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Radiation of horizontal electric dipole on large dielectric
sphere

Dionisios Margetisa)

Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138

~Received 27 June 2001; accepted for publication 29 January 2002!

The electromagnetic field in air of a radiating electric dipole located below and
tangential to the surface of a homogeneous, isotropic and optically dense sphere is
studied anew. The starting point is the eigenfunction expansion for the field in
spherical harmonics, which is now converted into series of integrals via the Poisson
summation formula. A creeping-wave structure for all six components along the
boundary is revealed that consists of waves exponentially decreasing through air
and rays bouncing and circulating inside the sphere. The character of individual
modes of propagation and the interplay between ‘‘electric’’ and ‘‘magnetic’’ types
of polarization are investigated. Connections with and differences from standard
ray optics and the cases of the radiating vertical dipole and scalar plane-wave
scattering are outlined. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1467610#

I. INTRODUCTION

The scattering and diffraction of electromagnetic waves have long been understo
boundary-value problems of Maxwell’s equations. In principle, the field can be determined e
where by specifying the source and the boundary conditions. In practice, even when close
solutions are then obtained, the chosen representations may not be amenable to quantita
derstanding. This difficulty often plagues analyses where current sources lie too close
boundary separating two media. Such a case arises in connection with the long-distance c
nication along the sea surface at very low frequencies.1,2

In the present article, a three-dimensional idealized model is studied in which the sourc
electric dipole located below and tangential to the surface of a homogeneous and isotropic
trically large sphere surrounded by air. Of course, none of the field components can be m
vanish identically in this case. A dipole vertical to the spherical boundary,3,4 on the other hand,
introduces an axis of symmetry, having only three nonzero spherical components; these
eigenfunction expansions of simpler structure. In both problems, the formal solution is e
attainable in terms of spherical harmonics but is not directly amenable to computation
interpretation. One of the objectives of this work is to unveil the underlying physical pictur
asymptotic methods for the case of the horizontal dipole, describing the interplay betwee
coexisting polarizations. The assumption of an optically dense sphere is thus imposed
attention is restricted to points lying in the spherical boundary. The analysis is also intend
reveal differences from the known case of plane-wave scattering in the context of the scala
and Schro¨dinger’s equations. Because the emphasis is on the physical concepts and th
needed to expose such concepts, actual numerical calculations are beyond the scope of thi

There is a fairly long sequence of papers in connection with the present problem. Notew
is Mie’s formal expansion5 in partial waves for a plane wave incident on a homogeneous sp
Another formulation found in a later paper by Debye6 is related to his previous studies of high
frequency plane-wave scattering by an infinitely long cylinder.7 An exposition and discussion o

a!On leave from the Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139. Ele
mail: dio@math.mit.edu
31620022-2488/2002/43(6)/3162/40/$19.00 © 2002 American Institute of Physics
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these as well as of other works was given by van de Hulst.8 Watson9 appears to be the first to
investigate systematically the radiation of a point source in the presence of a sphere with
large compared to the wavelength. In his formulation the source was an electric dipole lo
above and vertical to the surface of a perfectly conducting sphere; his focus was on scalar
tials that furnish the electromagnetic field via successive differentiations. The merits of Wa
approach are unquestionable: the slowly converging expansion in partial waves was conve
an integral which in turn generated a rapidly converging series. This method was later invok
other authors10–12 in their efforts to treat the case of a finitely conducting sphere. Among th
authors, Gray,12 for example, identified a ‘‘magnetic’’ type of wave propagating and attenua
through air with an attenuation rate independent of the adjacent medium, when the sour
magnetic dipole vertical to the surface of a lossy sphere.

Being aware of these works, Norton13 proposed simplified formulas and graphs for the fie
intensity of vertical and horizontal dipoles elevated over a spherical earth. Bremmer14,15compared
the fields of the two configurations by considering the direct wave and the leading reflected
in free space; his analysis pointed to a simple picture for wave propagation in air for dist
exceeding the free-space wavelength. The radiation of a horizontal dipole above a finitel
ducting sphere was investigated by Fock16 by use of scalar potentials. He approximated the fi
through air in the ‘‘shadow region’’ in terms of exponentially decreasing waves, and gav
corresponding attenuation rates as solutions to two uncoupled transcendental equation
started with an extension of Watson’s method9 by neglecting the field that travels through th
sphere and not examining the transition to planar-earth formulas. In the same spirit, the pr
was essentially revisited by Wait17 in the 1950s; he concluded that at ‘‘low radio frequencies’’ t
horizontal component of the electric field is negligibly small compared to the vertical one. O
basis of Watson’s method,9 geometrical-ray pictures were invoked in that same period of tim
the study of elastic waves inside spherical cavities.18,19 ~See Refs. 20 and 21 for later develo
ments in the theory of elastic-wave propagation.!

In a remarkable paper, Wu22 invoked the concept of the creeping wave in order to study
high-frequency scattering of plane waves by impenetrable cylinders and spheres in the con
Schrödinger’s and Maxwell’s equations. He derived asymptotic expansions for the total scat
cross sections that went well beyond the standard geometrical optics, and pointed out
mathematical tool leading to the creeping wave in the case of a sphere is the Poisson sum
formula. Notably, Wu22 extended the familiar concept of the creeping wave in two sp
dimensions23–26 from high frequencies to all positive frequencies by arguments of algeb
topology.27 The underlying physical idea was soon after generalized to other scattere
Seshadri.28 A similar analysis based on the Poisson summation formula was later use
Nussenzveig,29 who referred to Ref. 22, for the study of high-frequency, plane-wave scatterin
transparent spheres. Key points in his analysis were the imposition of a large index of refr
and the expansion of the total scattering amplitude in a series of the Debye type.7 Nussenzveig
provided a description in terms of waves that attenuate exponentially along the boundary an
bouncing and circulating inside the sphere. The relevant Poisson summation formula c
written as30

(
l 50

`

g~ l !5 (
n52`

`

e2 inpE
0

`

dn gS n2
1

2D ei2pnn, ~1.1!

where the left-hand side is the starting eigenfunction expansion. The right-hand side o
equation was interpreted in terms of ‘‘classical paths’’ by Berry and Mount.31 This interpretation
stems from noticing that for high frequencies each indexn identifies a path that encircles th
origin n times.31,32Accordingly, these authors invoked stationary-phase calculations and elab
uniform approximations.

Recently, Houdzoumis3,4,33 applied the Poisson summation formula in order to study
radiation of a vertical electric dipole over a sphere, by imposing the simplifying assumption
large index of refraction. As mentioned earlier, the number of nonzero field components is re
 19 Jan 2005 to 18.87.1.204. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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to three in this case, with the corresponding polarization being termed as of the ‘‘electric t
Houdzoumis placed equal emphasis on the wave that attenuates exponentially along the bo
in air and the rays that circulate around the origin inside the sphere. Kinget al.1,2 made use of
these results for the surface wave in order to calculate the field of an antenna on the sea su
the range of very low frequencies~VLF!.

In the spirit of Houdzoumis’ analysis,3,4,33the present article has a threefold purpose. The
purpose is to give the complete solution for the field of an electric dipole located inside a s
without recourse to scalar potentials. The dipole is taken to lie in the plane defined by a
tangent and the center of the sphere, and is parallel to the tangent. The second purpo
evaluate all six components when the dipole approaches the boundary from below by con
the series of partial waves into integrals according to the Poisson summation formula. In thi
all series diverge in the usual sense and some care needs to be exercised. By use of asym
it is found that, apart from waves that reach the observation point with the air and earth
velocities, significant contributions may arise from rays bouncing and circulating inside
sphere. The third purpose is to compare these findings with other, known cases such
plane-wave scattering and the radiation of a vertical electric dipole.

The remainder of the article is organized as follows. Section II starts with Maxwell’s e
tions; the ordinary differential equations in the radial distance for theu- andf-components of the
field in spherical coordinates are solved explicitly. The eigenfunction expansions in sph
harmonics are then converted into series of integrals, and both the source and the observati
are allowed to approach the boundary. In Sec. III, integral expressions are obtained w
inverse electrical radius used as the expansion parameter. The lowest-order terms are
Sommerfeld integrals.34 Corrections to these integrals account for the finite curvature of
boundary, describing waves that travel through air and through the dense medium. Inte
expressions are given for these waves whenk2

2!uk1
2u, k2r@1 and the observation angleu is

sufficiently small, wherek2 is the wave number in air, assumed to be real throughout the papek1

is the complex wave number in the sphere, andr is the cylindrical distance from the source. Th
expressions for the wave through the sphere are new to the author’s knowledge. The acco
ing zeroth-order integral terms have been evaluated via rapidly converging series elsewhere34,35In
Sec. IV, the aforementioned asymptotic formulas are modified to account for the transition
planar-boundary formulas to waves decreasing exponentially through air, with the distinct
two modes of propagation pertaining to polarizations of an ‘‘electric’’ and a ‘‘magnetic’’ type
description is also provided for the field with the phase velocity of the enclosed medium
analysis in Sec. V shows that, foru5O(1) andp2u5O(1), thetotal field consists of waves tha
attenuate exponentially, and rays that circulate in the sphere and are multiply reflected
boundary. The contributions of these rays are negligible for a finitely conducting sphere. A
limiting cases of the ray contributions are placed under scrutiny, an example being the case
the antipodal point atu5p is approached along the boundary. The interplay between contribu
of the two polarizations to the ray amplitudes as well as deviations from the ray charact
discussed.

In some of the calculations presented in this article, such as those in Appendix A, the
number in the sphere,k1 , is treated as real for the sake of simplicity. This poses no restrictio
the final asymptotic formulas, however, which are usable for complex values ofk1 with 0
<Arg k1<p/4, and are therefore applicable to spheres of finite conductivity. Thee2 ivt time
dependence is suppressed throughout the analysis.

II. FORMULATION

A. Formal representations

The geometry of the problem is depicted in Fig. 1. It consists of anx-directed electric dipole
S of unit moment located inside a homogeneous, isotropic and nonmagnetic sphere~region 1,r
,a! at a distanceb from the origin. The sphere is surrounded by air~region 2,r .a!. Maxwell’s
equations in each regionj ( j 51, 2) read as follows:
 19 Jan 2005 to 18.87.1.204. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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1

r sinu

]

]u
~sinu Ej f!2

1

r sinu

]

]f
~Ej u!5 ivBjr , ~2.1!

1

r sinu

]

]f
~Ejr !2

1

r

]

]r
~rE j f!5 ivBj u , ~2.2!

1

r

]

]r
~rE j u!2

1

r

]

]u
~Ejr !5 ivBj f , ~2.3!

1

r sinu

]

]u
~sinu Bj f!2

1

r sinu

]

]f
~Bj u!52 i

kj
2

v
Ejr , ~2.4!

1

r sinu

]

]f
~Bjr !2

1

r

]

]r
~rB j f!5m0Jj u2 i

kj
2

v
Ej u , ~2.5!

1

r

]

]r
~rB j u!2

1

r

]

]u
~Bjr !5m0Jj f2 i

kj
2

v
Ej f , ~2.6!

where the current density is

J~r !5d~x!d~y!d~z2b!x̂. ~2.7!

The field in region 1 is the superposition of a primary and a secondary field, viz.,

F15F1
(pr)1F1

(sc), F5E, B. ~2.8!

In order to calculate the primary field, introduce the vector potentialA1
(pr)5G(r ;b) x̂, where

G~r ;b!5
m0

4p

eik1R

R
5

im0k1

4p (
l 50

`

~2l 11! j l~k1r ,!hl
(1)~k1r .!Pl~cosu!, ~2.9!

R5Ar 21b222rb cosu, r . is the larger ofr andb, andr , is the smaller.j l andhl
(1) denote the

spherical Bessel and Hankel functions, and Pl
m is the Legendre function of the first kind.36 Hence,

FIG. 1. Spherical coordinates and horizontal electric dipoleS inside an isotropic and homogeneous sphere.
 19 Jan 2005 to 18.87.1.204. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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B1r
(pr)5b1r

(pr)~r ,u! sinf52
1

r

]G

]u
sinf52

im0k1

4pr
sinf(

l 50

`

~2l 11! j l~k1r ,!hl
(1)~k1r .!Pl

1~cosu!,

~2.10!

B1u
(pr)5b1u

(pr)~r ,u! sinf, B1f
(pr)5b1f

(pr)~r ,u! cosf, ~2.11!

E1r
(pr)5e1r

(pr)~r ,u! cosf52
iv

k1
2r

]

]u S ]G

]b
1

1

b
GD cosf

5
vm0

4pb

1

k1r
cosf(

l 50

`

~2l 11!c l~k1r !@c̆ l~k1b!1k1b c̆ l8~k1b!#Pl
1~cosu!,

~2.12!

E1u
(pr)5e1u

(pr)~r ,u! cosf, E1f
(pr)5e1f

(pr)~r ,u! sinf, ~2.13!

where (c l ,c̆ l)5( j l ,hl
(1)) if r ,b, (c l ,c̆ l)5(hl

(1), j l) if r .b, and the prime denotes differentia
tion with respect to the argument. Let

Bjr 5bjr ~r ,u! sinf, Bj u5bj u~r ,u! sinf, Bj f5bj f~r ,u! cosf, ~2.14!

Ejr 5ejr ~r ,u! cosf, Ej u5ej u~r ,u! cosf, Ej f5ej f~r ,u! sinf. ~2.15!

It follows that

]2

]r 2 ~rb j f!1kj
2~rb j f!5

1

sinu

]

]r
~bjr !1

ik j
2

v

]

]u
~ejr !, ~2.16!

]2

]r 2 ~rej f!1kj
2~rej f!52 iv

]

]u
~bjr !2

1

sinu

]

]r
~ejr !, ~2.17!

bj u5
i

v F 1

r sinu
ejr 1

1

r

]

]r
~rej f!G , ~2.18!

ej u5
iv

kj
2 F 1

r sinu
bjr 2

1

r

]

]r
~rb j f!G . ~2.19!

The total field must be bounded at the origin and satisfy the usual radiation conditions.37 It is
natural to set

e1r
(sc)52

m0v

4pr

1

k1b (
l 50

`

~2l 11!Ãl j l~k1r !@ j l~k1b!1k1b j l8~k1b!#Pl
1~cosu!, ~2.20!

e2r5
m0v

4pr

1

k1b (
l 50

`

~2l 11!B̃lhl
(1)~k2r !@ j l~k1b!1k1b j l8~k1b!#Pl

1~cosu!, ~2.21!

b1r
(sc)5

im0k1

4pr (
l 50

`

~2l 11!C̃l j l~k1r ! j l~k1b!Pl
1~cosu!, ~2.22!

b2r52
im0k1

4pr (
l 50

`

~2l 11!D̃ lhl
(1)~k2r ! j l~k1b!Pl

1~cosu!, ~2.23!
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whereÃl , B̃l , C̃l , andD̃ l are coefficients yet to be determined.
In region 1, Eqs.~2.16! and~2.17! split into two equations by virtue of Eq.~2.8!. In compact

notation, these equations are

]2

]r 2 ~rw !1k2~rw !5
1

sinu

]g

]r
, ~2.24a!

]2

]r 2 ~rw !1k2~rw !5
]g

]u
, ~2.24b!

whereg5g(r ,u) (g5bjr ,ejr ) is treated as known. Specifically,

g~r ,u!5r 21(
l 50

`

~2l 11!clc l~kr !Pl
1~cosu!. ~2.25!

In the above,c l5 j l andk5k1 if r ,a, c l5hl
(1) andk5k2 if r .a.

A solution to Eq.~2.24a! is

rw~r ,u!5
1

sinu (
l 50

`
2l 11

l ~ l 11!
clwl~r !Pl

1~cosu!. ~2.26!

Eachwl(r ) ( l 50, 1, 2, . . . )should of course satisfy

S d2

dr2 1k2Dwl~r !52
l ~ l 11!

r 2 @c l~kr !2krc l8~kr !#, ~2.27!

and therefore equalswl(r )5(d/dr)@rc l(kr)#. With regard to Eq.~2.24b!,

rw~r ,u!5(
l 50

`
2l 11

l ~ l 11!
clwl~r !

]Pl
1

]u
, ~2.28!

wherewl(r ) is forced to satisfy

S d2

dr2 1k2Dwl~r !5
l ~ l 11!

r
c l~kr !, ~2.29!

with an admissible solutionwl(r )5rc l(kr). Oncebj f andej f are determined in this fashion,bj u

andej u follow from Eqs.~2.18! and ~2.19!.
The coefficientsÃl , B̃l , C̃l , andD̃ l in Eqs.~2.20!–~2.23! are calculated via imposition of th

continuity of Ef and Bu at r 5a. These conditions yield two independent systems of lin
equations, namely, one forÃl , B̃l and one forC̃l and D̃ l . The former set describes a magnet
type (H-) polarization ~Br50, ErÞ0!, while the latter one pertains to an electric-type (E-)
polarization~Er50, BrÞ0!, in correspondence to the case with a planar boundary. Explicitly

Ãl5
hl

(1)~k1a!

j l~k1a! H 1

k2a
1

hl
(1)8~k2a!

hl
(1)~k2a!

2
k2

k1
F 1

k1a
1

hl
(1)8~k1a!

hl
(1)~k1a!

G J 1

Kl
, ~2.30!

B̃l5
i

k1k2a2 j l~k1a!hl
(1)~k2a! Kl

, ~2.31!
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C̃l5
hl

(1)~k1a!

j l~k1a!
Fhl

(1)8~k1a!

hl
(1)~k1a!

2
k2

k1

hl
(1)8~k2a!

hl
(1)~k2a!

G 1

Ml
, ~2.32!

D̃ l52
i

~k1a!2 j l~k1a!hl
(1)~k2a! Ml

, ~2.33!

where the two principal denominators read as

Kl5
hl

(1)8~k2a!

hl
(1)~k2a!

1
1

k2a
2

k2

k1
F 1

k1a
1

j l8~k1a!

j l~k1a!
G , ~2.34!

Ml5
j l8~k1a!

j l~k1a!
2

k2

k1

hl
(1)8~k2a!

hl
(1)~k2a!

. ~2.35!

The terminology above primarily serves the purpose of distinguishing between contributions
these two denominators.

The field in region 2 is

E2r5
ivm0

4pk1rk2a2 cosf(
l 50

`

~2l 11!
j l~k1b!

j l~k1a!

hl
(1)~k2r !

hl
(1)~k2a!

1

Kl
F 1

k1b
1

j l8~k1b!

j l~k1b!
GPl

1~cosu!,

~2.36!

E2u5
ivm0

4pk1a2 cosf(
l 50

`
2l 11

l ~ l 11!

j l~k1b!

j l~k1a!

hl
(1)~k2r !

hl
(1)~k2a!

1

Kl
F 1

k1b
1

j l8~k1b!

j l~k1b!
G

3F 1

k2r
1

hl
(1)8~k2r !

hl
(1)~k2r !

G ]Pl
1

]u

2
ivm0

4pk1a2 sinu
cosf(

l 50

`
2l 11

l ~ l 11!

j l~k1b!

j l~k1a!

hl
(1)~k2r !

hl
(1)~k2a!

1

Ml
Pl

1~cosu!, ~2.37!

E2f52
ivm0

4pk1a2 sinu
sinf(

l 50

`
2l 11

l ~ l 11!

j l~k1b!

j l~k1a!

hl
(1)~k2r !

hl
(1)~k2a!

1

Kl
F 1

k1b
1

j l8~k1b!

j l~k1b!
G

3F 1

k2r
1

hl
(1)8~k2r !

hl
(1)~k2r !

GPl
1~cosu!

1
ivm0

4pk1a2 sinf(
l 50

`
2l 11

l ~ l 11!

j l~k1b!

j l~k1a!

hl
(1)~k2r !

hl
(1)~k2a!

1

Ml

]Pl
1

]u
, ~2.38!

B2r52
m0

4pk1ra2 sinf(
l 50

`

~2l 11!
j l~k1b!

j l~k1a!

hl
(1)~k2r !

hl
(1)~k2a!

1

Ml
Pl

1~cosu!, ~2.39!

B2u52
m0k2

4pk1a2 sinf(
l 50

`
2l 11

l ~ l 11!

j l~k1b!

j l~k1a!

hl
(1)~k2r !

hl
(1)~k2a!

1

Ml
F 1

k2r
1

hl
(1)8~k2r !

hl
(1)~k2r !

G ]Pl
1

]u

2
m0k2

4pk1a2 sinu
sinf(

l 50

`
2l 11

l ~ l 11!

j l~k1b!

j l~k1a!

hl
(1)~k2r !

hl
(1)~k2a!

1

Kl
F 1

k1b
1

j l8~k1b!

j l~k1b!
GPl

1~cosu!,

~2.40!
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B2f52
m0k2

4pk1a2 sinu
cosf(

l 50

`
2l 11

l ~ l 11!

j l~k1b!

j l~k1a!

hl
(1)~k2r !

hl
(1)~k2a!

1

Ml
F 1

k2r
1

hl
(1)8~k2r !

hl
(1)~k2r !

GPl
1~cosu!

2
m0k2

4pk1a2 cosf(
l 50

`
2l 11

l ~ l 11!

j l~k1b!

j l~k1a!

hl
(1)~k2r !

hl
(1)~k2a!

1

Kl
F 1

k1b
1

j l8~k1b!

j l~k1b!
G ]Pl

1

]u
. ~2.41!

Expansions~2.36!–~2.41! converge uniformly in all parameters ifrÞa or bÞa. For largel
each series is majorized by a geometric series with expansion parameterb/a)
3(min$r,a%/max$r,a%). For k2a@1, the summands withl<O(k1a) oscillate rapidly, hindering
physical interpretation and rendering direct computations impractical.

B. Electromagnetic field on the surface

When the dipole and the observation point are allowed to approach the boundary~b→a2,
r→a1!, the series expansions for the field diverge.38 Application of the Poisson summatio
formula ~1.1! converts Eqs.~2.36!–~2.41! into the following series:

E2r5
ivm0

2pk1k2a3 cosf (
n52`

`

~21!nE
0

`

dn ei2pnn
n

K~n!
F 1

2k1a
1

Jn8~k1a!

Jn~k1a!
GPn21/2

1 ~cosu!,

~2.42!

E2u5
ivm0

2pk1a2 cosf (
n52`

`

~21!nE
0

`

dn ei2pnn
n

n22
1

4

1

K~n!
F 1

2k2a
1

Hn
(1)8~k2a!

Hn
(1)~k2a!

G
3F 1

2k1a
1

Jn8~k1a!

Jn~k1a!
G ]Pn21/2

1

]u
2

ivm0

2pk1a2 sinu
cosf

3 (
n52`

`

~21!nE
0

`

dn ei2pnn
n

n22
1

4

1

M~n!
Pn21/2

1 ~cosu!, ~2.43!

E2f52
ivm0

2pk1a2 sinu
sinf (

n52`

`

~21!nE
0

`

dn ei2pnn
n

n22
1

4

1

K~n!
F 1

2k2a
1

Hn
(1)8~k2a!

Hn
(1)~k2a!

G
3F 1

2k1a
1

Jn8~k1a!

Jn~k1a!
GPn21/2

1 ~cosu!

1
ivm0

2pk1a2 sinf (
n52`

`

~21!nE
0

`

dn ei2pnn
n

n22
1

4

1

M~n!

]Pn21/2
1

]u
, ~2.44!

B2r52
m0

2pk1a3 sinf (
n52`

`

~21!nE
0

`

dn ei2pnn
n

M~n!
Pn21/2

1 ~cosu!, ~2.45!
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B2u52
m0k2

2pk1a2 sinf (
n52`

`

~21!nE
0

`

dn ei2pnn
n

n22
1

4

1

M~n!
F 1

2k2a
1

Hn
(1)8~k2a!

Hn
(1)~k2a!

G ]Pn21/2
1

]u

2
m0k2

2pk1a2 sinu
sinf (

n52`

`

~21!nE
0

`

dn ei2pnn
n

n22
1

4

1

K~n!

3F 1

2k1a
1

Jn8~k1a!

Jn~k1a!
GPn21/2

1 ~cosu!, ~2.46!

B2f52
m0k2

2pk1a2 sinu
cosf (

n52`

`

~21!nE
0

`

dn ei2pnn
n

n22
1

4

1

M~n!

3F 1

2k2a
1

Hn
(1)8~k2a!

Hn
(1)~k2a!

GPn21/2
1 ~cosu!

2
m0k2

2pk1a2 cosf (
n52`

`

~21!nE
0

`

dn ei2pnn
n

n22
1

4

1

K~n!
F 1

2k1a
1

Jn8~k1a!

Jn~k1a!
G ]Pn21/2

1

]u
,

~2.47!

where

K~n!5
Hn

(1)8~k2a!

Hn
(1)~k2a!

1
1

2k2a
2

k2

k1
F 1

2k1a
1

Jn8~k1a!

Jn~k1a!
G , ~2.48!

M~n!5
Jn8~k1a!

Jn~k1a!
2

k2

k1

Hn
(1)8~k2a!

Hn
(1)~k2a!

. ~2.49!

The integrands in Eqs.~2.42!–~2.47! are meromorphic functions ofn. The zeros ofK(n) and
M(n) are sometimes called Regge poles in the literature~for example, see Ref. 29!. The study of
the possible resonances associated with these poles, which are often believed to give
various effects of absorption and scattering from spheres and other scatterers, lies beyo
scope of this analysis. A discussion on the location of the zeros ofK(n) andM(n) is provided in
Appendix A. Each integral diverges in the usual sense, but is interpreted unambiguously a38

E
0

`

dn ~¯ !5 lim
y→01

E
0

`

dn ~¯ ! e2yn. ~2.50!

III. SOMMERFELD INTEGRALS AND LOWEST-ORDER CORRECTIONS

A. Approximate integral formulas

As u→01, Eqs. ~2.42!–~2.47! should reduce to known integral formulas.34 The following
steps are taken whenu!1: (i ) Only the n50 terms are retained, since the integrands withn
Þ0 are highly oscillatory. (i i ) The Bessel functions are replaced by asymptotic formulas tha
valid outside the transitional regions.39 ( i i i ) The Legendre functions are replaced by MacDonal
formulas36 that involve Bessel functions. (iv) The integration path is properly deformed in th
fourth quadrant of then-plane, as suggested by the analysis in Appendix A.
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Accordingly,K 21(n) andM 21(n) from Eqs.~2.48! and~2.49! are approximated as follows

1

K~n!
;2 i FA12S n

k2aD 2

1
k2

k1
A12S n

k1aD 2 G21

2
1

2k2a

~n/k2a!2@12~n/k2a!2#212 ~k2
2/k1

2! ~n/k1a!2@12~n/k1a!2#21

@A12~n/k2a!21 ~k2 /k1!A12~n/k1a!2#2
, ~3.1!

1

M~n!
; i FA12S n

k1aD 2

1
k2

k1
A12S n

k2aD 2 G21

2
1

2k1a

@12~n/k1a!2#212@12~n/k2a!2#21

FA12~n/k1a!21
k2

k1
A12~n/k2a!2G2 .

~3.2!

Note that the simplifiedK 21(n5la) exhibits a pair of poles at

l56kS56
k1k2

Ak1
21k2

2
;6S k22

k2
3

2k1
2D , k2

2!uk1
2u. ~3.3!

No poles exist in the approximation forM 21(la).
With l5n/a andr5au, the field components reduce to

E2r
n50; i

vm0k2
2

2pk1
~ I ez2I ez

c !cosf, ~3.4!

E2u
n50;2

vm0k2
2

4pk1
~ I er1I er

c !cosf, ~3.5!

E2f
n50;

vm0k2
2

4pk1
~ I ef1I ef

c !sinf, ~3.6!

B2r
n50; i

m0k2
2

2p
~ I bz1I bz

c !sinf, ~3.7!

B2u
n50;2

m0k2
3

4pk1
~ I br1I br

c !sinf, ~3.8!

B2f
n50;2

m0k2
3

4pk1
~ I bf1I bf

c !cosf. ~3.9!

In the above,I f k ~f 5e, b; k5r, f, z! denote the Sommerfeld integrals,34 viz.,

I ez5k2
23E

0

`

dl
A12~l/k1!2

A12~l/k2!21~k2 /k1!A12~l/k1!2
l2J1~lr!, ~3.10!

I er5k2
22E

0

`

dl lH A12~l/k1!2 A12~l/k2!2

A12~l/k2!21~k2 /k1!A12~l/k1!2
@J0~lr!2J2~lr!#

1
1

A12~l/k1!21~k2 /k1!A12~l/k2!2
@J0~lr!1J2~lr!#J , ~3.11!
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I ef5k2
22E

0

`

dl lH A12~l/k1!2 A12~l/k2!2

A12~l/k2!21~k2 /k1!A12~l/k1!2
@J0~lr!1J2~lr!#

1
1

A12~l/k1!21~k2 /k1!A12~l/k2!2
@J0~lr!2J2~lr!#J , ~3.12!

I bz5k1
21k2

22E
0

`

dl
1

A12~l/k1!21~k2 /k1!A12~l/k2!2
l2J1~lr!, ~3.13!

I br5k2
22E

0

`

dl lH A12~l/k2!2

A12~l/k1!21~k2 /k1!A12~l/k2!2
@J0~lr!2J2~lr!#

1
A12~l/k1!2

A12~l/k2!21~k2 /k1!A12~l/k1!2
@J0~lr!1J2~lr!#J , ~3.14!

I bf5k2
22E

0

`

dl lH A12~l/k2!2

A12~l/k1!21~k2 /k1!A12~l/k2!2
@J0~lr!1J2~lr!#

1
A12~l/k1!2

A12~l/k2!21~k2 /k1!A12~l/k1!2
@J0~lr!2J2~lr!#J . ~3.15!

The lowest-order correctionsI f k
c read as

I ez
c 5

i

2k2
4a
E

0

`

dlH k2

k1

~l/k1!2

12~l/k1!2

1

A12~l/k2!21~k2 /k1!A12~l/k1!2

1A12~l/k1!2

~l/k2!2

12~l/k2!2 2~k2
2/k1

2!
~l/k1!2

12~l/k1!2

@A12~l/k2!21~k2 /k1!A12~l/k1!2#2
J l2J1~lr!, ~3.16!

I er
c 5

i

2k2
3a
E

0

`

dlH A12~l/k1!2
~l/k2!2

12~l/k2!22~k2 /k1!A12~l/k2!2
~l/k1!2

12~l/k1!2

A12~l/k2!21~k2 /k1!A12~l/k1!2

2A12~l/k2!2A12~l/k1!2

~l/k2!2

12~l/k2!2 2~k2
2/k1

2!
~l/k1!2

12~l/k1!2

@A12~l/k2!21~k2 /k1!A12~l/k1!2#2
J l@J0~lr!

2J2~lr!#1
i

2k1k2
2a
E

0

`

dl
@12~l/k1!2#212@12~l/k2!2#21

@A12~l/k1!21~k2 /k1!A12~l/k2!2#2
l@J0~lr!1J2~lr!#,

~3.17!
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I ef
c 5

i

2k2
3a
E

0

`

dlH A12~l/k1!2
~l/k2!2

12~l/k2!2 2~k2 /k1!A12~l/k2!2
~l/k1!2

12~l/k1!2

A12~l/k2!21~k2 /k1!A12~l/k1!2

2A12~l/k2!2A12~l/k1!2

~l/k2!2

12~l/k2!2 2~k2
2/k1

2!
~l/k1!2

12~l/k1!2

@A12~l/k2!21~k2 /k1!A12~l/k1!2#2
J l@J0~lr!1J2~lr!#

1
i

2k1k2
2a
E

0

`

dl
@12~l/k1!2#212@12~l/k2!2#21

@A12~l/k1!21~k2 /k1!A12~l/k2!2#2
l@J0~lr!2J2~lr!#, ~3.18!

I bz
c 5

i

2k1
2k2

2a
E

0

`

dl
@12~l/k1!2#212@12~l/k2!2#21

@A12~l/k1!21~k2 /k1!A12~l/k2!2#2
l2J1~lr!, ~3.19!

I br
c 5

i

2k2
3a
E

0

`

dlH ~l/k2!2

12~l/k2!2

1

A12~l/k1!21~k2 /k1!A12~l/k2!2

1
k2

k1

A12~l/k2!2
@12~l/k1!2#212@12~l/k2!2#21

@A12~l/k1!21~k2 /k1!A12~l/k2!2#2 J l@J0~lr!2J2~lr!#

2
i

2k2
3a
E

0

`

dlH k2

k1

~l/k1!2

12~l/k1!2

1

A12~l/k2!21~k2 /k1!A12~l/k1!2

1A12~l/k1!2

~l/k2!2

12~l/k2!2 2~k2
2/k1

2!
~l/k1!2

12~l/k1!2

@A12~l/k2!21~k2 /k1!A12~l/k1!2#2
J l@J0~lr!1J2~lr!#,

~3.20!

I bf
c 5

i

2k2
3a
E

0

`

dlH ~l/k2!2

12~l/k2!2

1

A12~l/k1!21~k2 /k1!A12~l/k2!2

1
k2

k1

A12~l/k2!2
@12~l/k1!2#212@12~l/k2!2#21

@A12~l/k1!21~k2 /k1!A12~l/k2!2#2 J l@J0~lr!1J2~lr!#

2
i

2k2
3a
E

0

`

dlH k2

k1

~l/k1!2

12~l/k1!2

1

A12~l/k2!21~k2 /k1!A12~l/k1!2

1A12~l/k1!2

~l/k2!2

12~l/k2!2 2~k2
2/k1

2!
~l/k1!2

12~l/k1!2

@A12~l/k2!21~k2 /k1!A12~l/k1!2#2
J l@J0~lr!2J2~lr!#.

~3.21!
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The first Riemann sheet is chosen so that all square roots are positive for 0,l,k2 , if k1 is real,
with the branch-cut configuration of Fig. 2; evidently, no pole lies in this sheet.

B. Integrated formulas, k 2rš1, k 2
2™zk 1

2z

When k2r@1, the major contributions to integration in Eqs.~3.10!–~3.21! arise from the
vicinities of branch points atl5kj ( j 51, 2). Explicit expressions for the integralsI f k are given
elsewhere.34,35 It is noted in passing thatI er , I ef and I bz are evaluated exactly in terms o
well-converging series that involve Fresnel and exponential integrals.35

Attention is now turned toI f k
c . By following the procedure in Appendix B of Ref. 35, letI f k, j

c

denote the contour integral over the pathG j of Fig. 2. Clearly,I f ,k
c 5I f k,2

c 1I f k,1
c , since eachI f k, j

c

follows from I f k
c under

E
0

`

dl ~¯ !Js~lr!→ 1

2 EG j

dl ~¯ !Hs
(1)~lr!. ~3.22!

With l5kj (11 i t ) in each side of the branch cuts in Fig. 2, it follows that

A12~l/kj !
256e2 ip/4A2t A11 i t /2;6e2 ip/4A2t, t→01, At>0, ~3.23!

where the upper sign holds along the left-hand side and the lower sign along the right-hand
each branch cut. Due to the factors@12(l/kj )

2#21, the indentationsCd, j contribute to the value
of I f k, j

c asd approaches 0. For example,I ez,2
c requires the limit

lim
d→01

E
Cd,2

dlH ~k2 /k1!~l/k1!2 @12~l/k1!2#21

A12~l/k2!21~k2 /k1!A12~l/k1!2

1
A12~l/k1!2$~l/k2!2 @12~l/k2!2#212~k2

2/k1
2!~l/k1!2 @12~l/k1!2#21%

@A12~l/k2!21~k2 /k1!A12~l/k1!2#2 J
3l2H1

(1)~lr!

52p i S 2k2

2
D A 12~k2 /k1!2

@~k2 /k1!A12~k2 /k1!#2

2 k2
2H1

(1)~k2r!;2ei (k2r2p/4) k1
2k2A2p

k2r
.

~3.24!

FIG. 2. Branch-cut configuration and integration pathsG andG j , j 51, 2, pertaining to integrals~3.10!–~3.21!; k1 is taken
to be real. The final formulas can be extended to complexk1 .
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Define

`5
k2

3r

2k1
2 5

k2
2

2k1
2 ~k2a!u, ~3.25!

F~` !5e2 i ` È`

dx
eix

A2px
5e2 i `F1

2
~11 i !2C~` !2 iS~` !G , ~3.26!

whereC(`) andS(`) are the Fresnel integrals defined as36

C~` !5E
0

`

dx
cosx

A2px
, S~` !5E

0

`

dx
sinx

A2px
. ~3.27!

The relevant calculations are illustrated by

I ez,2
c ;2

1

4
ei (k2r23p/4)

1

k2a
A 2

pk2rE0

`

dt H k2
3

k1
3 F2

1

e2 ip/4A2t1k2 /k1

1
1

2e2 ip/4A2t1k2 /k1
G

1S 1

22i t
2

k2
4

k1
4D F2

1

~e2 ip/4A2t1k2 /k1!2
1

1

~2e2 ip/4A2t1k2 /k1!2G J e2k2rt

1
1

2
ei (k2r23p/4)

k1
2

k2
3a
A p

2k2r

;
i

2
eik2r

1

k2a
Apk2rH F~` !2 i ~2p` !21/21~2i ` !21FF~` !2

1

2
~11 i !G J ~3.28a!

;5
11 i

4
eik2rA p

k2r

k1
2

k2
3a

, u`u@1,

12 i

4
eik2rA p

k2r

r

a
, u`u!1,

~3.28b!

I ez,1
c ;2

1

2
ei (k1r2p/4)

k1

k2
2a
A p

2k1r
. ~3.29!

From formulas~3.4!–~3.9!, with k2a@1, k2
2!uk1

2u, k2au@1, andu sufficiently small,

E2r
n50; i

vm0k2
2

2pk1
cosfH 2 ieik2r

k2

k1
A p

k2r FF~` !2 i ~2p` !21/21
k1r

2k2a H F~` !2 i ~2p` !21/2

1~2i ` !21FF~` !2
1

2
~11 i !G J G1

eik1r

k2
2r2 S 11

12 i

4
Apk1r

r

a D J , ~3.30!

E2u
n50;

vm0k2
2

2pk1
cosfH eik2r

k2
2

k1
2 A p

k2r FF~` !2 i ~2p` !21/21
k1r

2k2a H F~` !2 i ~2p` !21/2

1~2i ` !21FF~` !2
1

2
~11 i !G J G1

eik1r

k2
2r2 S 11

12 i

4
Apk1r

r

a D J , ~3.31!
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E2f
n50; i

vm0k2
2

2pk1
sinfH eik2r

k2

k1
2r
A p

k2r FF~` !22i ~2p` !21/21
k1r

2k2a H F~` !2 i ~2p` !21/2

1~2i ` !21FF~` !2
1

2
~11 i !~122i ` !G J G1 i

eik1r

k2
2r2 S 11

12 i

4
Apk1r

r

a D J , ~3.32!

B2r
n50;

m0k2
2

2p
sinfH eik2r

k1
2r2 S 12

12 i

4
Apk2r

r

a D2
eik1r

k2
2r2 S 11

12 i

4
Apk1r

r

a D J , ~3.33!

B2u
n50; i

m0k2
3

2pk1
sinfH eik2r

k1r
A p

k2r FF~` !22i ~2p` !21/21
k1r

2k2a H F~` !2 i ~2p` !21/2

1~2i ` !21FF~` !2
1

2
~11 i !~122i ` !G J G1eik1r

k1

k2
3r2 S 11

12 i

4
Apk1r

r

a D J ,

~3.34!

B2f
n50;2

m0k2
3

2pk1
cosfH eik2r

k2

k1
A p

k2r FF~` !2 i ~2p` !21/21
k1r

2k2a H F~` !2 i ~2p` !21/2

1~2i ` !21FF~` !2
1

2
~11 i !G J G1

eik1r

k2
2r2 S i

k2

k1
2

1

k2r D S 11
12 i

4
Apk1r

r

a D J . ~3.35!

Consequently,uI f k, j u;uI f k, j
c u provided that, for realk1 ,

r;a~kja/2!21/35rcr,j5aucr,j , j 51, 2, ~3.36!

wherercr,2 is essentially Fock’s ‘‘reduced distance.’’16 Both rcr,j , j 51, 2, enter as parameters
the analysis for a vertical electric dipole.3,4,33 Evidently, expressions~3.30!–~3.35! imply that

u!ucr,j . ~3.37!

Of course, ifk1 is complex, one of these inequalities is replaced byu!uucr,1u.
When 1!k2r!uk1ru!uk1rcr,2u, the maximum magnitudes inf of the field components trav

eling with the air phase velocity satisfy

uE2r ,2
n50um :uE2u,2

n50um :uE2f,2
n50um5O~1!:O~k2 /k1!:O@~k1r!21#, u`u<O~1!,

5O~1!:O~k2 /k1!:O~k2
3/k1

3!, u`u@1, ~3.38a!

uB2r ,2
n50um :uB2u,2

n50um :uB2f,2
n50um5O@~k1r!21#:O@~k2r!21#:O~1!, u`u!1,

5O@~k2r!23/2#:O@~k2r!21#:O~1!, `5O~1!,

5O~k2
3/k1

3!:O~k2
2/k1

2!:O~1!, u`u@1. ~3.38b!

IV. WAVES IN THE CRITICAL RANGES, uÄO„ucr ,j…

Whenu becomes of the order ofucr,1 or ucr,2 introduced in Eq.~3.36!, approximations~3.4!–
~3.9! break down. The approximation of Bessel functions by Airy integrals gives39,40

K 21~n!;2
k2

k1
F11

k2
2

k1
2 S 2

k1aD 1/3

H~j1 ;0!G , j15~k1a/2!21/3~n2k1a!5O~1!, ~4.1a!
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K 21~n!;2S k2a

2 D 1/3

@H~j2 ;2p/3!2 ia#21, j25~k2a/2!21/3~n2k2a!5O~1!, ~4.1b!

while

M 21~n!;11S 2

k1aD 1/3

H~j1 ;0!, j15O~1!, ~4.2a!

M 21~n!; i 1
k2

k1
S 2

k2aD 1/3

H~j2 ;2p/3!, j25O~1!. ~4.2b!

In the above,

H~j;c!5eic
Ai 8~eicj!

Ai ~eicj!
, ~4.3!

a5
k2

k1
S k2a

2 D 1/3

. ~4.4!

Notice the appearance of the Airy function Ai(z) and its derivative.40 The Legendre functions ar
replaced by Bessel functions36,39 of argumentnu wherenu@1.

By using the subscriptj to denote the contribution fromn5kja ( j 51, 2),

E2r ,2
n50;2

vm0

4pa
ei (k2au1p/4)

k2

k1
S k2a

2 D 2/3A 2

pk2au
I cosf, ~4.5a!

E2r ,1
n50;2

vm0

4pa
ei (k1au2p/4)A 2

pk1au
I1 cosf, ~4.5b!

E2u,2
n50;2

vm0

4pa
ei (k2au1p/4)

k2
2

k1
2 S k2a

2 D 2/3A 2

pk2au FI1
i

k2au S k2a

2 D 22/3

I2G cosf, ~4.6a!

E2u,1
n50;

vm0

4pa
ei (k1au1p/4)A 2

pk1au
I1 cosf, ~4.6b!

E2f,2
n50;2

vm0

4pa
ei (k2au1p/4)

k2
2

k1
2 A 2

pk2au FI21 i
ucr,2

2u
IG sinf, ~4.7a!

E2f,1
n50;2

vm0

4pa
ei (k1au1p/4)A 2

pk1au
I1 sinf, ~4.7b!

B2r ,2
n50;2

m0k2

4pa
ei (k2au1p/4)

k2
2

k1
2 A 2

pk2au
I2 sinf, ~4.8a!

B2r ,1
n50;2

m0k1

4pa
ei (k1au1p/4)A 2

pk1au
I1 sinf, ~4.8b!

B2u,2
n50;2

m0k1

4pa
ei (k2au1p/4)

k2
2

k1
2 A 2

pk2au FI21 i
ucr,2

2u
IG sinf, ~4.9a!
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B2u,1
n50;2

m0k1

4pa
ei (k1au2p/4)A 2

pk1au
I1 sinf, ~4.9b!

B2f,2
n50;

m0k2

4pa
ei (k2au1p/4)

k2

k1
S k2a

2 D 2/3A 2

pk2au FI1
i

k2au S k2a

2 D 22/3

I2G cosf, ~4.10a!

B2f,1
n50;

m0k2

4pa
ei (k1au1p/4) S 1

k2au
2 i

k2

k1
D A 2

pk1au
I1 cosf, ~4.10b!

where

I15I1~u!5E
2`2 i §

`2 i §

dj ei (u/ucr,1)j H~j;0!, ~4.11!

I25I2~u!5E
2`2 i §

`2 i §

dj ei (u/ucr,2)j H~j;2p/3!, ~4.12!

I5I~u;a!5E
2`2 i §

`2 i §

dj
ei (u/ucr,2)j

H~j;2p/3!2 ia
, §.0. ~4.13!

Because the sole singularities of the integrands are poles in the upperj-plane, including the rea
axis, terms with factorse2 i (u/ucr,j )j are integrated out to zero.I and I2 describe propagation
through region 2.

For u!uucr,1u, the leading contributions to integration in Eqs.~4.11!–~4.13! are determined by
the large-j behavior ofH(j;c). Accordingly,40

I1;2E
2`2 i §

`2 i §

dj ei (u/ucr,1)j SAj1
1

4j D5e2 ip/4A2p

k1aS r

aD 23/2

2
ip

2
, ~4.14!

while, for u!ucr,2,

I2;E
2`2 i §

`2 i §

dj ei (u/ucr,2)j SAj2
1

4j D52e2 ip/4A2p

k2aS r

aD 23/2

2
ip

2
, ~4.15!

I;E
2`2 i §

`2 i §

dj
ei (u/ucr,2)j

Aj2 1/4j 2 ia
; ip eip/4 23/2

k2

k1
S k2a

2 D 1/3H F~` !2 i ~2p` !21/21
k1r

2k2a FF~` !

2 i ~2p` !21/21~2i ` !21H F~` !2
1

2
~11 i !J G J , ~4.16!

in agreement with formulas~3.30!–~3.35!.

A. Propagation through air

The integralI2 of Eq. ~4.12! is expressed as a general Dirichlet series41 over the residues
associated with poles ofH(j;2p/3). ~See Appendix A fork5k2 /k1 .! By closing the contour in
the upperj-plane,

I252p i (
s51

`

ei (u/ucr,2)uasue
ip/3

, ~4.17!
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whereas are the zeros of Ai(z) numbered in order of ascending magnitude.40 Series~4.17! is
approximated by its first term ifu@ucr,2.

The poles associated withI are obtained by solving

ei2p/3
Ai 8~jei2p/3!

Ai ~jei2p/3!
5 ia, a5

k2

k1
S k2a

2 D 1/3

. ~4.18!

Let $js5js(a)%s51, 2, ... be the sequence of these roots;js(0) are numbered in order of increasin
imaginary part. The integralI equals

I52p i (
s51

`
ei (u/ucr,2)js

js1a2 . ~4.19!

Because$js% do not have any finite limit, they should approach the Stokes line Argj5p/3 as
s→`. Eachjs(z) satisfies

djs

dz
5

i

js1z2 , js~0!5uǎsueip/3, ~4.20!

via differentiation of both sides of Eq.~4.18! in a[z. ǎs denote the zeros of Ai8(z).40 Equation
~4.20! was given by Fock16 and has been studied numerically in the literature.42 By integrating
~4.20! along a path whereujs(z)u@uz2u,

js~a!;js~0!1
ia

js~0!
. ~4.21!

Clearly,

I;2p i
ei (u/ucr,2) j̄

j̄1a2
, u@ucr,2, ~4.22!

where j̄5 j̄(a) is the root of Eq.~4.18! with the smallest imaginary part. It is of interest
compare mins Im js(a) with its limiting value fora→`. With a5te2 iq ~0<t,`, 0<q<p/4!
and fixedq, the trajectory of eachj j (a)5b j (t)1 ig j (t) can be described by the coupled equ
tions

db j

dt
5

g j cosq1~b j2t2!sinq

~b j1t2 cos 2q!21~g j2t2 sin 2q!2 , ~4.23a!

dg j

dt
5

~b j1t2!cosq2g j sinq

~b j1t2 cos 2q!21~g j2t2 sin 2q!2 , ~4.23b!

where b j (0)5uǎ j u/2, g j (0)5)uǎ j u/2, and uǎ j u,uaj u,uǎ j 11u. Of course, limt→`j j (a(t))
5uaj ueip/3 uniformly in q. For definiteness, considerj 51. If q50, b1(t) andg1(t) are mono-
tonically increasing int, and the slope ofj1(a(t)) equalsp/6 for t50 and approachesp/2 as
t→`. A close inspection of Eqs.~4.23! shows thatg1(t) remains monotonically increasing fo
fixed qP(0,p/6#, while b1(t) reaches a maximum. For fixedqP(p/6,p/4#, g1(t) is monotoni-
cally decreasing and reaches a minimum, and then progresses monotonically to its limiting
The lowest minimum ofg1(t) is reached forq5p/4, when the slope ofj1(a(t)) is 2p/12 for
t50 and 3p/4 as t→`. By relaxing routine rigor, the assumed analyticity ofj1(a) in DR

5$a: 0,uau,R, 2p/4,Arg a,0%, where R is positive and arbitrarily large, entails tha
Im j1(a) is harmonic inDR and hence cannot attain any maximum or minimum there. It follo
from Fig. 3 that the maximum occurs along the boundary$a: uau5R, Arg a5p/4%.
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It is therefore implied that, fora<O(1),

I2 /I5O@e2(u/ucr,2)h̄#, h̄[ 1
2 ) ua1u2min

s
Im js~a!, u@ucr,2, ~4.24a!

while for a→`,

I2 /I5O~a2! as a→`. ~4.24b!

Formulas~4.6a! and ~4.10a! are further simplified:

E2u,2
n50;2

vm0

4pa
ei (k2au1p/4)

k2
2

k1
2 S k2a

2 D 2/3A 2

pk2au
I cosf;

k2

k1
E2r ,2

n50 , ~4.25!

B2f,2
n50;

m0k2

4pa
ei (k2au1p/4)

k2

k1
S k2a

2 D 2/3A 2

pk2au
I cosf;2

1

c
E2r ,2

n50 , ~4.26!

FIG. 3. Imaginary part of the rootj1(a) of ~4.18! for fixed values of the phase2q and varying magnitudeuau, where
a5uaue2 iq5(k2 /k1)(k2a/2)1/3, for ~a! 0<uau<5, and~b! 0<uau<50.
 19 Jan 2005 to 18.87.1.204. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



real
e

extends
le to

3181J. Math. Phys., Vol. 43, No. 6, June 2002 Horizontal dipole on large dielectric sphere

Downloaded
wherec is the velocity of light in air.
From expressions~4.7a! and ~4.9a!,

E2f,2
n50;2 i

vm0

8pa
ei (k2au1p/4)

k2
2

k1
2A 2

pk2au

ucr,2

u
I sinf, ~4.27!

B2u,2
n50;2 i

m0k1

8pa
ei (k2au1p/4)

k2
2

k1
2A 2

pk2au

ucr,2

u
I sinf, u@ucr,2, uau<O~1!. ~4.28!

It is inferred that whenO(ucr,2)<u!1, uau<O(1),

uE2r ,2
n50um :uE2u,2

n50um :uE2f,2
n50um5O~1!:O~k2 /k1!:O@~k1au!21#, ~4.29a!

uB2r ,2
n50um :uB2u,2

n50um :uB2f,2
n50um5OFI2

I
k2

k1
S k2a

2 D 22/3G :O@~k2au!21#:O~1!. ~4.29b!

B. Propagation through region 1

Difficulties in the evaluation ofI1 arise because of the presence of poles in the negative
axis. These poles stem from zeros ofK(n) or M(n), as outlined in Appendix A. By use of th
Wronskian of Ai(z e2 ip/3) and Ai(z eip/3),

I15E
L
dz @H~2z;0!2H~2z;22p/3!# e2 i (u/ucr,1)z52

eip/6

2p E
L
dz

e2 i (u/ucr,1)z

Ai ~zeip/3! Ai ~2z!
,

~4.30!

whereL is a path that extends along the negative real axis, passes through zero and then
slightly above the positive real axis. This integral can be cast in a form that is amenab
numerical computation.33 Alternatively, rewriteI1 as

I152
eip/6

2p F E
0

`

dj
ei (u/ucr,1)j

Ai ~je2 i2p/3! Ai ~j!
1E

0

`1 i §

dz
e2 i (u/ucr,1)z

Ai ~zeip/3! Ai ~2z!G
52

i

p H E
0

`

dy
exp@2~u/ucr,1!yeip/6#12exp@~u/ucr,1!ye2 ip/6#

Ai ~y!21Bi~y!2

1 i E
0

`

dy
exp@2~u/ucr,1!yeip/6#

Ai ~y!21Bi~y!2

Bi~y!

Ai ~y! J , ~4.31!

by rotation of each integration path in thej- or z-plane by 2p/3 or p/3 counterclockwise. The
right-hand side of Eq.~4.31! involves exponentially converging integrals.

Whenu@uucr,1u, I1 is further simplified. By virtue of the equality

Ai ~2z!1ei2p/3 Ai ~z e2 ip/3!1e2 i2p/3 Ai ~z eip/3!50,

it is deduced that

1

Ai ~zeip/3! Ai ~2z!
52p e2 ip/6

d

dz E0

Ã(z) dy

11y
, ~4.32!

where

Ã~z![e2 i2p/3
Ai ~ze2 ip/3!

Ai ~zeip/3!
. ~4.33!
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Note thatÃ(z) is bounded everywhere except near the zeros of Ai(z eip/3). Substitution of Eq.
~4.32! into ~4.30! and application of integration by parts furnish

I152 i
u

ucr,1
F (

p50

P21
~21!p

p11 E
L
dz e2 i (u/ucr,1)z Ã~z!p111RP~u/ucr,1!G , ~4.34!

where

RP~x!5~21!PE
L
dz e2 ixzE

0

Ã(z)

dy
yP

11y
, P>1, ~4.35!

RP~x!;
~21!P

P11 E
L
dz e2 ixz

Ã~z!P11

11Ã~z!
, P@1. ~4.36!

For u@uucr,1u, the leading contributions in Eq.~4.34! come from pointszp that render the
phase ofe2 i (u/ucr,1)z Ã(z)p11 stationary. Consequently,zp obey

Ã8~zp!

Ã~zp!
5 i

u

ucr,1~p11!
, ~4.37!

or

1

p

1

Ai ~2zp!21Bi~2zp!2 5
u

2ucr,1~p11!
5xp . ~4.38!

Whenp,O(u/ucr,1), zp is positive and large,40 viz.,

zp5xp
21O~xp

24!, uxpu@1. ~4.39!

On the other hand,xp5O(1) implieszp5O(1). In view of approximation~4.36!, the remainder
in Eq. ~4.34! can be neglected ifP is of the order ofu/ucr,1. With

Ã~z!p11;~2 i !p11 expF i
4

3
~p11!z3/2G , ~4.40!

an ordinary stationary-phase calculation leads to

I1;2 i
u

ucr,1
(
p50

O(u/ucr,1) ~21!p

p11
expF2

i

12

u3

ucr,1
3 ~p11!2G ~2 i !p11

3E
2`

`

dz expH i
u

ucr,1
Fucr,1~p11!

u G2

~z2zp!2J
;2eip/4S u

ucr,1
D 3/2

Ap S~k1au3!, ~4.41!

S~z!5 (
p50

`
i p

~p11!2 expF2
i

24

z

~p11!2G . ~4.42!

Finally, for u@uucr,1u, k2
2!uk1

2u andk2au@1,

E2r ,1
n50;

vm0u

4pa
eik1au S~k1au3! cosf; iE2u,1

n50 , ~4.43!
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E2f,1
n50;

ivm0u

4pa
eik1au S~k1au3! sinf, ~4.44!

B2r ,1
n50;

im0k1u

4pa
eik1au S~k1au3! sinf; iB2u,1

n50 , ~4.45!

B2f,1
n50;2

im0k2u

4pa
eik1au S 1

k2au
2 i

k2

k1
DS~k1au3! cosf

;2
m0k2

2u

4pk1a
eik1au S~k1au3! cosf, k2au@uk1u/k2 . ~4.46!

V. FIELD IN THE RANGE O„ucr ,j…ËuÏp

A. Formulation

Consider the identity

M~n!2
Hn

(2)8~k1a!

Hn
(2)~k1a!

52
W@Hn

(1)~k1a!,Hn
(2)~k1a!#

2Hn
(2)~k1a! Jn~k1a!

2
k2

k1

Hn
(1)8~k2a!

Hn
(1)~k2a!

5
2i

pk1a Hn
(2)~k1a! Jn~k1a!

2
k2

k1

Hn
(1)8~k2a!

Hn
(1)~k2a!

, ~5.1!

which is implied from Eq.~4.32! and leads to the decomposition

1

M~n!
5

1

D~n!
2F~n! (

p50

P21

G~n!p2F~n!
G~n!P

12G~n!
, ~5.2!

where

D~n!5
Hn

(2)8~k1a!

Hn
(2)~k1a!

2
k2

k1

Hn
(1)8~k2a!

Hn
(1)~k2a!

, ~5.3!

F~n!5
4i

pk1a

1

D~n!2 Hn
(2)~k1a!2 , ~5.4!

G~n!5
2Hn

(1)~k1a!

Hn
(2)~k1a!

2
4i

pk1a

1

D~n! Hn
(2)~k1a!2 . ~5.5!

When P→`, Eq. ~5.2! reduces to an expansion of the Debye type,7 also employed by
Nussenzveig.29,32 In the lowern-plane slightly below the positive real axis, the limitP→` in Eq.
~5.2! is meaningful becauseuG(n)u,1. However, care should be exercised in taking this lim
under the integral sign.

A corresponding decomposition forK 21(n) reads as

1

K~n!
5

1

A~n!
1B~n! (

p50

P21

C~n!p1B~n!
C~n!P

12C~n!
, ~5.6!

where

A~n!5
Hn

(1)8~k2a!

Hn
(1)~k2a!

2
k2

k1

Hn
(2)8~k1a!

Hn
(2)~k1a!

1
1

2k2a
2

k2
2

k1
2

1

2k2a
, ~5.7!
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B~n!5
4i

pk1a

k2

k1

1

A~n!2 Hn
(2)~k1a!2 , ~5.8!

C~n!5
2Hn

(1)~k1a!

Hn
(2)~k1a!

1
4i

pk1a

k2

k1

1

A~n! Hn
(2)~k1a!2 . ~5.9!

Expressions~5.6!–~5.9! are also derived in Ref. 33 for the field of a vertical electric dipole ove
spherical earth.A(n) andD(n) are entire functions ofn satisfying39

A~2n!5A~n!, D~2n!5D~n!. ~5.10!

A brief discussion on the location of their zeros is given in Appendix B.
Residues that are associated with the polesn j of A 21(n) and ñ j of D 21(n) in the upper

n-plane give rise to exponentially decreasing waves that propagate through air. On the othe
stationary-phase contributions fromB(n)C(n)p and F(n)G(n)p, combined withei2pnn and the
Legendre functions, give rise to rays that travel in region 1. Contributions from these rays be
significant when Imk1a!1.

With Eqs.~C1! and ~C5! of Appendix C,

E25E2
res1E2

ray, B25B2
res1B2

ray, ~5.11!

where

E2r
res5

ivm0

2pk1k2a3 cosf (
n52`

`

~21!nE
0

`

dn ei2pnn
n

A~n!
F 1

2k1a
1

Hn
(2)8~k1a!

Hn
(2)~k1a!

GPn21/2
1 ~cosu!,

~5.12!

E2u
res5

ivm0

2pk1a2 cosf (
n52`

`

~21!nE
0

`

dn ei2pnn
n

n22 1
4

3H Hn
(2)8~k1a!

Hn
(2)~k1a!

1
k2

k1

1

A~n!
F 1

2k1a
1

Hn
(2)8~k1a!

Hn
(2)~k1a!

G 2J ]Pn21/2
1 ~cosu!

]u

2
ivm0

2pk1a2 sinu
cosf (

n52`

`

~21!nE
0

`

dn ei2pnn
n

n22 1
4

1

D~n!
Pn21/2

1 ~cosu!, ~5.13!

E2f
res52

ivm0

2pk1a2 sinu
sinf (

n52`

`

~21!nE
0

`

dn ei2pnn
n

n22 1
4

3H Hn
(2)8~k1a!

Hn
(2)~k1a!

1
k2

k1

1

A~n!
F 1

2k1a
1

Hn
(2)8~k1a!

Hn
(2)~k1a!

G 2J Pn21/2
1 ~cosu!

1
ivm0

2pk1a2 sinf (
n52`

`

~21!nE
0

`

dn ei2pnn
n

n22 1
4

1

D~n!

]Pn21/2
1

]u
, ~5.14!

B2r
res52

m0

2pk1a3 sinf (
n52`

`

~21!nE
0

`

dn ei2pnn
n

D~n!
Pn21/2

1 ~cosu!, ~5.15!
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B2u
res52

m0

2pa2 sinf (
n52`

`

~21!nE
0

`

dn ei2pnn
n

n22 1
4

1

D~n!
F 1

2k1a
1

Hn
(2)8~k1a!

Hn
(2)~k1a!

G
3

]Pn21/2
1

]u
2

m0k2

2pk1a2 sinu
sinf (

n52`

`

~21!nE
0

`

dn ei2pnn
n

n22 1
4

1

A~n!

3F 1

2k1a
1

Hn
(2)8~k1a!

Hn
(2)~k1a!

G Pn21/2
1 ~cosu!, ~5.16!

B2f
res52

m0

2pa2 sinu
cosf (

n52`

`

~21!nE
0

`

dn ei2pnn
n

n22 1
4

1

D~n!

3F 1

2k1a
1

Hn
(2)8~k1a!

Hn
(2)~k1a!

G Pn21/2
1 ~cosu!2

m0k2

2pk1a2 cosf (
n52`

`

~21!n

3E
0

`

dn ei2pnn
n

n22 1
4

1

A~n!
F 1

2k1a
1

Hn
(2)8~k1a!

Hn
(2)~k1a!

G ]Pn21/2
1

]u
, ~5.17!

and

E2r
ray5

ivm0

2pa

1

~k2a!2 cosf (
n52`

`

~21!n(
p50

` E
0

`

dn ei2pnnnB~n!C~n!p

3F 1

2k2a
1

Hn
(1)8~k2a!

Hn
(1)~k2a!

GPn21/2
1 ~cosu!, ~5.18!

E2u
ray5

ivm0

2pk2a2 cosf (
n52`

`

~21!n(
p50

` E
0

`

dn ei2pnn
n

n22 1
4

B~n!C~n!p

3F 1

2k2a
1

Hn
(1)8~k2a!

Hn
(1)~k2a!

G 2
]Pn21/2

1 ~cosu!

]u
1

ivm0

2pk1a2 sinu
cosf (

n52`

`

~21!n

3 (
p50

` E
0

`

dn ei2pnn
n

n22 1
4

F~n!G~n!p Pn21/2
1 ~cosu!, ~5.19!

E2f
ray52

ivm0

2pk2a2 sinu
sinf (

n52`

`

~21!n(
p50

` E
0

`

dn ei2pnn
n

n22 1
4

B~n!C~n!p

3F 1

2k2a
1

Hn
(1)8~k2a!

Hn
(1)~k2a!

G 2

Pn21/2
1 ~cosu!2

ivm0

2pk1a2 sinf (
n52`

`

~21!n

3 (
p50

` E
0

`

dn ei2pnn
n

n22 1
4

F~n!G~n!p
]Pn21/2

1

]u
, ~5.20!

B2r
ray5

m0

2pk1a3 sinf (
n52`

`

~21!n(
p50

` E
0

`

dn ei2pnnnF~n!G~n!p Pn21/2
1 ~cosu!, ~5.21!
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B2u
ray5

m0k2

2pk1a2 sinf (
n52`

`

~21!n(
p50

` E
0

`

dn ei2pnn
n

n22 1
4

F~n!G~n!p

3F 1

2k2a
1

Hn
(1)8~k2a!

Hn
(1)~k2a!

G ]Pn21/2
1

]u
2

m0

2pa2 sinu
sinf (

n52`

`

~21!n

3 (
p50

` E
0

`

dn ei2pnn
n

n22 1
4

B~n!C~n!pF 1

2k2a
1

Hn
(1)8~k2a!

Hn
(1)~k2a!

G Pn21/2
1 , ~5.22!

B2f
ray5

m0k2

2pk1a2 sinu
cosf (

n52`

`

~21!n(
p50

` E
0

`

dn ei2pnn
n

n22 1
4

F~n!G~n!p

3F 1

2k2a
1

Hn
(1)8~k2a!

Hn
(1)~k2a!

G Pn21/2
1 ~cosu!2

m0

2pa2 cosf (
n52`

`

~21!n

3 (
p50

` E
0

`

dn ei2pnn
n

n22 1
4

B~n!C~n!pF 1

2k2a
1

Hn
(1)8~k2a!

Hn
(1)~k2a!

G ]Pn21/2
1

]u
. ~5.23!

B. Residue series

The residue contributions are illustrated by

E2r
res52

ivm0

k1k2a3 cosf (
n50

`

(
j 51

` H ei (2n11)pn nF 1

2k1a
1

Hn
(2)8~k1a!

Hn
(2)~k1a!

G
3Pn21/2

1 ~2cosu!J
n5n j

Resn5n j
$A 21~n!%, ~5.24!

B2r
res5

m0

k1a3 sinf (
n50

`

~21!n(
j 51

`

@ei (2n11)pn n Pn21/2
1 ~2cosu!#n5 ñ j

Resn5 ñ j
$D 21~n!%,

~5.25!

where the poles are numbered in order of ascending imaginary part.
If both u andp2u areO(1),36

Pn21/2
1 ~2cosu!;A n

2p sinu (
s56

e2 is[n(p2u)1p/4]. ~5.26!

Hence, eachn in Eqs.~5.24! and ~5.25! represents the ‘‘winding number’’ of two wave paths
air, namely, one of lengthrn

1(u)5(2pn1u)a and another of lengthrn
25rn

1(2p2u). Both
paths originate from the source and reach the observation point clockwise (1) or counterclock-
wise (2) in the plane determined by the point source, center of sphere and observation poin
plane is henceforth called the meridian plane. The configuration is shown in Fig. 4.

The approximations for the Hankel functions yield39

A~n!;2S 2

k2aD 1/3

@H~j;2p/3!2 ia#, a5~k2 /k1!~k2a/2!1/3, ~5.27!

D~n!;
k2

k1
S 2

k2aD 1/3

H~j;2p/3!2 i , j5~n2k2a!~k2a/2!21/3, ~5.28!
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whereH(j;c) is defined by Eq.~4.3!. Retainment of then50 terms in the residue series~5.24!
and ~5.25! and use of approximation~5.26! recover formulas~4.5a! and ~4.8a!, when O(ucr,2)
<u,p and k2a(p2u)@1. This procedure is also applied to the tangential field compone
Care should be exercised when (i ) u,O(ucr,2), because the relevant residue series conve
slowly, calling for the procedure of Sec. III, and (i i ) p2u<O@(k2a)21#, where the Legendre
functions must be replaced by Bessel functions of argumentn(p2u).

By following point (i i ) above and extending MacDonald’s formulas36 to the rangeO(ucr,2)
,u<p, one gets43

E2r
res;2

vm0

a

k2

k1
S k2a

2
D 2/3

1

j̄1a2
Ap2u

sinu
ein1pJ1~n1~p2u!! cosf, ~5.29!

B2r
res;2

m0k2

a

k2
2

k1
2Ap2u

sinu
eipñ1J1~ ñ1~p2u!! sinf, ~5.30!

where

n1;k2a1~k2a/2!1/3j̄, ñ1;k2a1~k2a/2!1/3ua1ueip/3. ~5.31!

Bear in mind thatj̄ is introduced in Eq.~4.22! anda1 is the first zero of Ai(z).
Evidently, for fixeda5(k2 /k1)(k2a/2)1/3 and u@ucr,2, the H-type wave attenuates faste

than the E-type one. Due to the factors of Pn21/2
1 (2cosu)/sinu, the latter prevails for all

O(ucr,2),u<p. For example,

FIG. 4. Paths of lengthsrn
6 (n>0) traveled by exponentially decreasing waves that reach the observation point th

the air.
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E2f
res;2

ivm0

a
eik2ap

k2
2

k1
2 Ap2u

sinu
F 1

2ucr,2

ei ~p/ucr,2!j̄
J1~n1~p2u!!

sinu

1

j̄1a2

1ei ~p/ucr,2!ua1ueip/3
J18~ ñ1~p2u!!Gsinf

;2
ivm0

2rcr,2

eik2apAp2u

sinu

k2
2

k1
2

J1~n1~p2u!!

p2u

ei (p/ucr,2) j̄

j̄1a2
sinf. ~5.32!

C. Ray representations

1. Case uÄO(1), pÀuÄO(1)

Attention is now turned to Eqs.~5.18!–~5.23!. Approximations of the Bessel functions outsid
the transitional regions fork2

2a/uk1u@1 yield39

A~n!; iA12S n

k2aD 2

1 i
k2

k1
A12S n

k1aD 2

, ~5.33!

B~n!;22i
k2

k1
F12S n

k2aD 2G21/2

TE~n/a!expF2iA~k1a!22n222in arccosS n

k1aD2 i
p

2 G ,
~5.34!

C~n!;RE~n/a! expF2iA~k1a!22n222in arccosS n

k1aD2 i
p

2 G , ~5.35!

D~n!;2 iA12S n

k1aD 2

2 i
k2

k1
A12S n

k2aD 2

, ~5.36!

F~n!;22i TH~n/a! expF2iA~k1a!22n222in arccosS n

k1aD2 i
p

2 G , ~5.37!

G~n!;RH~n/a! expF2iA~k1a!22n222in arccosS n

k1aD2 i
p

2 G , ~5.38!

where

RE~l!52
A12~l/k2!22~k2 /k1!A12~l/k1!2

A12~l/k2!21~k2 /k1!A12~l/k1!2
, ~5.39!

RH~l!5
A12~l/k1!22~k2 /k1!A12~l/k2!2

A12~l/k1!21~k2 /k1!A12~l/k2!2
, ~5.40!

TE~l!5
A12~l/k1!2 A12~l/k2!2

@A12~l/k2!21~k2 /k1!A12~l/k1!2#2
, ~5.41!

TH~l!5
A12~l/k1!2

@A12~l/k1!21~k2 /k1!A12~l/k2!2#2
. ~5.42!

RE and RH are the usual Fresnel reflection coefficients. The corresponding integrands are
rated into two groups as follows.
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~i! The first group contains terms of the radial components along with integrands propor
to ]Pn21/2

1 /]u. For instance,

nB~n! C~n!pF 1

2k2a
1

Hn
(1)8~k2a!

Hn
(1)~k2a!

GPn21/2
1 ~cosu! ei2pnn

;
k2

k1
nA 2n

p sinu
TE~n/a! RE~n/a!p ~eiFpn11eiFpn2!, ~5.43!

n

n22
1

4

B~n! C~n!pF 1

2k2a
1

Hn
(1)8~k2a!

Hn
(1)~k2a!

G 2
]Pn21/2

1

]u
ei2pnn

; i
k2

k1
A 2n

p sinuF12S n

k2aD 2G1/2

TE~n/a! RE~n/a!p @ei (Fpn11p/2)1ei (Fpn22p/2)#,

~5.44!

where

Fpn6~n;u!52~p11!A~k1a!22n222~p11!n arccosS n

k1aD2~p11!
p

2
12pnn6S nu1

p

4 D .

~5.45!

The phaseFpn6(n;u) becomes stationary at

n5npn65k1a coscpn6 , cpn65
2pn6u

2~p11!
, 0<cpn6<p/2, ~5.46!

where the ‘‘1 ’’ sign holds if 0<2n<p and the ‘‘2 ’’ sign holds if 0,2n<p11. The integrals are
calculated by the stationary-phase method with

d2Fpn6

dn2 U
n5npn6

5
2~p11!

k1a sincpn6
. ~5.47!

The radial components involve the integrals

E
0

`

dn ei2pnn nB~n! C~n!pF 1

2k2a
1

Hn
(1)8~k2a!

Hn
(1)~k2a!

GPn21/2
1 ~cosu!

;e2 ip/4
k1k2a2

Asinu

e2 ipp/2

Ap11
(

s56
coscpnsAsin 2cpnsTE~k1 coscpns! RE~k1 coscpns!

p

3exp@2i ~p11!k1a sincpns1 isp/4#, ~5.48!

E
0

`

dn ei2pnn nF~n! G~n!p Pn21/2
1 ~cosu!

;2eip/4
~k1a!2

Asinu

e2 ipp/2

Ap11
(

s56
coscpnsAsin 2cpnsTH~k1 coscpns! RH~k1 coscpns!

p

3exp@2i ~p11!k1a sincpns1 isp/4#. ~5.49!
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~ii ! Terms of the second group pertain to the tangential components containing the
Pn21/2

1 (cosu). The respective integrals are treated similarly, but the leading contributions
from the endpointn50 with width O(1) and from the stationary-phase pointsnpn6 with width
O(Ak1a). The former contributions are cancelled. The surviving terms are correc
O@(k1a)21# whencpn65O(1) andp/22cpn65O(1). For instance,

(
n52`

`

(
p50

` E
0

`

dn ei2pnn
n

n22
1

4

F~n! G~n!p Pn21/2
1 ~cosu!

;2eip/4
1

Asinu
(
p50

`
e2 ipp/2

Ap11
(

s56
(

nPSps

A2 tancpns

3TH~k1 coscpns! RH~k1 coscpns!
p exp@2i ~p11!k1a sincpns1 isp/4#, ~5.50!

where

Sp15$n: 0<2n<p%, Sp25$n: 0,2n<p11%. ~5.51!

The preceding considerations lead to the rays

E2r
ray;eip/4

vm0k1

2pk2a

cosf

Asinu
(
p50

`
e2 ipp/2

Ap11
(

s56
(

nPSps

~21!n coscpnsAsin 2cpns

3TE~k1 coscpns! RE~k1 coscpns!
p exp@2i ~p11!k1a sincpns1 isp/4#, ~5.52!

E2u
ray;e2 ip/4

vm0

2pa

cosf

Asinu
(
p50

`
e2 ipp/2

Ap11
(

s56
(

nPSps

~21!n Asin 2cpns

3T̄E~k1 coscpns! RE~k1 coscpns!
p exp@2i ~p11!k1a sincpns2 isp/4#

1
1

k1a
e2 ip/4

vm0

2pa sinu

cosf

Asinu
(
p50

`
e2 ipp/2

Ap11
(

s56
(

nPSps

~21!n A2tancpns

3TH~k1 coscpns! RH~k1 coscpns!
p exp@2i ~p11!k1a sincpns1 isp/4#, ~5.53!

E2f
ray;e2 ip/4

vm0

2pa

sinf

Asinu
(
p50

`
e2 ipp/2

Ap11
(

s56
(

nPSps

~21!n Asin 2cpns

3TH~k1 coscpns! RH~k1 coscpns!
p exp@2i ~p11!k1a sincpns2 isp/4#

1
1

k1a
e2 ip/4

vm0

2pa sinu

sinf

Asinu
(
p50

`
e2 ipp/2

Ap11
(

s56
(

nPSps

~21!n A2tancpns

3T̄E~k1 coscpns! RE~k1 coscpns!
p exp@2i ~p11!k1a sincpns1 isp/4#, ~5.54!

B2r
ray;2eip/4

m0k1

2pa

sinf

Asinu
(
p50

`
e2 ipp/2

Ap11
(

s56
(

nPSps

~21!n coscpnsAsin 2cpns

3TH~k1 coscpns! RH~k1 coscpns!
p exp@2i ~p11!k1a sincpns1 isp/4#, ~5.55!
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B2u
ray;2e2 ip/4

m0k2

2pa

sinf

Asinu
(
p50

`
e2 ipp/2

Ap11
(

s56
(

nPSps

~21!n Asin 2cpns

3T̄H~k1 coscpns! RH~k1 coscpns!
p exp@2i ~p11!k1a sincpns2 isp/4#

2
1

k1a
e2 ip/4

m0k2

2pa sinu

sinf

Asinu
(
p50

`
e2 ipp/2

Ap11
(

s56
(

nPSps

~21!n A2tancpns

3TE~k1 coscpns! RE~k1 coscpns!
p exp@2i ~p11!k1a sincpns1 isp/4#, ~5.56!

B2f
ray;e2 ip/4

m0k2

2pa

cosf

Asinu
(
p50

`
e2 ipp/2

Ap11
(

s56
(

nPSps

~21!n Asin 2cpns

3TE~k1 coscpns! RE~k1 coscpns!
p exp@2i ~p11!k1a sincpns2 isp/4#

1
1

k1a
e2 ip/4

m0k2

2pa sinu

cosf

Asinu
(
p50

`
e2 ipp/2

Ap11
(

s56
(

nPSps

~21!n A2tancpns

3T̄H~k1 coscpns! RH~k1 coscpns!
p exp@2i ~p11!k1a sincpns1 isp/4#, ~5.57!

where

T̄F~l!5A12~l/k2!2 T~l!, F5E, H. ~5.58!

Note that corrections to the leading terms of the first group introduced above are omitted.
An inspection of the summands forp@2n.1, u5O(1) andp2u5O(1) shows that their

magnitudes decrease asuRup/p2 when medium 1 is lossless. Of course, convergence is impro
when Imk1 is positive andO(1). In general,uR(l)u<1 for complexl while the conditionk2

2

!uk1
2u forcesuR(k1 coscpn6)u to be nearly 1.44

The rays described by formulas~5.52!–~5.57! circulate around the origin in the meridian plan
while they are multiply reflected at the spherical boundary, as depicted in Fig. 5;p is the number
of reflections,n is the number of circulations, the signs56 specifies the sense of circulation, an
cpn6 is the angle between the incident ray and the corresponding local tangent. The overal
of each ray undergoes a change of2p/2 at each reflection~see also Ref. 33!.

2. Reduction to a wave through region 1, u™1

Whenu5O@(k1a)21/3# andn50, the widthO(Ak1au) of the stationary-phase contributio
above becomes comparable to the widthO@(k1a)1/3# of the transitional region aboutn5k1a. This
suggests the transition of rays to the wave propagating in region 1 according to the integraI1 in
Sec. IV. The two asymptotic formulas connect smoothly ifO@(k1a)21/3#,u,O@(k1a)21/5#. The
approximation

sincp01;cp012cp01
3 /6, uk1uau5!24 5!,

in the phase, along withk2
2au/uk1u@1, sin(2cp01);2cp01 , and

R~k1 sincp01!;21,

TE~k1 sincp01!;2 i ~k2 /k1! cp01 , TH~k1 sincp01!;2cp01

in the amplitude reduce then50 terms in~5.52!–~5.57! to formulas~4.42!–~4.45!.
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3. Field close to the antipodes, pÀu™1

Care should be exercised whenu;p. This condition implies that a combination of expone
tials may no longer be a reasonable approximation for the Legendre function.36 In fact, in order to
overcome this difficulty, one has to seek an alternative representationa priori. The identity
Pl

1(cosu)5(21)l11 Pl
1(cos(p2u)) suggests the replacement

Pn21/2
1 ~cosu!→ ieipn Pn21/2

1 ~cos~p2u!!. ~5.59!

The new representation is illustrated by

E2r
ray52

vm0

2pa

1

~k2a!2 cosf (
n852`

`

~21!n8(
p50

` E
0

`

dn eip(2n811)nnB~n!C~n!p

3F 1

2k2a
1

Hn
(1)8~k2a!

Hn
(1)~k2a!

GPn21/2
1 ~2cosu!. ~5.60!

The ray (n,p,s56) of Sec. V C 1 is identified with the ray (n85n,p,s852) if s51, or
(n85n21,p,s851) if s52 in the present formalism. The stationary-phase points are give

ñpn865k1a cosc̄pn86 , c̄pn865
~2n811!p6u8

2~p11!
, 0<c̄pn86<p/2, ~5.61a!

u85p2u, ~5.61b!

with the sign convention$1: 0<2n8<p21% and$2: 0<2n8<p%.

FIG. 5. Geometry of rays bouncing and circulating in the interior of the sphere.P is the observation point.
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An interesting case arises whenp2u<O@(k1a)21/2# and 2n85p (s852), because the
endpoint of integration,n50, then falls inside the critical vicinity of a stationary-phase point. T
requisite integrals for 2n85p are evaluated through MacDonald’s formulas36 with ulu5un/au
!1 in the radicals of expressions~5.33!–~5.42!. The phase ofeip(2n811)nB(n)C(n)p and
eip(2n811)nF(n)G(n)p is expanded aboutn50 up to O(n2). Let ]Pn21/2

1 /]u852]Pn21/2
1

(2cosu)/]u. The requisite integral forE2r is

i E
0

`

dn eip(p11)n nB~n!C~n!pF 1

2k2a
1

Hn
(1)8~k2a!

Hn
(1)~k2a!

GPn21/2
1 ~cosu8!

;22
k2

k1
e2i (p11)k1a2 ipp/2E

0

`

dn S n22
1

4D J1~nu8! ei (p11)n2/(k1a)

;
k1k2a2

2

e2 ipp/2

~p11!2 ~p2u!exp@2i ~p11!k1a2~ i /4!k1a~p2u!2/~p11!#, ~5.62!

provided thatuk1au(p2u)2<O(1). Comparison with formula~5.48! shows that the character o
this ray is not modified asu approachesp, in contradistinction to the case of a vertical dipole33

Indeed, the approximation

sinc (2n)n1;12
~p2u!2

8~p11!2 ,
uk1au ~p2u!4

~p11!4 !1,

in the phase of formula~5.48!, along with

cosc (2n)n1;
p2u

2~p11!
, sin 2c (2n)n1;

p2u

p11
, TE;1, RE;1,

readily furnish formula~5.62!. Similar considerations apply toB2r
ray, with the requisite integral

i E
0

`

dn eip(p11)n nF~n!G~n!p Pn21/2
1 ~cosu8!

;2 i
~k1a!2

2

e2 ipp/2

~p11!2 ~p2u!exp@2i ~p11!k1a2~ i /4!k1a~p2u!2/~p11!#.

~5.63!

For E2u
ray, it suffices to compare the following integrals:39

eup5
2 i

k2a E0

`

dn eip(p11)n
n

n22
1

4

B~n!C~n!pF 1

2k2a
1

Hn
(1)8~k2a!

Hn
(1)~k2a!

G 2
]Pn21/2

1

]u8

;
22i

k1a
e2i (p11)k1a2 ipp/2

]

]u8
E

0

`

dn J1~nu8! ei (p11)n2/(k1a)

52Fe2( i /4)k1a(p2u)2/(p11)

p11
12i

12e2( i /4)k1a(p2u)2/(p11)

k1a~p2u!2 Ge2i (p11)k1a2 ipp/2 ~5.64!

and
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ẽup5
i

k1a~p2u!
E

0

`

dn eip(p11)n
n

n22
1

4

F~n!G~n!p Pn21/2
1 ~cosu8!

;2i
12e2( i /4)k1(p2u)2/(p11)

k1a~p2u!2 e2i (p11)k1a2 ipp/2. ~5.65!

The three terms of formula~5.64! become of the same order in magnitude ifk1a(p2u)2

5O(1). The first term is dominant ifuk1au(p2u)2@1 and then recovers the correspondi
geometrical ray with 2n5p ands51. In contrast, in formula~5.65! all terms must be retained
the second term multiplied byk1a(p2u) connects smoothly to the correction appearing in~5.53!,
while the first term is the contribution from the endpointn50. This contribution is cancelled by
the corresponding term in~5.64!, viz.,

eup1ẽup;2 i
e2 ipp/2

p11
exp@2i ~p11!k1a2~ i /4!k1a~p2u!2/~p11!#. ~5.66!

These considerations can be repeated for the integral ofE2f
ray with Pn21/2

1 (cosu8)/u8 and
]Pn21/2

1 /]u8 interchanged. Along the same lines is the analysis for the components of the ma

field, because the presence of the factor@(2k2a)211Hn
(1)8(k2a)/Hn

(1)(k2a)# amounts to multipli-
cation byi .

The amplitudes of other rays with 2n8<p21 are determined by noticing that the Bess
function varies slowly over the region of widthO(Ak1a) about each stationary-phase point, a
can therefore be pulled out of the corresponding integrals. This program can be carrie
straightforwardly; this case is not discussed further in this article.

VI. REMARKS AND DISCUSSION

Before closing this article, it is worthwhile making the following remarks.
~i! The order of magnitude of the critical distancercr,j in Eq. ~3.36! can be obtained by

postulating that, whenr5O(rcr,j ), the difference between the arc lengthr5au and its projection
on the tangent atu50 becomes comparable to the wavelength in air (j 52) or earth (j 51).3,4

~ii ! It is tempting to compare the field of a horizontal dipole to that of the vertical dipole w
equal moment, examined, for example, in Ref. 33. The dominant components of the forme
are E2r , E2u and B2f . These are precisely the nonzero components of a vertical dipole.
corresponding maximum magnitudes inf satisfy the relations

uEhorum;
k2

uk1u
uEveru, uBf

horum;
k2

uk1u
uBf

veru. ~6.1!

~iii ! The present analysis offers some insight into the problem of a dipole elevated at a
h (h5b2a!a). A complication in this case stems from the additional transitional point in
integrands of the Poisson summation formula. For example,

E2r5
im0v

2pa S a

bD 1/2 1

~k2a!2 cosf (
n52`

`

~21!nE
0

`

dn ei2pnnn
Hn

(1)~k2b!

Hn
(1)~k2a!

1

K~n!

3F 1

2k2b
1

Hn
(1)8~k2b!

Hn
(1)~k2b!

GPn21/2
1 ~cosu!. ~6.2!

It is readily concluded that elevation of the dipole results in the increase of the critical angleucr,j

by O(A2h/a). The analysis is simplified whenk2h!(k2a)1/3 so that the pointsk2a andk2b can
be treated, in some sense, as a single transitional point.
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For arbitraryh, the residue series forE2r whenu.O(A2h/a) contains the factors

f j~h!5
Hn j

(1)~k2b!

Hn j

(1)~k2a!
, j 51, 2, . . . , ~6.3!

wheren j are zeros of theA(n) defined by Eq.~5.7! that lie in the vicinity ofn5k2a. f j (h) is the
‘‘height-gain factor’’ introduced by Bremmer.14 In the corresponding factorf̃ j (h) for B2r , then j

need to be replaced by the zerosñ j of the D(n) defined by Eq.~5.3!. These factors express th
dependence of the field beyond the horizon on the parameter (k2a)1/3A2h/a. The height-gain
factors for theu- and f-components are defined in a similar fashion. With regard toE2u , one
needs to consider the factor

Hn j

(1)~k2b!

Hn j

(1)~k2a!

~1/k2b! 1 @Hn j

(1)8~k2b!/Hn j

(1)~k2b!#

~1/k2a! 1 @Hn j

(1)8~k2a!/Hn j

(1)~k2a!#
.

~iv! The method of solution here needs to be modified when the medium in region 1
contains inhomogeneities, as is the case with ionospheric effects. The ionosphere can be m
crudely via replacement of the air forr .d (d.a) by a perfect conductor.

A problem of interest arises when the index of refraction near the earth’s surface ex
variations due to high moisture. This phenomenon is called ‘‘ducting’’ and may cause s
refraction when rays emitted from the radiating source bend downwards.14 A model for the di-
electric permittivity gives14

e2~r !5e0

A1B~r 2r 0!2

r 2 . ~6.4!

~v! The method of stationary phase for the rays employed in Sec. V becomes questi
whennpn6 lies in a neighborhood of widthO(Ak1a) of any pole ofA 21(n) or D 21(n) close to
the positive real axis. The valuenpn6;k2a corresponds to a ray that undergoes total inter
reflection.45 Such a case follows, for instance, from taking 2n5p, s51 and

npn15k2a~12 ē !, ē512
k1

k2

p2u

2~p11!
, u ēu!1. ~6.5!

A remedy to this anomaly is quite elaborate, in principle involving sums of Fresnel integrals
is provided elsewhere.33

VII. SUMMARY AND CONCLUSIONS

The problem of the radiating electric dipole lying just below and tangential to the surfa
an electrically large, homogeneous, isotropic and nonmagnetic sphere surrounded by air h
revisited. The present analysis, however, has a different perspective from previous works, s
was guided by the physical concept of the creeping wave.22 The Poisson summation formula
employed over 40 years ago in the study of plane-wave scattering by impenetrable obj22

provided a useful starting point. In the present case the creeping wave, although evidentl
dimensional, has a more intricate structure being dependent on the nature and orientation
source.

All six components of the electromagnetic field on the boundary were determined wi
recourse to scalar potentials. For an optically dense sphere, each component is decompo
waves propagating through air and through the sphere. When the polar angleu is sufficiently lower
than a critical value given by Eq.~3.36!, known planar-earth formulas are recovered34 along with
simplified corrections to account for the curved boundary. In particular, the electric-type wa
 19 Jan 2005 to 18.87.1.204. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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the tangential components with the air phase velocity gives rise to Fresnel integrals and s
waves,34 and therefore has a character distinctly different from solutions to plane-wave scat
within the scalar wave and Schro¨dinger’s equations.29

As u progresses to values that are comparable to or exceeducr,2, the electric-type wave
through air is described by series of exponentials decreasing inu. The attenuation rates wer
determined to the lowest order in (k2a)21 andk2 /k1 by solving a transcendental equation, al
encountered in the problem of the vertical radiating dipole;42 its roots depend on the widel
varying parametera5(k2a/2)1/3k2 /k1 . On the other hand, lowest-order attenuation constants
the magnetic-type wave are fixed numbers, in agreement with early findings by Gray.12 Higher-
order corrections to these equations are easily obtained within this scheme. By starting w
zeroth-order equations, an argument was presented to show that theH-type wave attenuates faste
than theE-type one whenuau<O(1); aconjecture made by Fock16 was therefore placed on firme
grounds. The electric field was found to have a dominant component perpendicular to the b
ary, while the magnetic field has a dominant component in the azimuthal direction. The en
polarization resembles that of a vertical electric dipole, but the maximum magnitude of the fi
this case is multiplied by the factork2 /uk1u. When u5O(ucr,1) the wave inside the sphere
described by a well-converging integral of Airy functions.

A physical picture of waves exponentially decreasing in air and rays circulating in the int
of the sphere via their multiple reflections at the boundary was exposed whenu5O(1) andp
2u5O(1). These ray contributions are significant when Imk1a!1. As expected from elementar
geometrical optics, only one type of wave~electric or magnetic! prevails in each component, wit
the amplitude of the dominant ray being described by the corresponding Fresnel reflection
ficient. There are features of both the amplitude and phase of these rays, however, th
attributed to the nature of the source and are not fully predictable by standard geometrical
This ray picture breaks down at the antipodal point (u;p), or any point of total internal
reflection.45 In both cases, the modified analysis unveils characteristics due to the nature
source. For instance, the two types of polarization in the tangential components can p
comparable ray contributions ifu;p, when 2n5p, s51 in the notation of Sec. V; the tota
amplitude then recovers the Fresnel reflection coefficient of geometrical optics. This situatio
be contrasted with the case of a vertical dipole, where the ray amplitude changes drastically
antipodes.
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APPENDIX A: ON THE ZEROS OF K„n…, M„n…

To simplify the calculations in this appendix, considerk1 to be real, unless it is stated othe
wise. Fork2a@1, k2

2!k1
2 and k2

2a/k1@1, the terms (2k2a)21 and k2k1
21(2k1a)21 in K(n) are

neglected. Following Refs. 29 and 33, define

P~n;k!5
Jn8~k1a!

Jn~k1a!
2k

Hn
(1)8~k2a!

Hn
(1)~k2a!

, ~A1!

wherek5k1 /k2 corresponds toK(n) andk5k2 /k1 corresponds toM(n). In this appendix, the
task is to locate thosen that satisfy

P~n;k!50. ~A2!

For 0,n,k1a and un2k1,2au@(k1,2a)1/3,
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Jn8~k1a!

Jn~k1a!
;2A12S n

k1aD 2

tanFA~k1a!22n22n arccosS n

k1aD2
p

4 G , ~A3!

Hn
(1)8~k2a!

Hn
(1)~k2a!

; i A12S n

k2aD 2

, ~A4!

and the branch cut emanating fromn5k2a lies in the uppern-plane. Accordingly,

P~n;k!;2A12S n

k1aD 2

tanFA~k1a!22n22n arccosS n

k1aD2
p

4 G
2 ikA12S n

k2aD 2

. ~A5!

No zeros of the right-hand side lie in (0,k2a). The analytic continuation to (k2a,k1a) through the
lower n-plane does not exhibit any zeros either. More precisely,

Hn
(1)8~k2a!

Hn
(1)~k2a!

;
Yn8~k2a!

Yn~k2a! H 11 i
W@Jn ,Yn#

Yn~k2a! Yn8~k2a!J , ~A6!

where W@Jn ,Yn#5(2/p)(k2a)21 denotes the Wronskian ofJn(k2a) andYn(k2a). This approxi-
mation produces a recessive imaginary term forn.k2a. Hence,~A2! reads as

tanFA~k1a!22n22n arccosS n

k1aD2
p

4 G
;kA@n/~k2a!#221

12@n/~k1a!#2H 12 i expF22n cosh21S n

k2aD12An22~k2a!2G J . ~A7!

This equation cannot be satisfied by any realn. In fact, it is satisfied only in the uppern-plane.
Let n5n r1 in i , wheren r andn i are real,un i u!n r , andk2a,n r,k1a. Then,

tanFA~k1a!22n r
22n r arccosS n r

k1aD2 in i arccosS n r

k1aD2
p

4 G
;kA@n r /~k2a!#221

12@n r /~k1a!#2H 12 i expF22n rcosh21S n r

k2aD12An r
22~k2a!2G J . ~A8!

For k5k1 /k2 ,

A~k1a!22n r
22n r arccosS n r

k1aD;arctanH k1

k2
A@n r /~k2a!#221

12@n r /~k1a!#2J 1mp1
p

4
, ~A9!

n i arccosS n r

k1aD;
k2

k1
A12@n r /~k1a!#2

@n r /~k2a!#221
expF22n r cosh21S n r

k2aD12An r
22~k2a!2G ,

~A10!

wherem is any integer. In particular, ifk2a!n r!k1a,

n r;
2k1a

p
2S 2m1

3

2D , n i;
4k2

pk1
S k2a

2n r
D 2nr11

e2nr. ~A11!

For k5k2 /k1 ,
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A~k1a!22n r
22n r arccosS n r

k1aD;arctanH k2

k1
A@n r /~k2a!#221

12@n r /~k1a!#2J 1mp1
p

4
, ~A12!

n i arccosS n r

k1aD;
k2

k1
A@n r /~k2a!#221 A12@n r /~k1a!#2

3expF22n rcosh21S n r

k2aD12An r
22~k2a!2G . ~A13!

These expressions are trivially simplified ifk2a!n r!k1a, i.e.,

n r;
2k1a

p
2S 2m1

1

2D , n i;
2n r

pk1a S k2a

2n r
D 2nr

e2nr. ~A14!

Consider 0,Ren,k2a. Setting the right-hand side of~A5! equal to zero in the uppern-plane
yields

k1a2
np

2
;mp1

p

4
2 i arctanFk1

k2
A12S n

k2aD 2G ~A15!

for k5k1 /k2 , or

k1a2
np

2
;mp1

p

4
2 i

k2

k1
A12S n

k2aD 2

~A16!

for k5k2 /k1 . With 0,unu!k2a,

n;
2k1a

p
2S 2m1

1

2D1 i , ~A17!

or

n;
2k1a

p
2S 2m1

1

2D1 i
2k2

pk1
. ~A18!

In consideration of the transitional region ofHn
(1)(k2a),39 ~A2! becomes

tanFA~k1a!22n22n arccosS n

k1aD2
p

4 G5kS 2

k2aD 1/3

ei2p/3
Ai 8~ei2p/3j!

Ai ~ei2p/3j!
. ~A19!

This is not satisfied by any realn. In the lowern-plane,

ei2p/3
Ai 8~ei2p/3j!

Ai ~ei2p/3j!
5 i k̄, ~A20!

where

k̄5k21S k2a

2 D 1/3

. ~A21!

Use of the large-argument approximation for the Airy function whenuk̄u@1 evinces that no zero
exist for 2p,Arg j,0. In the upperj-plane, Eq.~A20! is satisfied at pointsjs lying in the
neighborhoods of zeros of the denominator:
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js;~2as!e
ip/3@11eip/6 as

21k̄21#, uk̄u@1, s51, 2, . . . , ~A22!

whereas are the zeros of Ai(z) (as,0) numbered in order of ascending magnitude.40 On the
other hand,

js;~2ǎs!e
ip/3@11eip/6 ǎs

22k̄ #, uk̄u!1, s51, 2, . . . , ~A23!

whereǎs are zeros of Ai8(z).40 A function can be constructed which is holomorphic in the sec
$k̄:2p/4,Arg k̄,p/4% and whose values are determined by the zeros in the lowerj-plane
given by Eq.~A20!. By starting with expression~A22!, it can be shown via analytic continuatio
that no such zeros exist. Such a construction is given in Ref. 33.

APPENDIX B: ON THE ZEROS OF A„n… AND D„n…

In the spirit of Appendix A, consider the equation

Hn
(2)8~k1a!

Hn
(2)~k1a!

2k
Hn

(1)8~k2a!

Hn
(1)~k2a!

50, ~B1!

wherek5k1 /k2 for A(n) andk5k2 /k1 for D(n). The following conclusions are reached.
( i ) A(n) andD(n) exhibit no zeros for 0<Ren,k2a andk2a,Ren,k1a outside the tran-

sitional regions associated withn5k1a or n5k2a.
( i i ) The zeros inside the transitional region ofHn

(1)(k2a) are approximated by those of th
correspondingK(n) andM(n) in the uppern-plane according to~A20! of Appendix A.

( i i i ) A(n) and D(n) have zeros inside the transitional region ofHn
(2)(k1a) in the lower

n-plane. In view of Eq.~4.3!, the equation there is

H~j;22p/3!5k
k1

k2
S k1a

2 D 1/3

, j5~n2k1a!~k1a/2!21/3, ~B2!

which is in turn approximated by

Ai ~e2 i2p/3j!50. ~B3!

APPENDIX C: AN INTEGRAL IDENTITY

In this appendix, it is shown that

(
n52`

`

~21!nE
0

`

dn ei2pnn f ~n! Pn21/2
1 ~cosu!

522p (
n50

`

~21!n (
s56

(
j 51

`

s eis(2n11)pn j
s
Pn

j
s21/2

1
~2cosu! Res$ f ~n!%un5n

j
s, ~C1!

where f (n) is a meromorphic function with simple poles$n j
s% in the first (s51) and fourth (s

52) quadrant~j 51, 2, . . . , inorder of ascending imaginary part!, and with no singularities in
the imaginary and real axes other than poles that coincide with zeros of Pn21/2

1 (cosu). f (n) is
assumed to satisfy

f ~2n!52 f ~n! ; n, f ~n!5O~nd! as n→`, Ren.0, ~C2!

whered is a real number that may depend on Argn.
In the spirit of Ref. 9, the left-hand side of~C1! is written as an integral over a contourC

encircling the positive real axis clockwise, as shown in Fig. 6. Then,
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(
n52`

`

~21!nE
0

`

dn ei2pnn f ~n! Pn21/2
1 ~cosu!

5 i(
l 50

`

ei ( l 11/2)p f S l 1
1

2DPl
1~2cosu!

52
1

2i EC

dn

cospn
f ~n!Pn21/2

1 ~2cosu!

52p (
s56

(
j 51

` Pn
j
s21/2

1
~2cosu!

cospn j
s Res$ f ~n!%un5n

j
s2

1

2i E2 i`

i` dn

cospn
f ~n! Pn21/2

1 ~2cosu!,

~C3!

by employing Pl
1(cosu)5(21)l11Pl

1(cos(p2u)) and properly closingC at infinity. By virtue of
~C2! and the identity P2n21/2(x)5Pn21/2(x), the integral in the right-hand side of~C3! is identi-
cally zero. The expansion

1

cospn
52e6 ipn (

n50

`

~21!n e6 i2pnn, ~C4!

where Imn.0 (1) or Imn,0 (2), immediately yields~C1!. As a corollary,

(
n52`

`

~21!nE
0

`

dn ei2pnn f ~n! Pn21/2
1 ~cosu!50, ~C5!

if f (n) is holomorphic for Ren.0.
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