Likewise, Ση is multivariate white noise, but even though in the general
case it is N ×N , Ση might be of reduced rank K < N . When this occurs,
we can rewrite (12) as

yt = Θµ†t+µ
†
0 + εt, (13)

µ†t = µ†t−1 + η†t .

For identification, the elements of the load matrix Θ are constrained to
satisfy ΘIJ = 0 for J > I, and ΘII = 1 for I = 1, ...,K.



Models for Multivariate Trends

Hence, the trend depends on a smaller set of processes, arranged in the
K× 1 vector µ†t , that tie together the series and are called common trends.
This is also called a Dynamic Factor Model. These common trends, or
factors, are driven by the disturbance η†t whose K ×K covariance matrix,
Ση†, is diagonal and positive. The N × 1 vector µ†0 contains zeros in the
first K positions, and constants elsewhere.



Models for Multivariate Trends

The common slopes model is

yt = µ†t + εt (14)

µ†t = µ†t + Θββ
†
t−1 + β†0,

β†t = β†t−1 + ζ†t , ζ†t ∼WN(0,Σζ†)

where β†t is Kβ × 1 (Kβ < K),Σζ† is diagonal, and Θβ has elements

(Θβ)IJ = 0 for J > I, and (Θβ)II = 1 for I = 1, ...,Kβ.



A Few Derivations for these Models

Consider the signal of interest is st = µt for all t, with common differencing
operator δs(L) = (1− L)m. To derive the frf for the trend extraction
problem, start with

f IJu (λ) = ΣIJζ

f IJv (λ) = ΣIJε

f IJw (λ) = ΣIJζ + |1− z|2mΣIJε .



A Few Derivations for these Models

So the quantities in the matrix formulation of the bi-infinite filter are
G∂u(λ) = Σζ and G∂v(λ) = |1− z|2mΣε, so that the frf is

Ψ(z) = Σζ
(

Σζ + |1− z|2mΣε
)−1

. (15)



A Few Derivations for these Models

Consider Ψ(1), or the value of the gain function at λ = 0; this is of special
interest, since it relates to how the very lowest frequency is passed by the
filter. In the case that Σζ is invertible (i.e., the similar trends case – where
Θ can be taken as an identity matrix), we easily see that Ψ(1) = 1N ; in
other words, related series have no impact on the frequency parts at the
lowest region of the spectrum (the quintessential long-term), and the filter
behaves as a collection of univariate filters.



A Few Derivations for these Models

But it is more interesting if Σζ is non-invertible; supposing that Σζ =
ΘΣ†ζΘ

′, we obtain

Ψ(1) = lim
λ→0

Ψ(z) = Θ
(
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ε Θ

)−1
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ε .

This formula reveals how the filter treats the lowest-frequency components.
When Θ = ι = [1, 1, · · · , 1]′ and Σε is a multiple of the identity matrix,
we get Ψ(1) = ιι′/N , which equally weights the contribution of each
input series. But for a more general Θ matrix, there may well be unequal
weighting of each input series – for inflation we have Θ = (1, .847)′.



Summary

• We give novel results on optimal signal extraction for multivariate time
series, for bi-infinite and finite samples, including co-integration case.

• Matrix formulas are easy to implement (compared to SSF), fast to
compute, and intuitive.

• Multivariate frf and Gain give insight into filtering.

• Co-movements in Core and Total PCE are nicely handled by the method.
Method is quite flexible, allowing for different models.



Contact

tucker.s.mcelroy@census.gov


