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1. PRINCIPAL COMPONENT ANALYSIS

Principal Component Analysis (PCA) is a widely used tool for data analysis in both
natural and social sciences. Besides, it is a building block for many methods for data
analysis introduced later. A classic reference for the PCA is the book by I. T. Jolliffe [1]
available online. Here I give just a brief overview.

Let n € RP be a vector random variable. Let

T

X = :
T

be an N x D matrix of samples of . The goal of the PCA is to map the samples of n from

the high-dimensional space R” into a low-dimensional space R?, while retaining as much

variation present in the samples as possible. This is achieved by calculating the singular

value decomposition (SVD) of the centered sample matrix whose column means are equal

to zero. Recall that an SVD of an m x n, m > n, matrix A is a decomposition of the
1
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form A = UXV " where U is orthogonal m x n, i.e., U'U = I, ¥ is diagonal n x n with
01> ... >0, >0, and V is orthogonal n x n. The columns of U are called left singular
vectors, the diagonal entries of X are called singular values, and the columns of V' are called
the right singular vectors. If m < n, we consider such a decomposition for X . Next we
will derive the formulas for the principal components and understand why computing SVD
is helpful.

1.1. Derivation. We would like to replace  with a random variable ¢ € R? whose com-
ponents are linear combinations of the components of 7,

gz(w]—n7aw;lr77)

where the coefficients w;, ¢ = 1,...,d maximize the variance Var(wiT n) while satisfy the

constraints

T

2

The condition Cov(w;n, w;n) = 0 means that the components of £ should be uncorrelated.
Let us first find PCA 1, £&; = wyn using Lagrange multipliers. Let

C := Cov(n) = (E[(m — Em:))(n; — Emi])D)i =1

be the covariance matrix of n. It is D x D, symmetric positive definite provided that all
components of n have nonzero variances. Then

Var(é1) = El(w( n — w{ E[1])’] = w] Cuw;.
The Lagrange function is given by
L(w, ) = w{ Cw — M\w] wy — 1),
where ) is the Lagrange multiplier. Differentiating L with respect to w; we get
Cwi; — Aw; = (C — IN)w; = 0.
Hence w; must be an eigenvector of C' corresponding to the eigenvalue A. To decide which
eigenvalue we pick, we recall that we are maximizing
w{ Cwy = Aw{ w =\
Hence, we pick A1, the largest eigenvalue of C', and the corresponding eigenvector w;.
Next we will look for ws. The zero covariance condition gives:

w; wi=1, i=1,...,d, and Cov(w;n,w;n)=0.

Cov(win, wan) = wierg = )\111)1'—’[02 =0.
Hence wo must be orthogonal to w;. The Lagrangian function is
L(wa, A, §) = wy Cwy — A wg wy — 1) — ¢pwy wo.
Differentiating it with respect to ws we get:
Cwy — Awg — pwy = (C — IN)we — pwy = 0.

Taking a dot product of this equation with wy we get: 0 — 0 — ¢ = 0 which forces ¢ to be
zero. Hence, A and w9 must be an eigenpair corresponding to the second largest eigenvalue
of C.
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Proceeding in a similar manner, we find that wy is the eigenvector of C corresponding
to its kth largest eigenvalue.

The variables & = wiTn where w;, i = 1,...,d are the eigenvectors of the covariance
matrix C corresponding to the d largest eigenvalues, are called the principal components.
The vector w;, ¢ = 1,...,d, is called the vector of coefficients or loadings for the ith principal
component.

1.2. Calculation in practice. In practice, when we are dealing with data, the data points
z; € RP are interpreted as samples of a vector random variable. The covariance matrix is
not known. To approximate it, we compute the D x D data covariance matrix. First we
need to center the data so that column means are all zero:

1

1 1
Y =X - —Zxﬂ,...,—me
1 N= N=

Then the covariance matrix is given by

1
C:=_-Y'Yy.
N

Its eigendecomposition with eigenvalues ordered in the decreasing order is
C=WAWT, where A =diag{\i,...,A\p}

and A\; > ... > Ap > 0. The d eigenvectors corresponding to the d largest eigenvalues will
be the desired loadings. The coordinates of the data points in the principal component
space will be z; :=Yw;,i=1,...,d.

Now let us connect the PCA with the SVD. First we consider the case N > D. Let

Y =USW '
be an SVD of Y. Then
Y'Y =W22WT = NC = NWAW .

Hence the first d columns of W = [wy, ..., wp]| are the vectors of coefficients for the first d
principal components, and the principal components are Y w;
Now suppose that D > N. Then

yi=vuxv', Y'y=UxU".

The first d columns of U = [uy, ... up] are the vectors of coefficients for the first d principal
components, and and the principal components are Yu;. Note that in the case where
D > N, the matrix Y 'Y is larger than Y and your computer might run out of memory if
you try to calculate it, while the calculation of the SVD would not create a problem.
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2. MULTIDIMENSIONAL SCALING

Multidimensional scaling (MDS)[2] aims at finding a low-dimensional representation of
data given an N x N matrix A of squared distances between the data points. As we will
show below, if the distances are Euclidean, MDS is equivalent to PCA. However, in many
applications coming from social sciences (see examples in [2]) or in medicine (e.g., see [3])
the distances are non-Euclidean.

The classic multidimensional scaling algorithm is the following. Let d be the desired

output dimension.
(1) Compute row means of the matrix A:

Wi = %Z ij, t=1,...,N.

(2) Set the mean of row means:
L X
=N Z M-
i=1
(3) Define the N x N matrix B = (B;;) by

1
o (it pg = Aij = )

(4) Compute the eigendecomposition of B, B = VAV T where the eigenvalues \; are
ordered in the decreasing order. If the d largest eigenvalues are positive, take
the corresponding eigenpairs (v;, A;), @ = 1,...,d. Otherwise, take the set of m
eigenpairs corresponding to positive eigenvalues. Set dy := min{m,d} where m4
is the number of positive eigenvalues.

(5) Define the embedding of the dataset into R+ by

VA1

Bij =

Z = [vl,...vdJ
Ad

The matrix Z is N x d4.. Row i of Z corresponds to the embedding of the ith data
point into R%+ .
If the distance is Euclidean, the MDS is equivalent to the PCA. Indeed, let Y be an
N x D matrix of data centered so that the column means are zeros. Then
D D D D
Ajj = Z(ym‘ — ki) = Zyl%z + Z Yij — 2 Z YkiYky-
k=1 k=1 k=1

k=1

+

Hence

YY)y = (Zykﬂrzym z‘j)



AN INTRODUCTION TO DATA ANALYSIS 5

are the matrix elements of YY '. Let us show that the matrix elements of the matrix B
defined in Step (3) of the MDS coincide with those of YY T. First we expand the row
means of B:

L LMD
Hi = NZA” - NZZ(ylﬂ _ykj)2
j=1 j=1k=1
D , 1 N D , L 2 N
:Zykz+ﬁzzyk3—2ﬁzykzzyk3
k=1 j=1k=1 k=1 j=1

k
Here we have used the fact that the column means of Y are zeros. Now we expand p:
(N[ | ND
p= 2 | Dokt DD vk
i=1 \ k=1 j=1k=1
g N D
=N Z Z yi%i-

i=1 k=1
Plugging in these expressions for p;, p1;, and p into the formula for B;; we get:

B;j = %(Ui‘f‘ﬂj_Aij — 1)
D 1 N D D 1 N D 9 D
HOSTEES ) HTES SRS D) HTEED W) R
k=1 =1 k=1 k=1 =1 k=1 =1 k=1
1 o 2 o 2 T
=3 (Z Yiei Zykj - (A)w> =YY )y
k=1 k=1
Now, if
Y = P2Q’
is an SVD of Y, then
YY" = px?pT,
hence A = ¥? and V = P. Now,
VA1
Yiq,...qa) = PSQ [q1, ... qd] = [p1, .- ., pd] :
)\dJr

which coincides with the output of the MDS.

Remark If the squared distances forming the matrix A are non-Euclidean, the matrix B
might have some negative eigenvalues.
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Remark If the number of data points is large, the computation of the MDS becomes
expensive: its cost scales as O(N?). To fight this issue the so-called landmark multidi-
mensional scaling (LMDS) has been introduced [1] with cost O(nN) where n < N is the
number of landmarks.

3. DIFFUSION MAPS

While the PCA is a power tool when the data points lie near a d-dimensional hyperplane
in RP, it might fail to give a nice embedding if the data are instead located near some
d-dimensional curved manifold. To handle this case, Coifman and Lafon (Yale University,
2006) introduced the so-called diffusion maps [5]. The key idea of this approach is to
devise a discrete-time Markov chain on the data points and define the distances between
remote points using the stochastic matrix of this Markov chain. This approach is robust to
noisy data and is capable of adequately representing complex geometries of data structures.
This dimensional reduction technique has been successfully applied to problems arising in
protein dynamics (e.g. [7, 8]). This approach is not a universal solution. One of the
implementational problems consists in that it requires to provide a scaling parameter € a
reasonable value for which might be hard-to-find. Nonetheless, it is a beautiful idea worth
going over. One approach to tackle the problem of choosing € was proposed by M. Maggioni
and collaborators and will be discussed in Section 4.

3.1. Calculation of a diffusion map. Here we present the most basic diffusion map
algorithm corresponding to o =0 in [5]. Let X = (x;) be an N x D matrix of data. The
rows x;, i = 1,..., N, of X represent data points lying in RP.

e First we compute the squared-distance matrix between the data points:

D
Aiy§) =Y (wik — 2k)°
k=1
e Next, we need to pick the scaling parameter ¢ and define the diffusion kernel, an
N x N matrix K = (k;;) where

o= o (269,

€

A good choice of € is very important. € should be comparable to squared distances
from the data points to their neighbors. To get an idea what € should be, look as
a row of the matrix A to get an initial guess for € and then tune it experimentally.

e Convert the diffusion kernel K into a stochastic matrix P = (p;;) by normalizing
the rows of K:

N N
P=Q 'K where Q :=diag Zklj, c Z knj p = diag{qi,...,qn}.
=1 i=1
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Note that the Markov chain with the stochastic matrix P is time-reversible, and
the diagonal entries of () constitute the invariant probability measure: check that
[(hv s 7QN]Q_1K = [Qb B 7QN]
The invariant probability distribution in this Markov chain is
q

N
dim1

Recall that the entries pﬁj of the tth power of the stochastic matrix P are the
probabilities to transition from ¢ to j in t steps, ¢ € N. A family of diffusion
distances indexed by t € N is defined by

T = where ¢ :=[q1,...,qn].

N
1 2
Dt(xi’xj) = Z — ‘pgm _pz'm‘ :
Tim,
m=1
The diffusion distance Dy(z;, ;) between the data points x; and z; is small if
the transition probabilities from z; and x; to all other data points in the defined
diffusion process are close.
The family of diffusion maps ¥, : RP — RN¥~! indexed by t € N from the data
space RP to the diffusion space RN~! is defined so that the squared Euclidean

distances || W (x;) — Wy (x;)| in the diffusion space are equal to the diffusion distances
Dy(x;,2;). The diffusion map W, is defined by:

AT (i)
\I/t(IEz) = N
A—17N-1(7)
where R := [rg,r1,...,7n—1] is the matrix of right eigenvectors of P normalized so

that RTIIR = I,and 1 =Xy > A1 > Ao > ... > Ay_1 are the ordered eigenvalues
of P. Respectively, \! | is the tth power of A, m =1,..., N — 1. Note that since
P is irreducible and aperiodic (as P;; > 0, ¢ = 1,..., N) by construction, Ay = 1
and 79 = [1,...,1]T. In Eq. (2), rm(i) denotes the ith entry of the vector 7. The
fact that one can normalize R so that R'IIR = I will be shown within the proof
of the proposition below.

Proposition 1.
N-1
Dy(arnay) = 3 Nrai) = r(i)[
m=1

i.e., the diffusion distance in the data space equals the Fuclidean distance in the
diffusion space.

We will prove this proposition after we finish the description of the construction.
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e The diffusion maps allow us to do dimensional reduction by keeping only the first
few components of W;(-). Often it is desirable to keep only the first two or three
entries of Wy(-) as then the diffusion map is readily visualizable. Thus, we can
define diffusion maps (abusing the term) to 2D or 3D diffusion spaces by

‘g Niry (i)
) = A Tl(l) an x;) = lrli
®) Lele) = { Xém(i) ] 4 Wlew) = igééz;

Now let us prove Proposition 1.

Proof. Let us redefine the diffusion kernel K as

N -1
K — (Z qi> K.
i=1
Then the stochastic matrix P with the new K can be decomposed as
P=T"'K.
P is similar to the symmetric matrix
A= IV2p-Y/2 — V2 Y2 = V2 L2,

Hence, the eigenvalues of A coincide with those of P. Let
N—-1
A=DAD" =" Nitnd,.
n=0
be an eigendecomposition of A where @ is orthogonal, and the diagonal entries of A, the

eigenvalues, are ordered in the decreasing order. Then the desired eigendecomposition of
P can be obtained as follows:

N—-1
(4) P = H—1/2AH1/2 — H_1/2¢A(I>TH1/2 =: RAL = Z )\nrnlna
n=0

where ry, := II"Y/2¢,,, the columns of R, are the right eigenvectors of P, and [,, := gbIHl/z,
the rows of L, are the left eigenvectors of P. It can be readily verified that the left and
right eigenvectors satisfy the following conjugacy relationships:

(5) Y mmri(m)ri(m) = rf Trj = o] TTVPIIT 20, = 66 = 6, 5,
m=1
" Li(m)l;(m _ -
(6) S L) _ gt = T e 26 = g, = b,
m=1 m

Eq. (4) allows us to write entries of P* as

N—-1
(7) Pl =Y Mra(i)ln(m).
n=0
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Plugging P!, and P;m into the formula for Dy (i, ) we get:

N 1 N—-1 9
Diisj) =Y — > [Nara(Dn(m) = Xora(5)in(m)]
m=1"" n=0
N-1 N
= > N (i) — ()Y “5:””2
n=0 m=1 m

Eq. (6) implies that the inner sum in the last expression is 1. Furthermore, since ry =
[1,...,1]7, 70(i) — ro(j) = 0. Therefore,
N-1
Di(i,5) = > N [rn(i) — ra(5))?
n=1

as desired. OJ

3.2. Illustrative examples. Let us consider a data set consisting of 200 images depicting
the Pacman. This example is similar to the one in [6]!. Each image is 65 x 65 pixels
either black (color = 0) or white (color = 255). The images differ from each other by the
angle of rotation of the Pacman around the center of the image. The angles of rotation are
drawn from the uniform distribution on (0,27). A sample of 20 such images is shown in
Fig. 1(a). This dataset is naturally embedded into RO5 — R4225 gpace. Note that D > N
in this case. The PCA mapping into 2D applied to this dataset is shown in Fig. 1(b).
The diffusion maps with e = 5- 107 and ¢t = 1 into 2D and 3D diffusion spaces are shown
in Figs. 1(c) and (d) respectively. Both the PCA and the diffusion mappings show that
the set of images is well-approximated by a 1D manifold homeomorphic to the circle as we
would expect.

A similar example with a more complex image of the Cat-in-the-hat is shown in Fig. 2.
Each image is 500 x 500. The double-loop formed by the mapped data is caused by the
fact that the image rotated by 7 is closer to the original image than, say the one rotated
by an angle between 7/6 and 57 /6.

4. MULTISCALE SVD

While the diffusion maps approach to data analysis is an appealing idea, the choice of the
scaling parameter ¢ might be very challenging in problems associated with data coming from
molecular simulation. Questions about choosing e asked by chemical physicists inspired
Prof. M. Maggioni® (JHU) to develop a routine procedure for the determination of the
scaling parameter. The method A. Little, M. Maggioni , and L. Rosasco came up with
kills two birds with one shot [9, 10]: it determines the dimension of the manifold near which
noisy data are located and gives a range of good values of the scaling parameter that can be

While Ref. [6] offers a nice exposition, I do not recommend to rely on it as it contains a number of errors
in important formulas. For example, Eqgs. (6), (7) contain errors, the comments following Eq. (9) are
misleading, etc.

2M. Maggioni said this in the CSCAMM seminar on Nov. 30, 2016.
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Fi1GURE 1. The dataset consists of 200 images of the Pacman rotated around
the center of the image by angles uniformly distributed in (0,27). (a): A
sample of 20 data points. (b): The PCA mapping into 2D. (c¢) and (d):
Diffusion maps to 2D and 3D respectively.

used for diffusion maps. Below I will outline the method. Please read [9] for more details.
Although this method requires a number of hard-to-check-in-advance assumptions to be
satisfied, this is the only method I am aware of that addresses the problem of determination
of intrinsic dimension of noisy dataset and finding the appropriate scaling parameter.
Suppose we are given a dataset X embedded into R” where D is large. X = (z;;)
is an N x D matrix, i.e., each row of X represents a data point in R”. The rows z; of
X can be interpreted as samples of a vector random variable & with D components. Let
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F1GURE 2. The dataset consists of 200 images of the Cat-in-the-hat rotated
around the center of the image by angles uniformly distributed in (0, 27).
(a): A sample of 20 data points. (b): The PCA mapping into 2D. (c¢) and
(d): Diffusion maps to 2D and 3D respectively.

= [p1,...,up] be the vector of column means of X, i.e., u~ E[{]:

1 N
,uj:N;xij, j=1,...,N.
The covariance matrix of 7 is estimated by the covariance of the dataset:

1
Cov(¢) = C := Cov(X) = N(X — e,u)T(X —eun), a D x D matrix,
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where e is N x 1 array of ones. Let Ay > ... > Ap be the eigenvalues of C.

e If the rows z;, ©« = 1,..., N, lie at a d-dimensional hyperplane, then the first d
eigenvalues of C' will be nonzero, while the rest D — d eigenvalues will be zeros. In
this case, the standard PCA will give an excellent embedding into R.

o If x; = y; + om; where n; are i.i.d. RVs with with mean 0 and variance 1, ¢ is small
enough, and y; lie at a d-dimensional hyperplane, then the first d eigenvalues of C
will be approximately equal to variances of y; along the d principle axes of the spread
of y;’s in the hyperplane, while the rest D — d eigenvalues will be approximately
equal to 0. Therefore, the PCA will correctly identify the dimension if the noiseless
dataset Y provided that the covariance matrix Cov(Y') has all nonzero eigenvalues
larger than o?.

e Now suppose that x; = y;+omn; where 7; and o are as described in the previous item,
while g; belong to a d-dimensional curved manifold M. In this case, the number of
nonzero eigenvalues of Cov(Y’) will be equal to the minimal space dimension where
the manifold M can be embedded into, which is larger than d.

The key idea of the multiscale SVD as a tool for identifying the true dimensions of
such manifolds M is that M can be well-approximated by a hyperplane in a small enough
neighborhood of each its point. Hence, if we consider a ball of radius r surrounding a point
y € M, where r is small enough so that B,(y) N M is close to a hyperplane and, at the
same time, r is notably greater than o, the size of the noise, then the eigenvalues of C'
corresponding to the true dimension of M will scale as 72, while the ones related to the
curvature of M will scale as r*. Here B,(y) denotes the ball of radius r centered at y.
Finally, the eigenvalues corresponding to noise will be approximately equal to o2.

Ref. [9] states a number of assumptions on the geometric properties of the given dataset
X as well as a theorem validating the MSVD (multiscale SVD) algorithm outlined below.

Algorithm: MSVD

Input: Dataset matrix X, N x D.

Parameters provided by user:

® Nyepeat < N is the number of points of X around which we consider sequences of By (x;).
e The set of values of r: r1 < ... <ry,, the radii of the neighborhoods.

Output: The set of mean singular values (averaged over Ny cpeqt points of X') as functions
of r, i.e., an D x N, matrix MSV.

The main body
for k=1,..., Nrepeat
(1) Pick a random index i € {1,...,N};
(2) Calculate the vector of distances from z; to all points in X;
form=1,..., N,
(3) Find the subset of points in X lying in the ball B, (z;): X1 := X N B, (x;);
(4) Find column means of X; and calculate the covariance matrix C of Xi;
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(5) Find eigenvalues of C, sort them in the decreasing order and take their square
roots. These square roots are the singular values of the centered sample X (i.e., column
means are subtracted from each column of X;). The corresponding Matlab command is:

SV(k,m,:) = sqrt(sort(real(eig(C)), descend));

end for
end for
(6) Average the singular values over all k’s. the corresponding Matlab command is:

MSV = squeeze(mean(SV, 1));

As the mean singular values are found, the user is supposed to plot them as functions
of r and identify those that are approximately equal to o, the ones that grow linearly with
r, and the ones that grow quadratically with r. The first group corresponds to noise, the
second group corresponds to the true dimension of M, and the third group corresponds to
the curvature of M. The range of good parameter values for the scaling coefficient € in the
diffusion maps is the range of values of r where these three groups are the most distinct.

Let us consider an application of the MSVD algorithm to an example discussed in [9].
The dataset X is generated as follows. We pick N = 1000, D = 100, 0 = 0.1 and set
X =Y + 07, where Z is an N x D matrix of samples of i.i.d. Gaussian RVs with mean 0
and variance 1, and Y = [V7,Y3] is an N x D matrix where Y} is an N x 10 matrix each
row of which is a sample of the RV uniformly distributed on the unit 9-dimensional sphere
S¢ embedded into R'?, and all entries of Y are zeros. Here I used Nrepeat = 1000 and r
ranging from 1.1 to 2.2 with step 0.01.

The mean singular values, i.e., E[]A\/?(C)] plotted versus 7 are shown in Fig. 3. The
green shaded region indicates the range of good values for the scaling coefficient e.

5. DATA ASSIMILATION

Data assimilation is an iterative approach to the problem of estimating the state of a
system in-hand given both current and past observations and a model for the time evolution
of the system. This approach is widely used in meteorology (e.g. weather prediction),
finance (e.g. stock prices prediction), geophysics (e.g. prediction for the magnetic field of
the Earth). There are two different problems that are addressed in the framework of data
assimilation: (¢) the smoothing problem, when the goal is to estimate the whole sequence
of past states of the system up to the present, and (ii) the filtering problem, when the goal
is to assess the current state. In this course, we will focus only on the filtering problem.
This review is mostly based on [I 1] which is available online via arXiv:1506.07825.

5.1. Filtering problem. We will consider the following discrete time filtering problem.
Suppose the system we are interested in is governed by the following model giving its time


https://arxiv.org/abs/1506.07825
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Fi1GURE 3. The output of the MSVD algorithm applied to a noisy dataset
lying near Sg embedded into R'%. The noise size is o = 0.1. This example
is reproduced from [9].

evolution:

(8) Uj-%-l:q’(vj)-i-&j? ,UjvfjeRna J=0,1,2,...,
Vo ~ N(mo, Co),
& ~N(0,%) are i.i.d. RVs independent of vp;

(9) Yj+1 = h(”j+1)+77j+1a Yj> 15 E]Rma m < n, ] 2071727"'a
nj ~N(0,T) are i.i.d. RVs independent of vg and &;’s.

Here v;’s are the states of the system at times j € NU {0} =: Z, that we do not know
but want to estimate. We have a pdf N(my, Cy) for the initial state vy, where mg is the
mean and Cp is an n x n covariance matrix. We have a model (1) for the time evolution
of v that is generally stochastic. To make it deterministic, just set the covariance matrix
> to zero. Besides, we collect observations y;’s at times j € N that depend on the current
state of the system and are corrupted by noise. In Eq. (9), A : R™ — R™ is the observation
operator. For example, y can be the first component of v, then h(v) = [1,0,...,0jv = v;.

The task is to find
(10) Elvjy1 | Yjpa] and  Cov(vjir | Yj41), where Vi ={y1,... g1}
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The assumption that vy, &;’s, and 7;’s are Gaussian are made here for simplicity. They
can be relaxed for some filters.
Filtering is a two-step iterative process.

(1) Prediction. Find the conditional pdf f(vj;1|Y;) given f(v;|Y}).
(2) Analysis. Find f(vj+1]Yj4+1) given f(vj4+1]Yj), i.e., use the new piece of informa-
tion yj+1 to update f(vj41Yj).

Step 1 is accomplished by using the model update (8). In Step 2, y;41 is incorporated via
Bayesian estimation. Various filters differ in how steps 1 and 2 are performed. Prior to
introduce them, we will go over Bayesian formulas.

5.2. Bayesian estimation.

5.2.1. Discrete setting. Bayes’s theorems allow us to make corrections to our a priori es-
timations based on new information. They might seem trivial because their proofs are
very simple, however, they are very important. Their power is demonstrated by the fol-
lowing problem from D. Kahneman’s book “Thinking Fast and Slow” [12]. In this book,
D. Kahneman shows that humans are poor intuitive statisticians.

A cab was involved in a hit-and-run accident at night. Two cab companies,
the Green and the Blue, operate in the city. You are given the following data:

e 85/, of the cabs in the city are Green and 15% are Blue.

e A witness identified the cab as Blue. The court tested the reliability
of the witness under the circumstances that existed on the night of the
accident and concluded that the witness correctly identified each one
of the two colors 80% of the time and failed 20% of the time.

What is the probability that the cab involved in the accident was Blue rather
than Green?

In order to solve this problem correctly we need to use Bayes’s theorem. First consider
two events A and B with P(A) # 0 and P(B) # 0. Then recall that

P(A|B) = P(;l(]r;)B) and P(B|A) — P(If(DUB)
Hence
(11) P(Bj4) = T

This is the first form of Bayes’s theorem.
Now suppose that we are not given the probability of A explicitly. However, the set of
outcomes €2 can be partitioned into a finite or countable number of disjoint subsets Z;:

0=|\J2%, znz;=0.

)
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Suppose P(Z;) # 0 for all i. And, for each i, we know the conditional probability P(A|Z;).
Then we can express P(A) as

12 P = PAnz) =3 PEOE Py = 3 PaZyp).

i

Using Eq. (11) for Z; and A and Eq. (12) we obtain

P(A|Z;)P(Z;)
(13) P(Z;|A) = S . P(A|Z)P(Z:)

Eq. (13) is the second form of Bayes’s theorem.

Now we will solve the problem above using Eq. (13). The set of outcomes € is the set
of all taxis in the city. It is partitioned into two subsets B (Blue) and G (Green). We
are given: P(B) = 0.15, P(G) = 0.85. If only the first piece of information would be
available, i.e., if there would be no witness, the best answer we could give would be that
the probability that a Blue cab was responsible for the crime is 15%.

Now let us incorporate the evidence provided by the witness. Intuitively, many people,
while reading such a police report, neglect the base rates 15% and 85% and jump to the
conclusion that a Blue cab is responsible with probability 80%. However, it is wrong,
because there are much more Green cabs that could be misidentified as Blue rather than
vice verse.

Denote the event that the witness saw a Blue cab by W B. We want to find the condi-
tional probability

P(B|W B), the cab was Blue provided that the witness saw a Blue cab.

Bayes’s theorem in form 1 is not directly applicable because we do not know P(W B).
However, we do know from the police experiment that P(WB|B) = 0.8, P(WB|G) = 0.2.
Substituting j =1,i=1,2, WB — A, B — Z;, G — Z5 into Eq. (13) we calculate

P(WB|B)P(B) 0.8-0.15

_ ~ 0.41.
(WB|B)P(B) + P(WB|G)P(G) ~ 0.8-0.15+0.2-0.85

P(BWB) = 5

Thus, the probability the cab involved into the accident was Blue rather than Green is
about 41%.

5.2.2. Continuous setting. Recall that the conditional pdf is defined by

fz,y)
zly) = .
fzly) W)
Hence, the continuous analog of the first form of Bayes’s theorem is
fzly)f(y)
14 xr) ="
(14 ol = KO0
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Also note that, similarly to the discrete case, f(z) can be expressed via a conditional pdf
of another RV Z:

(15) fz) = - f(z]2) f(2)dz.

5.3. Filtering: prediction and analysis steps. Now we are quipped to elaborate on
the prediction and analysis steps.

(1) Prediction.
(16)  flujl¥) = / F o511V 07) (03] )dv; = / F o l03) F (03]Y; ) doy.
R™ R™

Here we have used Eq. (15) and the fact that f(vj41|Yj,v;) = f(vj+1|v;). The
latter is true because Y contains an indirect information on v; and cannot improve
upon perfect knowledge of v;. The pdf f(vj;i|vj) is determined by the model
equation .

(2) Analysis. Here we will use Bayes’s formula (14).

F@Wi1lvie1, Y5) f(0j41]Y))
f(yj+11Y5)

firlYj) = fvjalY;, 1) =

FWjv1lvia) f(vjalYs)
F(Yi4+11Y5) .

The pdf f(yj+1|vj+1) is determined by the observation equation (9).

(17) =

5.4. Linear Gaussian Problems: the Kalman Filter. Kalman Filter was introduced
by R. Kalman in 1960 [13]. It is applicable only for the case where ¥(v) = Mv, h(v) = Hov,
where M in an n x n matrix and and H is an m x n matrix, and and &;, n;, vo are Gaussian
RVs. More importantly, the Kalman filter serves as a building block for many other filtering
algorithms that do not require linearity or Gaussianity.

Let us restate the settings for the linear Gaussian case.

(18) Uj+1 :Mvj"i'g]v Ujagean J € Ly,

Vo ~ N(mo, 00),

& ~N(0,%) are i.i.d. RVs independent of vp;
(19) Yir1 = Hvjp1 +njs1, y5,m €RY, m<n, jZi,

nj ~N(0,T) are i.i.d. RVs independent of vy and §;’s.
We assume that Rank(H) = m. It can be proven that all v;’s are Gaussian. A simple
proof of this fact involves characteristic functions. A characteristic function of a RV 7 is
defined by cf(z) := Elexp(izn)] where i is the imaginary unit. It can be proven that a
characteristic function uniquely determines the distribution of a RV. The proof of the fact
that v; are Gaussian is done by induction. The induction step is proved by showing using

the characteristic function that a linear transform of a Gaussian RV is Gaussian and a sum
of Gaussian RVs is Gaussian (see [11]).
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We will use the following notations:

mj = Elv;|Yj], Cj := Cov(v;|Yj),
(20) 1 = Elvj|Yj], Cjt1 := Cov(vj1|Yj),
mjy1 = Eojp[Yial,  Cjpa = Cov(vjta|Yj).

Note that the mean and covariance completely define a Gaussian RV as the pdf of n ~

N(m,C) is

_ 1 —l(x—m)TC'*l(x—m)
fo(z) = (27r)"/2]det(0)\1/2€ 2 :
We adopt the standard assumption that the covariance matrices Cp, I', and X are sym-
metric positive definite (SPD). We will show that all C;’s are SPD by induction and derive
the formulas for the map

(my, Cj) = (mjq1, Cjtr)
that is central to the Kalman filter.
The prediction step is done by

Vi1 = Mv; +§;.
Hence
M1 = Elvj1|Y;] = ElMujn|Yj] + E[§[Y;] = Mmy,
as &; has mean 0 and is independent of Y;. For the covariance C'j+1 we have:
Cjr1 = El(vjr1 — mj1)(vj1 — ) Y5
E[M (v; —my)(v; —1ng) " MT|Yj] + E[&¢] Y]]
+ B[M (vj — my)&] |Y] + Elg;(v; — i) T M T[Y)
=MC;M" +¥.

The two terms in the third line of this derivation are zeros as {; is independent of Y; and
v;. Note that C'j+1 = MCjM—r + 3 is SPD as it is a sum of two SPD matrices. The matrix
Cj is SPD by induction assumption.

Next comes the analysis step. By Eq. (17) and the fact that vj;; is Gaussian, we have:

exp {*%(%‘H —mj1) Crly (v — mj+1)} x

exp {_%(yﬂl — Hujp) T (g0 — H”jH)} exp {—%(Ujﬂ —itji1) Oy (v — mj+1)} -
Equating the coefficients in the quadratic polynomial in v;41 we get:

(21) Cih=Ci+HTH = (MchT + 2)_1 +HTH,

(22)  Crlmy = H Ty + Climgin = H T Yy + (MG MT +30) ' M,

Eq. (21) implies that Cj1; is SPD as C’j__s_l1 is a sum of two SPD matrices.
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Egs. (21) and (22) allow us to establish a computational algorithm for computing the
map (mj,Cj) — (mjy1,Cj41). Let us express mjq and Cjyq via mjyq and Cjpqp. We will
use the following matrix identity.

Lemma 1. Woodbury Matrix Identity Let A € RP*P U € RP*Y C € R, and
V eR™>P. If A and C are SPD then A+ UCYV is invertible and
(23) (A+vCcv)t=Aa"—Aa U (C +vATlU) T TvaTt

This lemma can be proven by direct verification. Multiply A + UCYV by the right-hand
side and you will get I.
Eq.(23) gives the following expression for Cj1:

~ -1
Cy1 = (Crly+ HTT7'H)

a N N -1 a
=Cjs1—Cjall’ (F + HCj+1HT> HCja
~ ~ -1 ~
= (I — Cj+1HT (F + HCj+1HT> H) Cj+1

(24) =(I—-KH)Cjt1, where
A . -1
K = CjHHT <F + HC]-HHT) is called Kalman gain.

Multiplying Eq.(22) by Cj1 we get:

A~

mjt1 = (I — KH) Cj1 (HTF_lijrl + éj_jlmj-l-1>
(25) = (I — KH) 1+ CipH T g0,
To further simplify the expression for m;;1, we note that Eq. (24) implies that
A—1
KH=1-Cj.05.
On the other hand, Eq. (21) implies that

CiptH'T™'H =1—-C;1,Cy Yy = KH.

Since H is full rank, we conclude that
(26) K=0CjH' TN
Plugging this into Eq. (25) we get:
(27) mj1 = mjp1 + K(yj+1 — Hijgr).
Now we are ready to write out the Kalman filter algorithm. We omit the subscripts in
m and C' because we recompute them at every step from scratch and do not store them.
Kalman filter
for j=0,1,2,... do
Prediction step
a. m = Mm;
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b. C=MCO;MT +%

Analysis step

c. d =y;4+1 — Hm \\ Kalman innovation

d. K=CH' (T + HC'HT) ' \\ Kalman gain

e. mj41 = mjq1 + Kd \\ estimator update

f. Cj11 = (I — KH)C \\ covariance update
end for

The Kalman filter, while applicable in its authentic form only for linear Gaussian prob-
lems, has been adjusted for nonlinear problems as well. Two such adjustments called
“3DVAR” and “Extended Kalman Filter (ExKF)” are described in [11]. 3DVAR is based
on fixing the model covariance C’j+1. The ExKF is based on linearization of ¥. We are
going to skip these adjustments and discuss other adjustments based on the introduction of
an ensemble of particles with the goal of estimation of the mean and the covariance 741
and éj+1.

5.5. Ensemble Kalman Filters. Here we consider two variants of Ensemble Kalman
Filter, a basic one denoted EnKF, and the so-called “Square Root Ensemble Kalman
Filter” or “Ensemble Transform Kalman Filter (ETKF)”.

5.5.1. Basic Ensemble Kalman Filter (EnKF). Ensemble Kalman filter (EnKF)
Setup
Pick N, the number of particles in the ensemble.
Initialization
U=[Ui,...,Un]is n x N matrix with the positions of ensemble members.
fori=1,...,N do

Ui =mgo+ 03/2&, where &; ~ N(O, 1)
end for
Main body
for =0,1,2,... do

Prediction step: evolve the ensemble and estimate its mean and covariance

a. U= U(U) + XY?¢ where ¢ is n x N matrix of i.i.d. RVs ¢;; ~ N(0,1) \\ ensemble
predict

b. = & Zfil U; \\ estimator predict

c. C= T SN (U — ) (U; —m) T \\ covariance predict

Analysis step

d. d = yj41 + T2y — HU where 1 is m x N matrix of i.i.d. RVs 7;; ~ N(0,1) \\ inno-
vation .

e. K=CHT (r + HOHT) \\ Kalman gain

f. U=U+ Kd \\ ensemble update
g mji1 =% Zf\il U; \\ estimator update
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f. Cit1 =+ SN (U —mj1) (Ui —mji1) T \\ covariance update
end for

5.5.2. Ensemble Transform Kalman Filter (ETKF'). The key idea of the ETKF is to trans-
form the ensemble so that the Kalman identity

(28) Cjs1=I—-KH)C
is enforced. This is done by mapping the predicted mean m according to the standard
Kalman update and introduce a deterministic linear transformation of the difference be-
tween the particles and their mean to enforce Eq. (28). This step is supposed to eliminate
the sampling error. More precisely, at each step j, we define

X:\/ﬁ [Ul—m,...’UN—m 5 theHC:XXT,

and look for an SPD N x N matrix 7' to transform X according to X := XTY? g0 that
Cip1:=XXT=(I-KH)C=(I-KHXX'.
Let us show that

(29) T.= [I + (HX)T - (HX)} -

is a suitable choice. To invert the matrix expression in Eq. (29) we use Woodbury matrix
identity (23).

R . " N T
XXT=X7TXT =X [I i (HX) r-!

(
_x {1_ (1) (%) (1) 1]
—x{r- (ux) [men” x] " (mx) {50

~ A N -1 ~
—C-CHT [HCHT +T|  HC
=(I-KH)C,
as required.
The ETKF algorithm is summarized below.
Ensemble Transform Kalman filter (ETKF)
Setup
Pick N, the number of particles in the ensemble.
Initialization
U=[Ui,...,Un] is n x N matrix with the positions of ensemble members.
fori=1,...,N do
U; = mo + 03/2&, where & ~ N(0,1)
end for
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Main body
for 7 =0,1,2,... do

Prediction step: evolve the ensemble and estimate its mean and covariance

a. U = U(U) + XY%¢ where ¢ is n x N matrix of i.i.d. RVs ¢;; ~ N(0,1) \\ ensemble
predict

b. i = % Zfil U; \\ estimator predict

c. X = = (Ui —m)

d. C=XxX" \\ covariance predict

Analysis step

R . —-1/2
e. T = (I + (HX)TFA(HX)T) \\ ensemble transform matrix

f. X = XT \\ ensemble transform
g. d =yj+1 — Hm \\ innovation
R . -1
h. K=CHT (r + HCHT) \\ Kalman gain
i. mjy1 =m+ Kd \\ estimator update
j. U=mj 1+ (N —1)"/2X \\ ensemble update
k. Cj41 = XX \\ covariance update
end for

Experimenting with EnKF and ETKF you can observe that ETKF is notably slower as
the ensemble transform requires an inversion of an N x N matrix.

Remark The further development along these lines is the filter referred to as LETKF
(Local Ensemble Transform Kalman Filter) introduced by B. Hunt (UMD), E. Kostelich
(U Arizona), and I. Szunyogh (UMD) in 2007 [14]. This is a more sophisticated filter, the
best one available so far for attacking problems coming from real-life applications such as
weather forecasting to the best of my knowledge. Its consideration lies beyond the scope
of our introduction to data assimilation.

5.6. Particle Filters. Particle filters are an important class of filters as they are prov-
ably capable of reproducing the pdf f(vj11|Yj+1) in the large particle limit. This is not
true for the ensemble Kalman filters considered here because they treat the distributions
f(vj41]Yj+1) as Gaussian while it is not true. On the other hand, particle filters even in
their current state-of-art forms are not suitable for geophysical applications such as weather
forecasting due to the lack of robustness. In contrast, ensemble Kalman filters are proven
to be robust and efficient for problems arising in geophysical applications.

Our excursion into particle filters will include the basic particle filter based on sequential
importance resampling (SIRS). I am referring an interested reader to Ref. [11] for the proof
that the particle filter approximates f(v;41|Yj+1) in the limit N — oo, i.e. the number of
particles tends to infinity.

Particle filters are used, e.g., in robotic navigation (see Wiki).


https://en.wikipedia.org/wiki/Monte_Carlo_localization
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In the ensemble-based filters EnKF and ETKF, the pdfs p; := f(v;]Y;) and f :=
f(vj41]Y;) were approximated by those of the ensemble:

1 Y 1Y
N A
szﬂg')::NE:(s(x_Ui)a M%M *Ng
where § is the Dirac d-function:

i(z) = oo, & =0, ) §(z)dx = 1.
07 T 7é 07 R"

The key difference between the EnKF and its extensions and the particle filter is that
the weights in the particle filter are allowed to vary. As a result, the pdfs f(v;|Y;) and
f(vj41]Y;) are approximated by

N N

N j X oA . -

(30) i Y =S wls(@ Uy, s g™ S wid(e - 0).

=1 i=1
The objective of the particle filter is to set up appropriate update rules for the prediction
and analysis steps respectively:
(31)

{Um w(j)}N . {g(j+1) wml)}N {(7gj+1> wml)}N
’ i=1 oo i=1’ v i=1

3 (2 Z

. {Ui(j“) (J+1)}Z -

Here the superscripts indicate that the ensemble members and their weights depend on j
(j is the step number).

5.6.1. Basic particle filter. The basic particle filter, the so-called sequential importance
resampling (SIRS) is the following algorithm.
Particle Filter (basic)
Setup
Pick N, the number of particles in the ensemble.
Initialization
U=[Ui,...,Un]is n x N matrix with the positions of ensemble members.
fori=1,...,N do
Ui =mgo+ 03/2&, where &; ~ N(O, 1)
end for
Main body
for j=0,1,2,... do
Prediction step: evolve the ensemble
a. U= U(U) + XY¢ where ¢ is n x N matrix of i.i.d. RVs ¢;; ~ N(0,1) \\ ensemble
predict
Analysis step
b. d=yj41 — HU \\\ ensemble innovation
c. W = exp (—%dTFfld) \\ propose weight update
d. w=_>"", ;) "' \\ normalize weight update
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e. Resample the ensemble according to the CDF of weights. Here is a Matlab code for
this resampling:
ws = cumsum(w); % compute CDF of weights
for i=1:N
ix = [1;
while isempty(ix)
ix = find(ws > rand,1,’first’); ' resample: draw rand ~ U[0,1]
end
% and find the index of the particle corresponding to the
% first time the CDF of the weights exceeds rand
U(:,i) = Uhat(:,ix); % reset the n-th particle to the one with index ix
end

f.omj =+ SN Ui \\ estimator update
g Cit1= v Zi]\il(Ui —mj1)(U; —mj+1) " \\ covariance update
end for

Let us motivate the analysis step. See [11] for a more detailed explanation. We observe
that

d:=yji1 — Hvj1 ~ N(0,T), ie. fo(x) =2 exp <—%xTF*1x> .
Now recall Eq. (17):

JFWir1lvj1) f(vj1]Y))
fojtlYj) = :
Y f(yj+1lY5)
It says that
J(j1]Yj41)
f(vilY;)
The left-hand side of Eq. (32) is the ratio of the pdfs approximated by the ensembles U (G+1)
and U. Hence, Eq. (32) suggests to pick weights to the updated distribution f(v;j11|Yj4+1)
by the updated ensemble U proportional to f;(x). Then we resample the ensemble in order
to approximate the resulting distribution using an ensemble with uniform weights.

(32) o F(ysialvin) = fa(w) = 27 exp (~2 T 7).

Remark The choice of weights in the basic particle filter algorithm can be improved by
doind the so-called optimal importance resampling. See Section 4.3.3 in [11].
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