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The top-level relation is given in terms of quadrangular polylogarithms. To 

create the quadrangular polylogarithm of weight n, we examine the 2𝑛 +

2-gon (with its vertices labelled 0 through 2𝑛 + 2) and subdivide it into 

quadrilaterals. Each of these subdivisions is called a quadrangulation. An 

example for 𝑛 = 2 (the hexagon) is given below. 

Next, we assign a vertex of a tree to each quadrangle in a 

quadrangulation and label it with the cross-ratio of its four vertices 

(denoted by a four-tuple encased in brackets). Then, we select the vertex 

whose corresponding quadrangle includes both 0 and 2𝑛 + 2 and denote 

it as the root. An example of this procedure is given below for 𝑛 = 3.

To convert these trees to polylogarithms, we first need the grafting 

operator. Let 𝑡 =  𝑡1, … , 𝑡𝑛 be a collection of trees. Then, the grafting 

operator, 𝐵𝑎
+(𝑡) is a map which outputs a single tree obtained by joining 

the roots of 𝑡1, … , 𝑡𝑛 onto the common new root 𝑎. Then, we define a map 

from the tree to mathematical words, the Arborification map, as:

where 𝑝(𝑎) denotes the parity of the first vertex in each quadrangle. 

Finally, we can convert the result of this expression into a polylogarithm by 

having all its letters denote arguments of a multiple polylogarithm. 

Summing over all the possible quadrangulations then yields the 

quadrangular polylogarithm of weight 𝑛. This process utilizes the Hopf 

algebra structure of both the trees created by the quadrangulations and 

the Hopf Algebra of words. In fact, the Arborification map is a unique Hopf 

Algebra homomorphism between these two [2]. Using these quadrangular 

polylogarithms, the top-level relation is given by [1]:

We developed tools to compute a quadrangular polylogarithm of arbitrary 

weight by using recursion to compute all the quadrangulations of a 

polygon. Then we encoded these data in trees which were evaluated 

using the Arborification map, giving us the quadrangular polylogarithm for 

any weight. The quadrangular polylogarithm for 𝑛 = 3 is given below:

Summing over the symmetrized versions of the quadrangular 

polylogarithms with various indices and checking the results with our own 

symbol maps we found the top-level expression to have several sign 

errors as its symbol (modulo product) was not zero. So, we used a pattern 

of sign correcting factors to develop the true top-level expressions. The 

expression for 𝑛 = 2 is given below:

Polylogarithms—functions that extend the notion of the traditional logarithm—

have been studied rigorously for their interesting functional relations. Many 

famous mathematicians such as Abel, Euler, Kummer, and Lobachevsky 

found functional relations among these polylogarithms. In recent research 

in the field, a conjecture has been made that all polylogarithm relations of a 

specific weight stem from one single larger polylogarithm relation. In this 

project, we developed tools to explicitly compute and create these top-level 

polylogarithm relations, verified that they indeed hold, and retrieved the 

known relations from the top-level relation.

Formally, a polylogarithm of weight 𝑛 is defined as the power series,

 

Similarly, a multiple polylogarithm of depth 𝑑 and weight 𝑛 is defined as the 

following sum,

 

Besides these power series definitions, polylogarithms can be equivalently 

given by iterated integrals of one-forms. As an example: 

 

In fact, any multiple polylogarithm can be written as an iterated integral of 

the following form [4]:

 

From these expressions, the tensor product of the entries 𝑓1 … 𝑓𝑑  can be 

taken. This is known as the symbol of the multiple polylogarithm. 

Remarkably, if two polylogarithm expressions are equal, then they have the 

same symbol and are equivalent up to products of lower weight and 

constants [3]. These are the relations we are interested in. An example of 

such a relation, known as the Abel 5-term relation, is shown below:
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-𝐿𝑖1,1,1([1, 2, 3, 8],[3, 4, 5, 8],[5, 6, 7, 8]) + 𝐿𝑖1,1,1([1, 2, 3, 8],[3, 4, 7, 8],[4, 5, 6, 7])

-𝐿𝑖1,1,1([1, 2, 3, 8],[3, 6, 7, 8],[3, 4, 5, 6]) + 𝐿𝑖1,1,1([1, 2, 5, 8],[2, 3, 4, 5],[5, 6, 7, 8])
+𝐿𝑖1,2([1, 2, 5, 8],[2, 3, 4, 5]·[5, 6, 7, 8]) +𝐿𝑖1,1,1([1, 2, 5, 8],[5, 6, 7, 8],[2, 3, 4, 5])

-𝐿𝑖1,2([1, 2, 7, 8],[2, 3, 4, 5, 6, 7]) -𝐿𝑖1,1,1([1, 2, 7, 8],[2, 3, 4, 7],[4, 5, 6, 7])
 +𝐿𝑖1,1,1([1, 2, 7, 8],[2, 3, 6, 7],[3, 4, 5, 6]) -𝐿𝑖1,1,1([1, 2, 7, 8],[2, 5, 6, 7],[2, 3, 4, 5])

-𝐿𝑖1,1,1([1, 4, 5, 8],[1, 2, 3, 4],[5, 6, 7, 8]) -𝐿𝑖1,2([1, 4, 5, 8],[1, 2, 3, 4]·[5, 6, 7, 8])
-𝐿𝑖1,1,1([1, 4, 5, 8],[5, 6, 7, 8],[1, 2, 3, 4]) +𝐿𝑖1,1,1([1, 4, 7, 8],[1, 2, 3, 4],[4, 5, 6, 7])

+𝐿𝑖1,2([1, 4, 7, 8],[1, 2, 3, 4]·[4, 5, 6, 7]) + 𝐿𝑖1,1,1([1, 4, 7, 8],[4, 5, 6, 7],[1, 2, 3, 4])
-𝐿𝑖1,1,1([1, 6, 7, 8],[1, 2, 3, 6],[3, 4, 5, 6]) +𝐿𝑖1,1,1([1, 6, 7, 8],[1, 2, 5, 6],[2, 3, 4, 5])

-𝐿𝑖1,1,1([1, 6, 7, 8],[1, 4, 5, 6],[1, 2, 3, 4])

𝐿𝑖3([1, 2, 3, 5]) +𝐿𝑖1,2([1, 2, 3, 6],[3, 4, 5, 6]) +𝐿𝑖2,1([1, 2, 3, 6],[3, 4, 5, 6])

-𝐿𝑖3([1, 2, 3, 6]) - 𝐿𝑖3([1, 2, 4, 5]) +𝐿𝑖3([1, 2, 4, 6]) -𝐿𝑖1,2([1, 2, 5, 6],[2, 3, 4, 5])
-𝐿𝑖2,1([1, 2, 5, 6],[2, 3, 4, 5]) +𝐿𝑖3([1, 3, 4, 5]) - 𝐿𝑖3([1, 3, 4, 6]) +𝐿𝑖3([1, 3, 5, 6])

+𝐿𝑖1,2([1, 4, 5, 6],[1, 2, 3, 4]) +𝐿𝑖2,1([1, 4, 5, 6],[1, 2, 3, 4]) - 𝐿𝑖3([1, 4, 5, 6])

-𝐿𝑖3([2, 3, 4, 5]) + 𝐿𝑖3([2, 3, 4, 6]) -𝐿𝑖3([2, 3, 5, 6]) +𝐿𝑖3([2, 4, 5, 6]) = 0
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