
AMSC661, Spring 2016 Maria Cameron

Homework 1. Due Feb. 10 (In class)

1. (10 pts.) To be done on paper. Consider Laplace’s equation u

xx

+u

yy

= 0 in the
given domain ⌦ with the given boundary conditions (BCs). Discretize the problem
on the specified mesh using the 5-point stencil and write out an appropriate system
of linear algebraic equations Au = f for the numerical solution u as it is done in
elliptic.pdf. Highlight the block structure of the matrix A.

(a) ⌦ = [0, 1]⇥ [0, 1], the mesh and the BCs are shown in Fig. (a).

(b) ⌦ = [0, 1]⇥ [0, 1], the mesh and the BCs are shown in Fig. (b).

(c) ⌦ = [0, 1]⇥[0, 1], the mesh and the BCs are shown in Fig. (c). (BCs are periodic
in y and Dirichlet on the left and right boundaries.)

(d) ⌦ = [0, 1]⇥ [0, 1], the mesh and the BC are shown in Fig. (d). (BCs are periodic
in x and Dirichlet on thetop and bottom boundaries.)
item ⌦ is the L-shaped domain shown in Fig. (e). Assume that the left and the
bottom boundaries have length 1. The mesh and the BCs are shown in Fig. (e)
as well.

2. (10 pts.) To be done in Matlab. Write Matlab codes for solving Laplace’s
equation on the specified domain with the specified BCs. To set up the matrix A, use
the commands spdiags, speye, kron (read Matlab’s help about them if necessary).
First set the mesh sizes as in the previous task and verify that the programmed matrix
A coincides with the one you obtained. Then refine your mesh to make nx = ny = 199
(this will work if your matrix A is set up as sparse) and obtain the numerical solution.
Set up colormap gray (then you do not need a colored printer) and use the command
contourf to plot your numerical solution. Please submit printouts of your codes and
plots of the solutions.

(a) Do it for the domain and the BCs shown in Fig. (d).

(b) Do it for the L-shaped domain with the BCs shown in Fig. (e) (in this case, the
mesh should be refined so that nx+ px = ny = 199).
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AMSC661, Spring 2016 Maria Cameron

Homework 2. Due Feb. 17 (In class)

1. (10 pts) This problem is concerned with spectral error analysis of the finite di↵erence
method for the Poisson equation in 1D. This approach can be readily extended to
2D.

Consider the following 2-point BVP for the Poisson equation:

� u

xx

= f(x), 0 < x < 1, u(0) = a u(1) = b. (1)

Suppose we have partitioned the interval [0, 1] into N + 2 points 0 = x0 < x1 <

. . . < x

N

< x

N+1 = 1 where x

j

= jh, h = 1/(N + 1), and solved the BVP using
the finite di↵erence method. The numerical solution U = [U1, . . . , UN

]T satisfies the
linear equation

1

h

2
AU = F +G (2)

where

A :=

2

6664

2 �1
�1 2 �1

. . .
. . .

. . .

�1 2

3

7775
, F =

2

666664

f(x1)
f(x2)

...
f(x

N�1)
f(x

N

)

3

777775
, G =

2

666664

a/h

2

0
...
0

b/h

2

3

777775
.

(a) Let u(x) be the exact solution of BVP (1). Plug it into the di↵erence equation
(2) and calculate the truncation error t = [t1, . . . , tN ]T using Taylor expansion.

(b) Show that the error e := U � u satisfies the equation

1
h

2Ae = �t. (3)

(c) Show that the eigenvalues of A are �

k

= 4
⇣
sin ⇡k

2N+2

⌘2
and the corresponding

eigenvectors are v

k

= [sin
⇣

⇡k

N+1

⌘
, sin

⇣
2⇡k
N+1

⌘
, . . . , sin

⇣
N⇡k

N+1

⌘
]T , k = 1, 2, . . . , N .

(d) Expand e and t in the basis V = [v1, . . . , vN ] as

e = V � ⌘
NX

k=1

v

k

�

k

and t = V ⌧ ⌘
NX

k=1

v

k

⌧

k

,

write A = V ⇤V T , and insert all of this into Eq. (3). Obtain the relationship

� = �h

2⇤�1
⌧. (4)
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(e) Find the exact 2-norm of ⇤�1 and an approximation to it for large N . (The
2-norm of x 2 RN is kxk2 ⌘ (xTx)1/2. The 2-norm of a symmetric matrix M is
kMk2 = max1kN

|µ
k

| where µ

k

s are eigenvalues of M . )

(f) Observe that kek2 = kV �k2 = (�TV T

V �)1/2 = k�k2 and, similarly, ktk2 = k⌧k2.
Using this obtain an upper bound on kek2.

2. (5 pts) Consider the BVP

�r · (a(x, y)ru) = f(x, y), (x, y) 2 ⌦ := [0, 1]2, u = 0, (x, y) 2 @⌦, (5)

where a(x, y) is a given smooth and positive function ⌦, and f(x, y) is a given con-
tinuous function in ⌦. Consider the finite di↵erence scheme given by

a

s

uS�uP
hy

� a

n

uP�uN
hy

hy

+
a

e

uE�uP
hx

� a

w

uP�uW
hx

hx

= �f

P

(6)

(see Fig. 5 in elliptic.pdf), where a

n

, a
s

, a
e

, and a

w

are defined as

a

n

= 1
2(aP + a

N

), a

s

= 1
2(aP + a

S

), a

e

= 1
2(aP + a

E

), a

w

= 1
2(aP + a

W

).

Calculate the truncation error for scheme (6).

3. (5 pts) Suppose the triangle � with vertices (x1, y1), (x2, y2), and (x3, y3) is a
triangular element of a mesh.

(x1,y1)

(x2,y2)

(x3,y3)

Consider basis functions �1(x, y) and �2(x, y) that are linear on this triangle and
defined by

�1(x1, y1) = 1, �1(x2, y2) = �1(x3, y3) = 0,

�2(x2, y2) = 1, �2(x1, y1) = �2(x3, y3) = 0.

(a) Calculater�1 andr�2. You should obtain rational functions of x1, x2, x3, y1, y2, y3.
Observe that the denominators in your expressions are multiples of the area of
the triangle

S =
1

2
det


x2 � x1 y2 � y1

x3 � x1 y3 � y1

�
.

Simplify the expressions for r�1 and r�2 using this observation.
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(b) Calculate ZZ

�
r�1(x, y) ·r�2(x, y)dxdy. (7)

(c) Suppose all angles of the triangle � are less than ⇡/2. What will be the sign of
the integral (7)?
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AMSC661, Spring 2016 Maria Cameron

Homework 3. Due Feb. 24 (In class)

1. (10 pts) This problem is concerned with solving the Poisson equation using the finite

Element method.

• Download all files from

http://www.wire.tu-bs.de/docs/lehre/veranstaltungen/uebungen/pde2

s

s05/fem2d/

and read pages 117-126 in [1]. Also download the mesh2d package is available

at mathwork file exchange. As you download the package, make sure to make

the following corrections for the contemporary matlab versions:

mytsearch.m Line 68: change to

i(j)=tsearchn([x y],t,[xi(j) yi(j)]);

meshfaces.m Line 199: change to

i = tsearchn(ph,th,p);

Put all files from these two downloads to the same directory.

• Create any two nontrivial smooth contours �

N

and �

D

so that �

D

lies inside

�

N

. For example, you can take some image you like and extract two contours

from there. Denote the region bounded by these two contours by ⌦. Pose the

following BVP:

�r2
u = 1, (x, y) 2 ⌦ (1)

@u

@n

= 0, (x, y) 2 �

N

, (2)

u = 0, (x, y) 2 �

D

. (3)

Remark. The solution of this problem has the following probabilistic interpre-

tation. Suppose a particle is moving randomly in the domain ⌦ with reflecting

boundary �

N

according to the SDE dz = dw, z = (x, y), where w is the stan-

dard Brownian motion (i.e., the velocity of the particle is the 2D white noise).

Suppose the particle is at the point (x, y) at time t = 0. Then the solution

u(x, y) is the expected first passage time of this particle to the interior of the

contour �

D

.

• Solve BVP (1)-(3) using FEM on the mesh generated using the function mesh2d.

Place all FEM-related codes (but not mesh2d) to the same m file. Submit a

printout of your code and figure that its generate.

2. (10 pts) The 7-well potential

V (x, y) = x

4
+ y

4 � 2(x� cos(⇡y))

2 � 2(y � cos(⇡x))

2
+ x+ 4
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is shown in the figure below by its contour plot (the 7th minimum is the shallow

minimum located near the origin).
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Denote the outer contour corresponding to V = 10 by �

N

. The contours @A and @B

are two contours (out of 6) where V = �3. The region ⌦ is bounded by contours �

N

,

@A and @B. Consider the following BVP:

r2
u�rV ·ru = 0, (x, y) 2 ⌦ (4)

@u

@n

= 0, u 2 �

N

(5)

u(@A) = 0, u(@B) = 1. (6)

Remark. The solution of this problem has the following probabilistic interpreta-

tion. Suppose a particle is moving inside the region ⌦ with reflecting boundary �

N

according to the SDE dz = �rV (z)dt+

p
2dw (the overdamped Langevin dynamics).

The potential force �rV (z) pushes it downhill while the random force dw pushes it

randomly to di↵erent directions. Suppose at time t = 0 the particle is at the point

(x, y). Then u(x, y) is the probability that the particle will reach the region B prior

to region A.

(a) Show that Eq. (4) is equivalent to

r ·
⇣
e

�V (x,y)ru

⌘
= 0. (7)

(b) Let u be the solution of Eq. (7) with BCs (5)-(6) and u

D

be a smooth function

such that u

D

= 1 at @B and u

D

= 0 outside a small neighborhood of @B. Define

v := u�u

D

. Note that v satisfies v(@B) = v(@A) = 0 and

@v

@n

= 0 on �

N

. Show

that then for any continuous and piecewise continuously di↵erentiable function
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w defined on ⌦ such that w(@A) = w(@B) = 0

Z

⌦
e

�V (x,y)rv ·rwdxdy = �
Z

⌦
e

�V (x,y)ru

D

·rwdxdy. (8)

(c) Modify your FEM code developed for the previous problem and solve Eq. (7)

with BCs (5)-(6) using it. Submit a printout of your code and the plot of u(x, y)

that it makes.

Hint: The code contours7well.m extracts the contours �
N

and @A and @B and
calls mesh2d so that the mesh has maximal diameter of triangles not exceeding
0.1.

References

[1] Jochen Alberty, Carsten Carstensen and Stefan A. Funken, Remarks around 50 lines

of Matlab: short finite element implementation
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AMSC661, Spring 2016 Maria Cameron

Homework 4. Due March 2 (In class)

1. (10 pts) The goal of this problem is to show that the FEM solution of the Poisson
equation is the linear interpolant of the exact solution. We will examine only the 1D
case. This problem is a composite of problems 2.2a, 2.4, and 5.4 from [1].

Consider the BVP

� u00 = f(x), 0 < x < 1, u(0) = u(1) = 0, (1)

where f(x) is a given function integrable on [0, 1].

(a) Verify that the solution of Eq. (1) is given by

u(x) =

Z 1

0
G(x, y)f(y)dy, (2)

where G(x, y) is Green’s function defined in [0, 1]2 by

G(x, y) =

(
(1� x)y, 0  y  x  1,

x(1� y), 0  x  y  1.
(3)

(b) Verify that for any function v(x) 2 H1
0 ([0, 1]), the following identity holds:

Z 1

0
v0(y)

d

dy
G(x, y)dy = v(x). (4)

Conclude that since the exact solution u of Eq. (1) belongs to H1
0 ([0, 1]), Eq.

(4) holds for u for all x 2 [0, 1].

(c) The linear interpolant of the exact solution u(x), denoted by I
h

u, is a function
that is equal to u at the nodes

0 ⌘ x0 < x1 < . . . < x
n

< x
n+1 ⌘ 1,

and is linear in each interval [x
j

, x
j+1], j = 0, 1, . . . , n. (We do not assume

that the nodes are equispaced.) Write I
h

u as a linear combination of the basis
functions

�
j

(x) =

8
>><

>>:

x�x

j�1

x

j

�x

j�1
, x 2 [x

j�1, xj ],
x�x

j+1

x

j

�x

j+1
, x 2 [x

j

, x
j+1].,

0, otherwise,

, j = 1, . . . , n.

Show that for the linear interpolant I
h

u,
Z 1

0
[I
h

u]0(y)
d

dy
G(x

j

, y)dy = u(x
j

). (5)
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(d) (There is nothing to write for this item, just think about it and make sure that
all statements are clear.) Observe that for every fixed node x

j

, the function
 
j

(y) := G(x
j

, y) is a linear combination of the basis functions �
i

(y). Observe
that  

j

(y), j = 1, . . . , n are linearly independent. Hence  
j

(y) constitute an-
other basis in the space S

h

= span{�1, . . . ,�n}. Recall that the FEM solution
UFEM satisfies the identity

Z 1

0
[UFEM (y)]0�0(u)dy =

Z 1

0
f(y)�(y)dy for all � 2 S

h

. (6)

(e) Now prove, using all the facts above that the FEM solution

UFEM (x) =
nX

j=1

UFEM

j

�
j

(x)

coincides with I
h

u.

2. (5 pts) The weighted Jacobi iteration for the equation (D � U � L)x = b is defined
by

x(n+1) = (1� !)x(n) + !D�1[(L+ U)x(n) + b]. (7)

Consider the application of the weighted Jacobi iteration to solving the linear sys-
tem arising from the 5-point stencil finite di↵erence scheme for the Poisson equation
�r2u = f(x, y) in a unit square [0, 1]2 with homogeneous Dirichlet boundary con-
ditions (i.e., u = 0 on the boundary of the unit square). Assume that the mesh has
step h = 1/N both in x and y directions. Hence, the total number of mesh points
where u is to be determined is (N � 1)2.

(a) Verify that the mesh functions

v
k

x

,k

y

(x
i

, y
j

) = sin (k
x

x
i

) sin (k
y

y
j

) , x
i

= hi, y
j

= hj,

are eigenvectors of the corresponding iteration matrix G for all

k
x

, k
y

= ⇡, 2⇡, . . . , (N � 1)⇡.

Determine the corresponding eigenvalues.

(b) Show that if !  0, then the iteration diverges (use the theorem relating the
eigenvalues of the iteration matrix G and the convergence.) Show that if ! > 1,
then for su�ciently small h the iteration diverges. Show that for all h the
iteration converges for all 0 < !  1.

(c) For 0 < !  1, determine the value of ! for which the asymptotic rate of
convergence r = � log ⇢(G) is maximal possible. Here ⇢(G) = max |�(G)| is the
spectral radius.
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(d) The weighted Jacobi iteration is a reasonable method to use as a smoother for
high harmonics in the multigrid method. In this case, ! is typically set to be
4/5 in 2D. Explain this choice of !. Reason as follows. Assume that the task is
to make the components proportional to the eigenvectors with max{k

x

, k
y

} �
⇡N/2 decay as fast as possible. The other components can be ignored. Further-
more, the choice of ! should be good for all h ! 0.

Hint: You might find Section 13.2.2 in [2] helpful.

3. (5 pt) The goal of this problem is to find the optimal choice of ! for the SOR method.
It is to be done in MATLAB.

(a) Consider the linear system from the previous problem with f(x, y) = 2(x2�x+
y2�y). In this case the exact solution of both the BVP �r2u = f and its finite
di↵erence solution are u(x, y) = xy(1 � x)(1 � y). Set N = 24 + 1. For each
! = 1 : 0.01 : 1.99 solve the system using SOR and determine the convergence
rate (if you do not know how to do it, you can mimic the procedure used in
basic iterative methods.m). Find the value of ! for which the convergence
rate is maximal.

(b) Repeat the previous item for N = 2k + 1 where k = 5, 6, 7, 8. To accelerate
the process, use smaller ranges of values of ! since you can bracket the optimal
value of !. You might also want to use smaller step in !.

(c) Plot the found optimal values of ! versus h and superimpose your findings with
the theoretical prediction

!
opt

=
2

1 + sin(⇡h)
.

References

[1] S. Larsson and V. Thomee, Partial Di↵erential Equations with Numerical Methods,
Springer-Verlag Berlin Heidelberg, 2003, 2009 (soft cover)

[2] Yousef Saad, Iterative Methods for Sparse Linear System, SIAM 2003 (Chapter 13)
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AMSC661, Spring 2016 Maria Cameron

Homework 5. Due March 9 (In class)

1. (10 pts) The goal of this project is to explore the multigrid method. It is to be done
in MATLAB. Consider the BVP

r · (a(x, y)ru) = f(x, y) (x, y) 2 ⌦ := [0, 1]2, u = 0 (x, y) 2 @⌦, (1)

where a(x, y) = 1+ x+2y2 and f(x, y) is set up so that u(x, y) = xy(1� x)(1� y) is
the exact solution. Set up the 1025⇥1025 mesh. u(x, y)is to be found at 1023⇥1023
interior mesh points.

(a) Compare the performance of multigrid with three di↵erent smoothers: weighted
Jacobi with !, Gauss-Seidel, and Red-and-Black Gauss-Seidel. For weighted
Jacobi, experiment with di↵erent values of ! 2 (0.8, 1) and pick ! for which
you observe the fastest convergence. Set up the while-cycle that breaks either
if the residual is less than 10�9 or if the number of V-cycles exceeds 40. For
each method (if it converges), (a) find the number of V-cycles and (b) the CPU
time necessary to make the residual to become less than 10�9. For each method
(whether it converges or not), plot the norm of the residual in the log scale
versus the number of V-cycles. Report your findings and write a conclusion,
which method and in which sense is the best.

Hint: You can use multigrid.m as a template. Red-and-Black Gauss-Seidel is
vectorized for the case of the Poisson equation in Smoothers4multigrid.m. If
you find a better approach to vectorize it, please show it to me (e.g. send me an
email with your code:). You can look up a non-vectorized version of Red-and-
Black Gauss-Seidel, e.g., in D. Bindel’s lecture, in C. Rycroft’s notes, or in Y.
Saad’s book [1].

(b) Pick the best smoother for multigrid and experiment with W-cycles instead of
V-cycles (see [1]). The code multigrid.m implements the V-cycle of depth 10
(the meshes used are N ⇥ N for N = 2p + 1 where p first decreases from 10
to 1 and then increases back to 10. If necessary, replace the regular Gauss-
Seidel with the smoother which works the best according to your results in the
previous task. Measure the cpu time for this V-cycle. Then, replace this V-cycle,
implement the W(q)-cycle with meshes for N = 2p + 1 where p first decreases
from 10 to 1, then increases to q then decreases to 1, and then increases back
to 10. Do so for q = 2, 3, ..., 9 and for each q measure the cpu time. For which
cycle, V or W, and if W, for which q the cpu time is the smallest one? Submit
a report of your observations and a print-out of your code with the W-cycle.

2. (5 pts) The Jordan form of an n⇥n matrix A is given by J = S

�1
AS. Suppose the

two first Jordan blocks of J are 1⇥1 and 2⇥2 and given by J1 = 3 and J2 =


2 1
0 2

�
.

1



Consider the Krylov sequence for the matrix A and the starting vector u = s1+s2+s3

where s1, s2, and s3 are the first three columns of the matrix S.

(a) The subspace spanned by columns of an n⇥ k matrix B (1  k < n) (denoted
by span{B}) is an invariant subspace of A if for any vector y 2 span{B},
Ay 2 span{B}, i.e., AB = BC for some k ⇥ k matrix C.

Show that span{s1, s2, s3} is an invariant subspace of A.

(b) Show that the Krylov sequence terminates at 3, i.e.,

span{u,Au,A2
u} = span{u,Au,A2

u, . . . , A

k
u} for all k > 2.

3. (5 pts) Prove that the two versions of the conjugate gradient method (see Algorithms
5.1, p. 108 and Algorithm 5.2, p. 112 in [2]) are equivalent, i.e., prove that

↵k = �
r

T
k pk

p

T
kApk

=
r

T
k rk

p

T
kApk

and �k+1 =
r

T
k+1Apk

p

T
kApk

=
r

T
k+1rk+1

r

T
k rk

.

References

[1] Yousef Saad, Iterative Methods for Sparse Linear System, SIAM 2003 (Chapter 13)

[2] J. Nocedal and S. Wrigth, Numerical Optimization, 2nd edition, Springer
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AMSC661, Spring 2016 Maria Cameron

Homework 6. Due March 23 (In class)

1. (5 pts) Consider a large linear system Ax = b where A is a symmetric positive
definite matrix. In many cases such a system can be e�ciently solved using the
preconditioned conjugate gradient (CG) method. In essence, preconditioning is the
introduction of a new variable y = Cx and the replacement of the original system
with C

�T

AC

�1
y = C

�T

b, where the condition number of the matrix C

�T

AC

�1 is
smaller than the one of A.

(a) Derive the preconditioned conjugate gradient algorithm.

Input: x0, tol, M = C

T

C.

Initialization: r0 = Ax0 � b; solve Mq0 = r0 for q0; p0 = �q0; k = 0;

while kr
k

k > tol

↵

k

=
r

T

k

q

k

p

T

k

Ap

k

;

x

k+1 = x

k

+ ↵

k

p

k

;

r

k+1 = r

k

+ ↵

k

Ap

k

;

solve Mq

k+1 = r

k+1 for q

k+1;

�

k+1 =
r

T

k+1qk+1

r

T

k

q

k

;

p

k+1 = �q

k+1 + �

k+1pk;

k = k + 1;

end (while)

Hint: The CG algorithm with preconditioning is written above. Apply it to the
equation Qy = f where Q ⌘ C

�T

AC

�1 an f ⌘ C

�T

b. Denote residuals by ⇢

k

and directions by d

k

. Show that CT

⇢

k

= r

k

and d

k

= Cp

k

. Then return to the
original variable x using these relationships.

(b) For the CG algorithm above the orthogonality relationships for the directions
and the residuals are p

T

i

Ap

j

= 0, rT
i

r

j

= 0, i 6= j. What are the orthogonality
relationships for the directions and the residuals for the preconditioned CG
algorithm?

2. (15 pts) Generate an electric circuit with n nodes connected into a chain and, in
addition randomly selected  k pairs of nodes are also connected. An example of
such a circuit is shown in the figure below.

1



Conductances c

ij

of the red conductors are random numbers between 0 and 1. The
conductances c

ij

of the green conductors are random numbers between 0 and k.

Set the voltage v at the first node to 0 and at the last one to 1. Then using the
Kirchho↵ circuit law

P
j

I

ij

= 0 and Ohm’s law I

ij

= c

ij

(v
j

� v

i

) set up a linear
system to find the voltage v

i

at each node i = 2, 3, . . . , n� 1. All these is done in the
script below.

%% generate the conductances

n = 1000;

k = 1000;

ad = 1 + round(rand(k,2)*(n-1));

ud = rand(n,1);

L = spdiags(ud,1,n,n);

for j = 1:k

if( ad(j,1) ~= ad(j,2) )

L(ad(j,1),ad(j,2)) = rand(1)*k;

end

end

L = L + L’;

p = sum(L,2);

L = L - spdiags(p,0,n,n);

%% form the linear system: the matrix A and the right-hand side b

A = -L(2:n-1,2:n-1);

b = L(2:n-1,:)*[zeros(n-1,1);1];

c = condest(A);

fprintf(’cond(A) = %d\n’,c);

(a) Set n = k = 1000. Solve the resulting system Ax = b using the CG method
with and without the incomplete Cholesky preconditioning. Set the tolerance
to 1e-12 and stop when the norm of the residual is less than the tolerance.
Compute the eigenvalues of A using eig(full(A)). Plot the residuals versus

2



step obtained by CG with Incomplete Choleski preconditioning and without it
as well as the predicted residuals by Eqs. (5.34) and (5.35) in Nocedal and
Wright [1]. Comment on your graphs. (You should converge in about 120
iterations with the preconditioning and in about 2500 without it (not 1000,
because the arithmetics is not exact – note the di↵erence!).

(b) Experiment with di↵erent values of n and k as well as di↵erent rules for assign-
ing conductances (for example, you can make them all the same rather then
random). For each experiment, compare the performance of the CG with and
without preconditioning. Comment on your observations.

3. (5 pts) Calculate the local truncation error of the Crank-Nicholson method for solv-
ing u

t

= u

xx

(see Eq. 9.6 in [2]).

Hint: use Taylor expansion around (n+1/2, j). Look up in the internet Taylor series
in 2 variables.

4. (15 pts) Consider the following IBVP for the heat equation

u

t

= u

xx

, 0  x  ⇡, t � 0, (1)

u(x, 0) = x, (2)

u(0, t) = 0, the left end is kept at temperature 0 (3)

u

x

(⇡, t) = 0, the right end is insulated. (4)

(a) Solve Eq. (1)-(4) analytically using the method of separation of variables (if you
are not familiar with it look it up e.g. in Wikipedia). You will obtain the solution
of the form of infinite series involving sines sin[(n + 1/2)x], n = 0, 1, 2, . . ..
Calculate the coe�cients for each harmonic of this series. Plot graphs of the
sums of the firstm terms of the series at time 0 and time 2 form = 1, 2, 5, 10, 100.
Find the maximum norm of the di↵erence of the sum of the first 100 terms of
the series at time 0 and the function x = u(x, 0).

(b) Compute the solution using the Crank-Nicholson scheme (Eq. 9.6 in [2]) with
h = k = 2�12

⇡ at time t = 2 and treat it as the exact solution. Experiment
with solving Eq. (1)-(4) numerically on the interval 0  t  2 using three
di↵erent schemes (a) the explicit (forward Euler) scheme (Eq. 9.4 in [2]), (b)
the implicit (backward Euler) scheme (change the superscripts to n + 1 in the
right-hand side of Eq. 9.4 in [2]), and (c) the Crank-Nicholson scheme with
space discretization into N = 2p + 1 points for p = 4, 5, . . . , 10. Find the CPU
time for each calculation. Compare your numerical solution at time t = 2 for
each h and each scheme with the “exact” solution. Plot the error versus h for
each scheme in the log-log scale. Write a summary of your observations.

Hint: In the explicit scheme, observe that if you set the time step k > h

2
/2

where h is the step in space, the solution blows up. Use � = k/h

2 equal to 0.4

3



and 1/6. Check whether � = 1/6 indeed leads to a higher order of convergence.
In the implicit (backward Euler) and the Crank-Nicholson schemes, use k = h.

References
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Equations, SIAM 2007 (Chapter 9)
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AMSC661, Spring 2016 Maria Cameron

Homework 7. Due April 1 (Friday)

(20 pts) Consider the Boussinesq equation describing ground water flow in a porous rock
lying on an impermeable bed

@

t

u = 1

2

@

2

xx

u

2 or, equivalently, @

t

u = u@

xx

u+ (@
x

u)2, (1)

where u(x, t) is the height of the water dome. It is well-known that if the initial condition
u(x, 0) = u

0

(x) has a compact support then the solution u(x, t) also has a compact sup-
port. We will denote the left and right ends for the support of u(x, t) by x

L

(t) and x

R

(t)
respectively. We also define the midpoint of the support by x

0

(t) and the half-length of
the support by x

f

(t), i.e.,

x

0

(t) = 1

2

(x
L

(t) + x

R

(t)), x

f

(t) = 1

2

(x
R

(t)� x

L

(t)).

1. Check that Eq. (1) has a self-similar solution

u(x, t) =

8
<

:

1

6

B

2(t� t

0

)�1/3


1�

⇣
x�x0

B(t�t0)
1/3

⌘
2

�
, |x� x

0

|  Bt

1/3

,

0, |x� x

0

| > Bt

1/3

,

(2)

where B, t

0

and x

0

are constants depending on the initial condition. Note that
the quantity u(x, t)/u

max

(t) = 6uB�2(t � t

0

)1/3 is a function of a single variable
⇠ := (x� x

0

)/x
f

(t) where x

f

(t) = B(t� t

0

)1/3. Therefore, at all times,

u

u

max

= 1� ⇠

2

.

2. The self-similar solution given by Eq. (2) is special in the sense that it is an inter-
mediate asymptotics for any solution with two free boundaries and compact support,
i.e., any solution with two free boundaries and compact support approaches a func-
tion given by Eq. (2) for some B, t

0

and x

0

. Demonstrate this by solving Eq. (1)
numerically starting with an arbitrary compactly supported initial condition. Do it
as follows. Introduce a new variable

⇠ := (x� x

0

(t))/x
f

(t) 2 [�1, 1].

The flux continuity condition at the free boundaries leads to the following evolution
of x

L

(t) and x

R

(t):

d

dt

x

R

(t) = �
@

⇠

u(1, t)

x

f

(t)
,

d

dt

x

L

(t) = �
@

⇠

u(�1, t)

x

f

(t)
. (3)

Using Eq. (3) show that in the coordinates (⇠, t) Eq. (1) becomes

@

t

u =
1

x

f

(t)2


�1

2
@

⇠

u [(1 + ⇠)@
⇠

u(1, t) + (1� ⇠)@
⇠

u(�1, t)] + u@

2

⇠⇠

u+ (@
⇠

u)2
�
. (4)
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3. Code alina.m solves the nonlinear system (3)-(4) using the method of lines (MOL,
see [2]) and the built-in MATLAB solver ode15s on the time interval such that
{t : x

f

(t)  2} and plots the graph of u(⇠, t)/u
max

(t) (figure(1)) versus ⇠ and
u(x, t) versus x (figure(2)). Central di↵erences are used in space at all inner mesh
points, and one-sided second-order di↵erences are used to approximate @

⇠

u at the
endpoints ⇠ = ±1.

Experiment with the initial data y0(1:n). Check that no matter what is the initial
profile, the solution approaches the parabola at t ! 1. If necessary, comment out
the stopping criterion due to events.

4. In this task the goal is to check whether the technique for moving the support of the
solution is worth the trouble. Solve the Boussinesq equation (1) on the interval [�2, 2]
without moving the support of the solution explicitly. Do not introduce variables x

L

and x

R

. Discretize Eq. (1) using central di↵erences. Start from the initial condition
giving rise to the self-similar solution:

u(x, 0) =

(
1� x

2

, |x|  1,

0, otherwise.

(a) First use the code alina.m. Make the initial condition in alina.m 1 � ⇠

2 as
it was originally. Compute the solution at time t

f

= 1.16666666666345 (this is
the time at which the support becomes (�2, 2)). Find the maximal deviation of
u(⇠, t

f

)/u
max

from the parabola 1� ⇠

2.

(b) Solve Eq. (1) using MOL with h = 0.01 and ode15s without moving the support
explicitly on the time interval [0, t

f

]. In other words, solve the system of ODEs

dU

j

dt

= U

j

U

j+1

� 2U
j

+ U

j�1

h

2

+

✓
U

j+1

� U

j�1

2h

◆
2

, j = 1, . . . , n� 1,

where the functions U
j

(t) approximate u(x
j

, t), using ode15s. Measure the CPU
time. Find the maximal deviation of u(x, t

f

)/u
max

from the parabola 1�(x/2)2.

(c) Program the forward Euler central di↵erence explicit scheme, i.e.,

v

n+1

j

� v

n

j

k

= v

n

j

v

n

j+1

� 2vn
j

+ v

n

j�1

h

2

+

✓
v

n

j+1

� v

n

j�1

2h

◆
2

.

First find out for which ratios k/h2 this method is stable. Set k = 0.5h2 and find
the maximal deviation of u(x, t

f

)/u
max

from the parabola 1� (x/2)2. Measure
the CPU time for k = 0.5h2.

(d) Program the semi-implicit scheme

v

n+1

j

� v

n

j

k

= v

n

j

v

n+1

j+1

� 2vn+1

j

+ v

n+1

j�1

h

2

+
v

n

j+1

� v

n

j�1

2h

v

n+1

j+1

� v

n+1

j�1

2h
.
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Note that you need to solve a linear system at each time step. Write out the
linear system to be solved at each time step. Check that the method is stable
even if you use h = k. For each k = h, k = 0.1h and k = h

2 find the maximal
deviation of u(x, t

f

)/u
max

from the parabola 1�(x/2)2. Measure the CPU time.

(e) Write the summary of your observations. Comment on advantages and disad-
vantages of each of these four methods.

If you would like to learn more details about the derivation of the self-similar solution
for Eq. (1) and the numerical experiment, please see [1]. The code alina.m is named
due to Prof. Alina Chertock (NCSU), one of the authors of [1], who taught me the
technique for moving the support of the solution implemented in the code.
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AMSC661, Spring 2016 Maria Cameron

Homework 8. Due April 13 (Wednesday)

1. (5 pt) Consider the advection equation

u

t

+ au

x

= 0, u(x, 0) = �(x). (1)

(a) The modified equation for the Left Upwind method is derived in [1] (see Eq.
(10.44) on page 220). Derive the modified equation for the Lax-Friedrichs
method. Compare it with the one for the Left Upwind. Comment on which
method adds more smearing.

(b) Assume that Eq. (1) is solved on the infinite line �1 < x < 1. Apply the
Fourier transform (Eq. (E.18) on page 318 in [1]) to both modified equations
and solve them in the Fourier space. Comment on the behavior of the Fourier
modes v̂(⇠, t) as t ! 1. Using the solutions in the Fourier domain, determine
necessary stability conditions on h, k, and a for the Left Upwind and the Lax-
Friedrichs methods. (We know that these condition are also su�cient from the
spectral analysis conducted in class.)

2. (5 pt) Consider the advection equation Eq. (1) on the infinite line �1 < x < 1.
Assume that a > 0. The modified equation for the Lax-Wendro↵ method is derived
in [1] (see Eq. (10.45) on page 221). Derive the modified equation for the Left Beam-
Warming method (Eq. (10.26) on p. 212 in [1]). Apply the Fourier transform (Eq.
(E.18) on page 318 in [1]) to both modified equations and solve them in the Fourier
space. Comment on the behavior of the Fourier modes v̂(⇠, t) as t ! 1. Obtain
the dispersion relations and the phase and group velocities. Compare the phase
and group velocities for the Lax-Friedrichs and the Left Beam-Warming methods.
Explain the appearance and the location of oscillations produced by these methods.
(You may want to refresh your memory by running the code advection.m available
on ELMS. Make sure appropriate values to the variable method in the code.)

3. (5 pt) Consider the wave equation on the infinite line �1 < x < 1

u

tt

= a

2
u

xx

, (2)

u(x, 0) = �(x), u

t

(x, 0) =  (x).

The parameter a > 0 is the speed of wave propagation.

(a) Verify that the solution is given by d’Alembert’s formula

u(x, t) =
1

2
(�(x+ at) + �(x� at)) +

1

2a

Z
x+at

x�at

 (s)ds. (3)

1



(b) The domain of influence of a point x0 is the set of points on the (x, t)-plane such
that u(x, t) depends on the initial conditions at the point x0. More precisely,
a point (x, t) belongs to the domain of influence of x0, if for any neighborhood
of x0 there exist perturbations of the initial conditions supported within this
neighborhood such that the solution changes at the point (x, t) due to these
perturbations.

Plot the domain of influence of a point x0 on the (x, t)-plane.

The domain of dependence of a point (x, t) is the minimal set of points on the
line (x, 0) such that the solution at the point (x, t) is completely determined by
the initial conditions restricted to this set. (The word minimal in the clause
“minimal set satisfying some conditions” means that no its proper subset satis-
fies these conditions.)

Plot the domain of dependence of a point (x, t).

(c) Let �(x) = max{1 � |x|, 0} and  (x) = 0. These initial conditions correspond
to an infinite string released from being plucked at time 0. Plot the solution
(without using the computer) at times t = 1/(2a), t = 1/a, t = 2/a, and t = 4/a.

(d) Let �(x) = 0 and

 (x) =

(
1, �1  x  1,

0, |x| > 1.

These initial conditions correspond to an infinite string hit by a hammer at time
0. Plot the solution (without using the computer) at times t = 1/(2a), t = 1/a,
t = 2/a, and t = 4/a.

4. (10 pt) The goal of this problem is to adjust for the full wave equation the numerical
methods developed for the advection equation.

(a) Rewrite Eq. (2) as a hyperbolic system. Proceed as follows. Introducing the
new vector-function

w =


u

t

u

x

�
.

Derive the equation for w: w
t

= Aw

x

, where

A =


0 a

2

1 0

�
.

Express the initial conditions for w in terms of � and  .

(b) Diagonalize the matrix A, i.e., find its eigenvalues and eigenvectors (�1, v1)
and (�2, v2) and rewrite it of the form A = C⇤C�1, where C = [v1, v2], ⇤ =
diag{�1,�2}. Introduce the new variable

y =


⇠

⌘

�
⌘ C

�1
w.

2



Observe that the system for y is decoupled into two independent advection
equations:

⇠

t

= �1⇠x, ⌘

t

= �2⌘x. (4)

Obtain the initial conditions for ⇠ and ⌘ in terms of � and  .

(c) Set � = max{1� |x|, 0},  = 0, a =
p
2, h = 0.05, and k satisfying |ka/h| = 0.8.

Pick the numerical domain �6  x  6 and periodic boundary conditions. Solve
the equations for ⇠ and ⌘ numerically using Lax-Friedrichs, appropriate Upwind
(left for one and right for the other depending on signs of �), Lax-Wendro↵,
and appropriate Beam-Warming methods. Return to the variable w and then
to the original variable u. Plot the numerical solutions u obtained using each
of the methods at times t = 1/(2a), t = 1/a, t = 2/a, and t = 4/a as well as
the exact solution at these times given by Eq. (3). Write a summary of your
observations.
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AMSC661, Spring 2016 Maria Cameron

Homework 9. Due April 20 (Wednesday)

1. (5 pt) Consider the Burgers equation u

t

+ [u

2
/2]

x

= 0 on �1 < x < 1, t � 0, with the initial data

u0(x) =

8
>>>>>><

>>>>>>:

0, x < �1 and x > 5,

2, �1 < x < 0,

4, 0 < x < 1,

3, 1 < x < 3,

1, 3 < x < 5.

(1)

(a) Draw characteristics on the (x, t) plane. Calculate all necessary shock speeds and highlight the

shock lines along which discontinuities propagate. Find the values (x

⇤
i

, t

⇤
i

), i = 1, 2, at which

the shock lines collide and accurately mark these points on the diagram. Indicate regions on

the (x, t)-plane where the solution u is constant. Mark those constant values of u.

(b) Plot the physically relevant weak solution u(x, t) at times t = 1/2, t = 1 and t = 3/2.

2. (5 pt)

Show that MacCormack’s method

U

⇤
j

= U

n

j

� k

h

⇥
f(U

n

j+1)� f(U

n

j

)

⇤
,

U

n+1
j

=

1

2

�
U

n

j

+ U

⇤
j

�
� k

2h

⇥
f(U

⇤
j

)� f(U

⇤
j�1)

⇤
, (2)

reduces to the Lax-Wendro↵ method for f(u) ⌘ au.

(a) Show that MacCormack’s method is second-order accurate on smooth solutions.

(b) Determine a numerical flux function for MacCormack’s method that allows us to rewrite it in

the conservative form. Rewrite it in the conservative form. Show that the method is consistent.

3. (10 pt)

(a) Solve numerically the Burgers equation u

t

+ [u

2
/2]

x

= 0 with the initial data (1) using the Lax-

Friedrichs method in the conservative form, Richtmyer’s method (Eq. (23) in burgers.pdf),

MacCormack’s method, Godunov’s method, and Glimm’s method. Do this using h = 0.1 and

0.01. Plot the numerical solutions at times t = 1/2, t = 1, t = 2, and t = 3 and compare them

with the exact solutions found in Problem 1(b). Write a summary of your observations.

(b) Solve numerically the Burgers equation u

t

+ [u

2
/2]

x

= 0 with the initial data u0(x) = exp(�x

2
)

using the Lax-Friedrichs method in the conservative form, Richtmyer’s method, MacCormack’s

method, Godunov’s method, and Glimm’s method. Do this using h = 0.1 and 0.01. Find

analytically the time at which the shock arises. Is it consistent with your numerical results?

Write a summary of your observations.
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AMSC661, Spring 2016 Maria Cameron

Homework 10. Due April 29 (Friday)

1. (5 pt) Let �

n

(x), n = 1, 2, . . . be a family of functions with respect to the inner product (·, ·), i.e.,
(�

m

,�

n

) = 0 for all m and n such that m 6= n. Let f(x) be a given function. Let the norm k · k
be induced by the inner product, i.e., kgk ⌘

p
(g, g) for any function g(x). Suppose we want to

approximate f(x) by a finite linear combination of N functions �

n

(x) as accurately as possible with

respect to the norm k · k, i.e., we want to find coe�cients c1, ..., cN such that

�����f �
NX

n=1

c

n

�

n

�����

2

= min

a1,...,aN

�����f �
NX

n=1

a

n

�

n

�����

2

.

Show that such coe�cients are given by

c

n

=

(f,�

n

)

(�

n

,�

n

)

. (1)

Remark The coe�cients c

n

given by Eq. (1) are called the Fourier coe�cients for the function f

and the family of n orthogonal functions {�
n

}1
n=1. Note that the formula for the Fourier coe�cients

is the same for any inner product.

2. (5 pt)

(a) Find the family of eigenvalues and the corresponding eigenfunctions of the di↵erential operator

L =

d

dx

acting on the space of 2⇡-periodic functions, i.e, find all pairs (�

k

,�

k

) such that

d�

k

dx

= �

k

�

k

, �(0) = �(2⇡).

(b) Find the family of eigenvalues and the corresponding eigenvectors of the N -point central di↵er-

ence operator with 2⇡-periodic boundary conditions

L

N

=

N

4⇡

2

66664

0 1 0 . . . �1

�1 0 1 . . . 0

0 �1 0 . . . . . .

. . . . . . . . . 1

1 0 . . . �1 0

3

77775
.

Comment on how the eigenvalues and eigenvectors/eigenfunctions of L and L

N

relate when N

is finite and fixed and when N ! 1.

3. (5 pt) The discrete Fourier transform fft and the inverse discrete Fourier transform ifft are defined,

respectively, by

y(k) =

N�1X

j=0

x(j)!

jk

N

, x(j) =

1

N

N�1X

k=0

y(k)!

�jk

N

, where !

N

= e

� 2⇡i
N
. (2)

Verify that the functions fft and ifft are mutually inverse.

1



4. 5 pts Read an article on the Kuramoto-Sivashinsky equation available at

http://people.maths.ox.ac.uk/trefethen/pdectb/kuramoto2.pdf

Solve the equation

u

t

+ u

xxxx

+ u

xx

+

1
2(u

2
)

x

= 0, u(x, 0) = cos(x/16)(1 + sin(x/16)) (3)

on the interval [0, 32⇡] with periodic boundary condition. Proceed as follows. Assume first that you

need to solve

u

t

= �u

xxxx

� u

xx

:= Lu. (4)

Write

u(x, t) =

1X

k=�1
u

k

(t)e

ikx/16
.

Plug this into the equation and obtain an exact solution u(x, t) of Eq. (4). Define the solution

operator e

tL

so that u(x, t) = e

tL

u(x, 0). Now return to Eq. (3). Note that u

t

= Lu +N(u) where

N(u) := �1
2(u

2
)

x

. Define a new unknown function v(x, t) by u(x, t) = e

tL

v(x, t). Plug this into

u

t

= Lu+N(u) and obtain the following equation for v(x, t):

v

t

= e

�tL

N(e

tL

v). (5)

Solve Eq. (5) using 4th order Runge-Kutta method on the time interval [0,200]. Plot the surface

u(x, t) using the command imagesc. Compare it with the one in the article above.

Hint: modify the program KdVrkm1.m that solves the Korteweg-de Vriez equation

u

t

+ u

xxx

+

1
2(u

2
)

x

= 0

using the proposed approach.

5. 5 pts

(a) Prove that the N -point Discrete Fourier Transform (2) aliases a high frequency m not in the

range {0, 1, . . . , N � 1} to a uniquely defined frequency m

A

2 {0, 1, . . . , N � 1}. Hint: write
f(x) =

P1
m=�1 ↵

m

e

imx. Its m-th Fourier component is f

m

:= ↵

m

e

imx. Apply the discrete

Fourier transform to the function f

m

(x

j

) = ↵

m

e

imxj , x
j

=

2⇡j
N

. Then apply the inverse discrete
Fourier transform and see what happens.

(b) Let f(x) = sin(50x) and N = 32. What is i↵t(↵t(f))?

6. 5 pts Devise the Fast Fourier Transform for N = 3

m

. Work out the formulas for N = 3

2
= 9 as it

is done in the lecture notes. Calculate the number of flops and compare it with the number of flops

for N = 2

m

.
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AMSC661, Spring 2016 Maria Cameron

Homework 11. Due May 9 (Monday)

1. (5pt) Write a book report explaining the construction of Daubechies db2 (or D4) wavelet and the
corresponding scaling function shown in the top left figure in Wiki.

2. (5 pt) Write a program (from scratch) generating Daubechies wavelet and the corresponding scaling
function using the iterative technique. At iteration j, � and  are evaluated at the points (2k+1)2�j ,
k = 0, 1, . . . , 3 ⇤ 2j�1 � 1. Do 10 iterations. Submit a printout of your code and the graphs of � and
 .

3. (5 pt) Read matlab help on wavelet families, wavefun, and Two-Dimensional Discrete Wavelet

Analysis. Take any photo of your choice containing di↵erent features: texture, flat areas, face. Do
not use ”Lena”. Compress it using wavelet decomposition and zeroing out coe�cients below some
threshold. You might find useful the code WLena.m. Experiment with Haar and Daubechies dbn

wavelets for di↵erent n and di↵erent thresholds for zeroing out coe�cients. Write a summary of your
observations. Then add some noise. Try to corrupt 10%, 30%, 50% and 70% of pixels with noise.
Then try to denoise the image using wavelets.
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