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Radiation of horizontal electric dipole on large dielectric
sphere
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The electromagnetic field in air of a radiating electric dipole located below and
tangential to the surface of a homogeneous, isotropic and optically dense sphere is
studied anew. The starting point is the eigenfunction expansion for the field in
spherical harmonics, which is now converted into series of integrals via the Poisson
summation formula. A creeping-wave structure for all six components along the
boundary is revealed that consists of waves exponentially decreasing through air
and rays bouncing and circulating inside the sphere. The character of individual
modes of propagation and the interplay between “electric” and “magnetic” types
of polarization are investigated. Connections with and differences from standard
ray optics and the cases of the radiating vertical dipole and scalar plane-wave
scattering are outlined. @002 American Institute of Physics.
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[. INTRODUCTION

The scattering and diffraction of electromagnetic waves have long been understood as
boundary-value problems of Maxwell’s equations. In principle, the field can be determined every-
where by specifying the source and the boundary conditions. In practice, even when closed-form
solutions are then obtained, the chosen representations may not be amenable to quantitative un-
derstanding. This difficulty often plagues analyses where current sources lie too close to the
boundary separating two media. Such a case arises in connection with the long-distance commu-
nication along the sea surface at very low frequentfes.

In the present article, a three-dimensional idealized model is studied in which the source is an
electric dipole located below and tangential to the surface of a homogeneous and isotropic, elec-
trically large sphere surrounded by air. Of course, none of the field components can be made to
vanish identically in this case. A dipole vertical to the spherical bourittaon the other hand,
introduces an axis of symmetry, having only three nonzero spherical components; these admit
eigenfunction expansions of simpler structure. In both problems, the formal solution is easily
attainable in terms of spherical harmonics but is not directly amenable to computations and
interpretation. One of the objectives of this work is to unveil the underlying physical picture by
asymptotic methods for the case of the horizontal dipole, describing the interplay between two
coexisting polarizations. The assumption of an optically dense sphere is thus imposed while
attention is restricted to points lying in the spherical boundary. The analysis is also intended to
reveal differences from the known case of plane-wave scattering in the context of the scalar wave
and Schrdinger’s equations. Because the emphasis is on the physical concepts and the tools
needed to expose such concepts, actual numerical calculations are beyond the scope of this article.

There is a fairly long sequence of papers in connection with the present problem. Noteworthy
is Mie’s formal expansiohin partial waves for a plane wave incident on a homogeneous sphere.
Another formulation found in a later paper by Debye related to his previous studies of high-
frequency plane-wave scattering by an infinitely long cylinfdan exposition and discussion of
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these as well as of other works was given by van de Hulatsori appears to be the first to
investigate systematically the radiation of a point source in the presence of a sphere with radius
large compared to the wavelength. In his formulation the source was an electric dipole located
above and vertical to the surface of a perfectly conducting sphere; his focus was on scalar poten-
tials that furnish the electromagnetic field via successive differentiations. The merits of Watson’s
approach are unquestionable: the slowly converging expansion in partial waves was converted to
an integral which in turn generated a rapidly converging series. This method was later invoked by
other author®-12in their efforts to treat the case of a finitely conducting sphere. Among these
authors, Gray? for example, identified a “magnetic” type of wave propagating and attenuating
through air with an attenuation rate independent of the adjacent medium, when the source is a
magnetic dipole vertical to the surface of a lossy sphere.

Being aware of these works, Nortdrproposed simplified formulas and graphs for the field
intensity of vertical and horizontal dipoles elevated over a spherical earth. Bréfrifmmpared
the fields of the two configurations by considering the direct wave and the leading reflected wave
in free space; his analysis pointed to a simple picture for wave propagation in air for distances
exceeding the free-space wavelength. The radiation of a horizontal dipole above a finitely con-
ducting sphere was investigated by Fcky use of scalar potentials. He approximated the field
through air in the “shadow region” in terms of exponentially decreasing waves, and gave the
corresponding attenuation rates as solutions to two uncoupled transcendental equations. Fock
started with an extension of Watson's methdny neglecting the field that travels through the
sphere and not examining the transition to planar-earth formulas. In the same spirit, the problem
was essentially revisited by Waitin the 1950s; he concluded that at “low radio frequencies” the
horizontal component of the electric field is negligibly small compared to the vertical one. On the
basis of Watson’s methdtigeometrical-ray pictures were invoked in that same period of time in
the study of elastic waves inside spherical cavitfeS.(See Refs. 20 and 21 for later develop-
ments in the theory of elastic-wave propagation.

In a remarkable paper, \ftiinvoked the concept of the creeping wave in order to study the
high-frequency scattering of plane waves by impenetrable cylinders and spheres in the context of
Schralinger’s and Maxwell's equations. He derived asymptotic expansions for the total scattering
cross sections that went well beyond the standard geometrical optics, and pointed out that a
mathematical tool leading to the creeping wave in the case of a sphere is the Poisson summation
formula. Notably, W& extended the familiar concept of the creeping wave in two space
dimension&*~2% from high frequencies to all positive frequencies by arguments of algebraic
topology?’ The underlying physical idea was soon after generalized to other scatterers by
Seshadrf® A similar analysis based on the Poisson summation formula was later used by
Nussenzveig® who referred to Ref. 22, for the study of high-frequency, plane-wave scattering by
transparent spheres. Key points in his analysis were the imposition of a large index of refraction
and the expansion of the total scattering amplitude in a series of the Debyé Myssenzveig
provided a description in terms of waves that attenuate exponentially along the boundary and rays
bouncing and circulating inside the sphere. The relevant Poisson summation formula can be
written as®

o

- (= 1\
Izo g(l):n;m eﬂnrrfo dvg( y— E) el2‘rrnv’ (1.2)

where the left-hand side is the starting eigenfunction expansion. The right-hand side of this
equation was interpreted in terms of “classical paths” by Berry and Mdtifihis interpretation
stems from noticing that for high frequencies each indeidentifies a path that encircles the
origin n times3*2Accordingly, these authors invoked stationary-phase calculations and elaborate
uniform approximations.

Recently, Houdzoumi$"> applied the Poisson summation formula in order to study the
radiation of a vertical electric dipole over a sphere, by imposing the simplifying assumption of a
large index of refraction. As mentioned earlier, the number of nonzero field components is reduced
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to three in this case, with the corresponding polarization being termed as of the “electric type.”
Houdzoumis placed equal emphasis on the wave that attenuates exponentially along the boundary
in air and the rays that circulate around the origin inside the sphere. &ia> made use of

these results for the surface wave in order to calculate the field of an antenna on the sea surface in
the range of very low frequencid€¥LF).

In the spirit of Houdzoumis’ analysis**3the present article has a threefold purpose. The first
purpose is to give the complete solution for the field of an electric dipole located inside a sphere
without recourse to scalar potentials. The dipole is taken to lie in the plane defined by a local
tangent and the center of the sphere, and is parallel to the tangent. The second purpose is to
evaluate all six components when the dipole approaches the boundary from below by converting
the series of partial waves into integrals according to the Poisson summation formula. In this limit
all series diverge in the usual sense and some care needs to be exercised. By use of asymptotics,
it is found that, apart from waves that reach the observation point with the air and earth phase
velocities, significant contributions may arise from rays bouncing and circulating inside the
sphere. The third purpose is to compare these findings with other, known cases such as the
plane-wave scattering and the radiation of a vertical electric dipole.

The remainder of the article is organized as follows. Section Il starts with Maxwell’s equa-
tions; the ordinary differential equations in the radial distance forgtrend ¢-components of the
field in spherical coordinates are solved explicitly. The eigenfunction expansions in spherical
harmonics are then converted into series of integrals, and both the source and the observation point
are allowed to approach the boundary. In Sec. lll, integral expressions are obtained with the
inverse electrical radius used as the expansion parameter. The lowest-order terms are known
Sommerfeld integral¥® Corrections to these integrals account for the finite curvature of the
boundary, describing waves that travel through air and through the dense medium. Integrated
expressions are given for these waves wk§ﬁ|kf|, kop>1 and the observation angkis
sufficiently small, wherd, is the wave number in air, assumed to be real throughout the gaper,
is the complex wave number in the sphere, arid the cylindrical distance from the source. The
expressions for the wave through the sphere are new to the author’s knowledge. The accompany-
ing zeroth-order integral terms have been evaluated via rapidly converging series elsévitiere.

Sec. IV, the aforementioned asymptotic formulas are modified to account for the transition of the
planar-boundary formulas to waves decreasing exponentially through air, with the distinction of
two modes of propagation pertaining to polarizations of an “electric” and a “magnetic” type. A
description is also provided for the field with the phase velocity of the enclosed medium. The
analysis in Sec. V shows that, f6=0(1) and7— 6= 0(1), thetotal field consists of waves that
attenuate exponentially, and rays that circulate in the sphere and are multiply reflected at the
boundary. The contributions of these rays are negligible for a finitely conducting sphere. A few
limiting cases of the ray contributions are placed under scrutiny, an example being the case where
the antipodal point a#= 7 is approached along the boundary. The interplay between contributions
of the two polarizations to the ray amplitudes as well as deviations from the ray character are
discussed.

In some of the calculations presented in this article, such as those in Appendix A, the wave
number in the spheré,, is treated as real for the sake of simplicity. This poses no restriction on
the final asymptotic formulas, however, which are usable for complex valudg efith O
<Argk,;<m/4, and are therefore applicable to spheres of finite conductivity. &H& time
dependence is suppressed throughout the analysis.

II. FORMULATION
A. Formal representations

The geometry of the problem is depicted in Fig. 1. It consists of-directed electric dipole
S of unit moment located inside a homogeneous, isotropic and nonmagnetic é$pEtgoa 1,r
<a) at a distancd from the origin. The sphere is surrounded by (a&gion 2,r >a). Maxwell’'s
equations in each regign(j =1, 2) read as follows:
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(r.6.9)

region 1

region 2

FIG. 1. Spherical coordinates and horizontal electric difleside an isotropic and homogeneous sphere.
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where the current density is

J(r)=48(x)8(y) 8(z—b)X. 2.7

The field in region 1 is the superposition of a primary and a secondary field, viz.,
Fi=FP+FE9 F=E,B. (2.9

In order to calculate the primary field, introduce the vector potemiHP=G(r;b)>‘<, where
elkiR

R

o
=PTLS 214 1) ar D (kar-)R(cost), 2.9
T 20

G(r;b)= 42

R=\r?+b?—2rb cosé, r-. is the larger of andb, andr_ is the smallerj, andh(") denote the
spherical Bessel and Hankel functions, aiiti®£the Legendre function of the first kirfl Hence,
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109G i ok
BP)=b¥(r,0) sing=— = —sing=— et

sincbgo (214 1)j (ksr -)hM(kyr - ) P(cos0),

rde Amrr
(2.10
BI=b{P(r,6)sing, BP)=b{P)(r,6) cosg, (2.13
iw d (G 1
(PN — (P - [ —4+Z=
Eiy’'=e}}"(r,0) cos¢ K2r 96 &b+bG)COS¢

1 o o
;""g o cosqsz 21+ 1) ¢ (Kyr)[§1(Keb) + kyb 3 (k1b) PH(cos6),
(2.12
EF)=el(r,0) cosp, EF)=ef(r,0)sing, (213

where @ ,¢7)=(j,,h{") if r<b, (¢,¢)=(hY),j)) if r>b, and the prime denotes differentia-
tion with respect to the argument. Let

Bj,=bj (r,0) sing, Bjy=bj(r,0)sing, Bj,=Dbj,(r,0) cose, (2.14
Ej,=ej(r,0) cose, Ejs=¢€jy(r,0)cose, Ej,=ej4r,0)sing. (2.195

It follows that

9 ) ik? o
W(rb”’ij(rb”’) sing ar( bjr) + o ﬁ(ejr)' (2.1
9 5 J
W(rej¢)+k1(rej¢)=—|w&—0(bjr) smear( €jr), (2.1
i 1 &
bjo= I aing & T 7 o (80| (2.18
iw 1 d
G0~ F rsing Ot ar (Pig)|- (219

The total field must be bounded at the origin and satisfy the usual radiation conditiois.
natural to set

1 -
=~ ot 1op 2y (2 DAI(kin[ii(kib) +kib{ (ki) IPi(cose),  (2.20

ez~ Z;‘:ka (21+ DB n)[i(kib) + kibj{ (kib) IPH(cose), (221
i 10K1 ~
b=t 3 (21+ 1T (ki) (kib)Plcos), (222
. k o0 _
o=~ A2 S (214 B (k) B cosh), 2.23
7l (=0
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whereA,, B, C,, andD, are coefficients yet to be determined.
In region 1, Eqs(2.16 and(2.17) split into two equations by virtue of E¢2.8). In compact
notation, these equations are

- K3(rw)= —— ’9 2.24
grz (M) +KAw) = o o (2.243
- +k3(rw) = ’9 2.24
S (W) +KE(rw) = —, (2.24b
whereg=g(r,0) (g=Dbj, ,e;) is treated as known. Specifically,
g(r,0)=r=1> (21+1)c ¢ (kr)PH(cosb). (2.25
I=0
In the abovey, =], andk=k, if r<a, ¢,=h) andk=k, if r>a.
A solution to Eq.(2.243 is
1 & 2141
rw(r,8)= W;o mqw,(r)Pﬂ(cosa). (2.26
Eachw(r) (I1=0, 1, 2, .. .)should of course satisfy
d? ) I(1+1) ,
g2 TR Jwa(r) = = ==L (kn) —kryq (kn)], (2.27)
and therefore equals,(r)=(d/dr)[r ¢, (kr)]. With regard to Eq(2.24b,
B i 21+1 P -
fW(f,H)—|=0mC|W|(r)%, (2.28
wherew(r) is forced to satisfy
> [(1+1)
W"‘k wi(r)= (kr), (2.29

with an admissible solutiow,(r) =r ¢ (kr). Onceb;, ande;, are determined in this fashioh;,
ande;, follow from Eqgs.(2.18 and(2.19.

The coefficientd, , B,, C,, andD, in Egs.(2.20—(2.23 are calculated via imposition of the
continuity of E, and B, at r=a. These conditions yield two independent systems of linear
equations, namely, one fd, B, and one forC, andD,. The former set describes a magnetic-
type (H-) polarization(B,=0, E,#0), while the latter one pertains to an electric-tyde-)
polarization(E, =0, B, #0), in correspondence to the case with a planar boundary. Explicitly,

- hP%ka) [ 1 hY(ka) k| 1 h®'(ka)|] 1 -
=— I — .
TTka ke hPea) ki ka T hDga) || K (2:30

- i
B = (2.31

kikoa? ji(ksa)h{P(kya) Ky *
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z Pk hY (kja)  ky h{Y (kpa) | 1 (2.32
" ikaa) [ hP(ka) kg hP(kea) [ M) '
- i
D=- - , 2.3
= ezl (g Pka) M (233
where the two principal denominators read as
_hl(l)f(kza) N 1 kpy| 1 . il (k@) (2.34
. h,l(kza) kKoa kilkja (k@) )’ '
jl(kia)  kp hY'(kpa)
1= - T (1) . (235)
Jitkia) kg hi7(kpa)

The terminology above primarily serves the purpose of distinguishing between contributions from
these two denominators.

The field in region 2 is

E2r

j1(kyb) h{V(kar) 1[ 1 j/(ksb)

opg c —_—
cos 21+1)- ol T
2 ¢,§0 ( )j|(k18.) hiY(ka) K[ kib * ji(kqb)

- 47Tk1rkza.

}Pﬁ(cose),
(2.36

. _ lwmo 2 2141 ji(kb) hY(kor) 1[ 1 ji(kab)
20~ Zakya? %% 2 1(1+1) Jy(kea) nP(koa) K,

kib  ji(kib)
1 h{Y(kor)| aPf
8 g—'— hit(kar) 90

oo 20+1 j(kib) hB(kor) 1
" Irkoalsng OS2 Plcosd),  (2.37

o 1(1+1) ji(ksa) hP(kya) M,

iope . w 21+1 ji(keb) hP(kor) 1] 1 j{(Kyb)
Eop=— - smd)E - ) —N—t
4mkia“sinf i=o 1(1+1) ji(kja) hi¥(k,a) K[ kb~ ji(ksb)

1 hM (kyr)

X G + W} P|1(C050)

iope | w 21+1 (kb)) h®(kor) 1 9P
* k@ SN2 1T D) (ko) W) My 90 (2.38

ji(kib) h(kor) 1
j1(kia) h(P(kpa) M

Bor=— #zsin ¢+ (2+1) Pl(cosh), (2.39

21+1 j(keb) hP(kor) 1

1 h,(1>’(k2r)l Pt

_ ke 1
B2r= " Zriga? "0 ket P (kr)

=0 101+ 1) ji(ksa) hD(k,a) M, 90
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o _ Mok o 2041 itkeb) hfYkor) 11 1 +h.<1>’<kzr> P cost)
207 " Zakea?sing O 11+ 1) ], (kea) nD(kpa) My | Kot W (kr) |1 (O
B oKz cos 22141 i(kgb) h{P(k,r) 1 i+j|'(k1b) 07_P|1 (2.41
47k a® =6 1(1+1) ji(kea) hP(kya) K [kib * ji(kib) | 90 '

Expansiong2.36—(2.41) converge uniformly in all parametersiif~a or b#a. For largel

each series is majorized by a geometric series with expansion parambfen) (
X (min{r,a}/maxr,a}). For k,a>1, the summands with<0O(k;a) oscillate rapidly, hindering
physical interpretation and rendering direct computations impractical.

B. Electromagnetic field on the surface

When the dipole and the observation point are allowed to approach the boubdag/,
r—a'), the series expansions for the field divet§epplication of the Poisson summation
formula (1.1) converts Eqs(2.36—(2.4)) into the following series:

1 +J,’,(k1a)
2k;a  J,(kja)

E, —gCOSg{)Z (—1)“fwdve‘2”“” .
2k kya 0 K(v)

P} _1(cos6),
(2.42

1
1 K(v)
4

1 H®'(ka)
+
2ka  HW(kya)

— inO S nj i2mny
EZH_WCOSQ’)HZE_ (-1 dve

2_

1 J)(ka)

« N P11 fopo
ka3, (k.a)

90  2mk,a’sing

COS¢

o . 1
X E (-1)”]0 dv e'z"”V—VlmP},,l,z(cose), (2.43
n=—ow 2

pe— —

4

1
1 K(v)
4

1 H®'(ka)
+
2k,a  HM(kpa)

i
— n i2mnv
B2 - 2mk,a? sme siné 2 (=1 f dve

n=—o

2_

L, ka)
*2ka " 3,(ka)

P! 1,(cos)

) o v 1 9P
_1\n i2mnv. v—1/2
+ o azsmd;n Eﬁx (—1) fo dve I M) 90 (2.44
22—z

4

Mo . - hy
BZr=—msm¢n;m (—1)“f dye'2m™ —)P1 1(cosh), (2.45
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= . (1)’ pL
Mok 3 nJ — 1 1 HY (ka)| dP,_yp
Ba2o= 27-rk1a25m¢n:2w( D), dve 1 M(n)| 2ka  HO(kea) | o6
=3
_ ,LLokz i . _ njw i2mnv 1
Saiqa?sng e, 2, (7D dve , 1K
o3
1 J(ka)
X 2k1a+J,,(kla) PL_,.(cosf), (2.46
_ /Lokz - _ njw i2mny v 1
Bay= 27rklazsinecos¢n:2x (1) 0 dve , 1 M)
o3
1 H® (k)
X 2k2a+ HD(kya) P} 1(cosh)
oKz - B nf“ om, V1 1 Jy (k)] P,y
27Tk1a2°°S¢’n:z_w (D7) dve . 1K(») | 2ka  3,(qa)] 90
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where
. _H(Vl)'(kza)Jr L k[ 1 ) »
)= H0a) T 2ka k| 2ka  3,(kea) | (248
Ji(kia)  ky HY (kpa)
MO=3 )k AD(ka) (249

The integrands in Eq92.42—(2.47) are meromorphic functions aof. The zeros ofC(v) and

M(v) are sometimes called Regge poles in the literatimeexample, see Ref. 29The study of

the possible resonances associated with these poles, which are often believed to give rise to
various effects of absorption and scattering from spheres and other scatterers, lies beyond the
scope of this analysis. A discussion on the location of the zerd¥ of and M(v) is provided in
Appendix A. Each integral diverges in the usual sense, but is interpreted unambigudfisly as

Fdw--): lim de(-~-)e*wz (2.50
0 0

v—0"
I1l. SOMMERFELD INTEGRALS AND LOWEST-ORDER CORRECTIONS

A. Approximate integral formulas

As #—0", Egs.(2.42—(2.47) should reduce to known integral formuffsThe following
steps are taken wheft<1: (i) Only then=0 terms are retained, since the integrands with
#0 are highly oscillatory.if) The Bessel functions are replaced by asymptotic formulas that are
valid outside the transitional regiofi(iii ) The Legendre functions are replaced by MacDonald’s
formulas® that involve Bessel functionsig) The integration path is properly deformed in the
fourth quadrant of the-plane, as suggested by the analysis in Appendix A.
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Accordingly, K ~(v) and M ~(v) from Egs.(2.48 and(2.49 are approximated as follows:
1 . 1 v 2+ ks, 1 v |2

K~ N el Tk Vo ka

1 (vika)1—(vikya)?] 1= (K3/K2) (viki@)?[1— (vikia)?]*

~ 2kea [VI—(v1ky2)2+ (Ky/kq)VI—(1/kpa)2)? ’

1 ) 1 v 2+k2 1 v \?
M IV T lkal Tk VT kea

-1

(3.9

1 [1-(vk@)?] -1 (vikea)2]t
 2ka 2

k
V1= (vika)2+ k—2¢1—(y/k2a)2
1

(3.2
Note that the simplifiedC ~1(»=\a) exhibits a pair of poles at
I(1k2 ( kg ) 2 2
AN=*tke=Fr———~*| ky— ==/, k5<|k]. 3.3
S \/m 2 zki 2 | l| ( )
No poles exist in the approximation fovt ~(\a).
With A =v/a andp=a@, the field components reduce to

2

o . @mok3
E5 O~i 2k, ler 1e)COSS, (3.4

2

- wpmok;
E20 "~ ~ ik, (et 16,0080, (3.5

2

=0 wILLOkZ .

E2¢ ~W(Ie¢+lg¢)sm¢>, (3.6

1ok
B "~ 5~ (IpsF15)sing, (3.7

1ok

=0 .

B2~ = Tk, (oot I5)sing, (3.9

3

=0 M0k2
Bg¢ ~ = m(|b¢+|g¢)cos¢. (39)

In the above);, (f=e, b; k=p, ¢, z) denote the Sommerfeld integrafsyiz.,
= V1—(Nkq)?
lo=k; 3| dx (M) N2J;(\p), (3.10
0 \/1_()\/k2)2+(k2/k1) \/1_()\/k1)2
* V1= (Mky)® V1= (N/kp)?
Izk’ZJd)\ Jo(Ap)—Ja(A
=2 |, {\/1—(>\/k2)2+(k2/k1)\/1—(>\/k1)2[ o(hp) = J2(Ap)]
1

(3.1

S VK2t (K k) VT (kg2 o)+ 2l
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| —k*szdm V1- Oly)” V1 (M) [Jo(Ap)+J2(Np)]
7 Jo T VI U7+ (k) VT= (kg2 R
1

oo (alk) Fi oo o) = (el

(3.12

I :k‘lk‘zjwd)\ !
R 1—(MKy)2+ (Ky /Ky VI— (N k)2

% V1—(N/ky)?

=k 2 _

op=k f d)\)\[\/1—()\/k1)2+(k2/k1)\/1—()\/k2)2[JO(AP) T2(2p)]
N V1—(N/kq)?

V1= (MKy) %+ (Ko Tkp) V1= (N Ky)?

0

[Jo(hp)+32(7\p)]], (3.14

- Vi-(M/ky)?
log=k; 2 J J
o2 J d)\)\[\/1—()\/k1)2+(k2/k1)\/1—()\/k2)2[ orp) RN
. J1—(Nky)?
V1= (Mky) 2+ (ko Ike) V1= (N k)2

0

[Jo(hp)—Jz(Rp)]} : (3.19

The lowest-order correctiorl§, read as

[
* 2k3a

i jw ka (Nkp)? 1
dn| —
0 ki 1= (MK1)? 1= (Mky)2+ (Ko /ky) V1 — (M ky)?
(Mky)? (Mky)?
(KK —— —
1—(N/ky) 1—(Nky)

[VI=(Mka)?+ (Ka/ke) V1= (Nky)?]?

+1— (k)2

A2Ji(Np),  (3.18

NKy)2

2
i mﬁ—wz/mm%
'eP:TSaL o VL= Mk 2+ (ko Tk 1= (M )2
(Mky)? (Mky)?
m—(kg/kf)m
[V (Mkg)2+ (ko Tky) VI~ (Mg 2T2
i f [1- (k2] 1= [1- (M kp)?] 2

dr
2kikZa Jo [ \1— (Nkp)2+ (Kp/ky) V1= (MKp)2]2

V1= (Mkp)2V1— (N k)2

M JIo(Ap)

—Ja(Ap) ]+ A Jo(Ap) +I2(Np) ],

(3.17
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(N ky)?
_ 2 2
L fmd VI- (k)2 i - (ko) V1= (M) 2 ()\/k kR
Cs= A
2o V1= (M) 2+ (Kp k) VI— (M Ky)2
(M ky)? o o (Mk)?

1—()\/k2)2_( 20— (MIky)? NI
+

V1 (Vo) 24 (ko Tk I (k212 ) o 2P

| f [1- (VK2 1= [1- (\kp)?]

+——— | dr
2kik3a Jo [ 1= (NKy)2+ (Ko lky) V1= (M Ky)2]2

—V1-(Mkp)?V1—(Nky)?

M Jo(Ap) = Ja(Ap) ], (3.18

A1 (\p), (3.19

i & [1—(Mk)?T P =[1=(Nk)?]
e |

— | d
2kikga Jo [ \1— (N ky) 2+ (Ky /Ky ) V1= (M ky)2]?

| i Fd (Mky)? 1
¢ = A
" 2kda 1= (Mk2)? 1= (Mky)2+ (Ko Tky) V1= (M ky)2

K, [1—(NKp)2] P =[1—(Nkp)?]?
+ 21— (Mky)2 N Jo(Ap)—Jo(Ap)]
Ky 2 (V1= (Mk)2+ (ko Tk VI— (VK 22 |00 2P
[ F Ky (Mkp)? 1
2k3aJo | kg 1= (MKD)? 1= (Mky)2+ (Kp/ky) VI — (NKy)2
k)2 (Mky)?
V1= (W2 R Y, [3a(Ap) +35(0p)]
+V1I—=(\ AN Ig(Ap)+Is(N s
VI (k2 (g kg VI— (k22 ) o e
(3.20
i fmd (Mky)? 1
195=—5 | dA
" 2kGa o | 1= (MKa)? 1 (Mky)2+ (Kylky) VI— (M kg)2
Ko [1-(Nkp)?] P =[1-(Nkp)?] ™t
+ 1= (k)2 M Jo(Ap) +32(Np)]
o Ok (V1= (k) 2+ (K Tk V1= (k22 | o 2P
i fw k2 ()\/kl)z 1
2k3a Jo ki 1=(MK1)? 1= (M ky)2+ (Ko Tky) V1 — (M ky)?
Nk)? ) (MKy)?
1-(Mkp)? 2 7Y 21— (Nky)?
+1— (Mky) A Jo(Ap)—Jo(Ap)].
(Vi) [\/1 (k) 2+ (K Tk I— (K22 | o anp
(3.21
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A-plane
L N
r
Cs.2 Cs,1
A
-k, —k 5 ko &7 ky

FIG. 2. Branch-cut configuration and integration pdthendI’;, j=1, 2, pertaining to integrak8.10—(3.21); k, is taken
to be real. The final formulas can be extended to comglex

The first Riemann sheet is chosen so that all square roots are positive forx®,, if k, is real,
with the branch-cut configuration of Fig. 2; evidently, no pole lies in this sheet.

B. Integrated formulas, k,p>1, k3<|kj|

When k,p>1, the major contributions to integration in Eq8.10—(3.21) arise from the
vicinities of branch points at =k; (j=1,2). EXplICIt expressions for the integrdls, are given
elsewheré®®® It is noted in passmg thalts,, 1e4 and l,, are evaluated exactly in terms of
well-converging series that involve Fresnel and exponential intetrals.

Attention is now turned téf, . By following the procedure in Appendix B of Ref. 35, I@J
denote the contour integral over the p&thof Fig. 2. Clearly,I =17, ,+1f, 1, since eachf, ;
follows from 1§, under

NGB f dn (- HD (A p). (322

With A =k;(1+it) in each side of the branch cuts in Fig. 2, it follows that

VI-(\k)2=xe ™2t J1+it/2~+e ™21, t—0", =0, (3.23

where the upper sign holds along the left-hand side and the lower sign along the right-hand side of
each branch cut. Due to the factdts— (\/k; Y2171, the indentation€ 5 ; contribute to the value
of If, ; as & approaches 0. For examplé22 requires the limit

”mf d)\[ (Ko /Ky (MKp)2[1— (Nky)2] 2

Caz [ V1= (Nky)2+ (Ko/ky) V1= (N k)2

m V(M ka)? [ 1= (M k)2 1= (KEKE) (Mkp)? [1— (M kp)?] ™Y}
[V1= (M kg)?+ (Ko Tky) V1= (M ky) 22 ]

5—0"

XN2HB (A p)

—k 1—(ky/kq)? _ 20
:277i( 2) \/ 21 2sz(l)(kzp)N—e'(kZ”’”/“)k%kz —

[(ko k) V1= (Kalk) 2 kap
(3.249
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Define
Kp K
@—m 2—2(k2a)6 (3.29

1
Y151+ — C(W)—IS(W)} (3.2

[ el
F =e*'fOJ dx ~ip
(#) 9 \/27TX

whereC(p) andS(p) are the Fresnel integrals defined®s

»  COSX ?  sinx
C(p)zf dx , S(p)=f dx . (3.2
0 21X 0 21X

The relevant calculations are illustrated by

c ___ l e|(k2p 311'/4) f
ez2 4 V 7kyp
1

= ”)
+ N
—2it K e*'”’4\/2_t+ olk)? | (—e 2t ky k)

1 k2 T
i(kop—3/4)
T3¢ iZa V2kp

1 1
. + -
e Rt/ —e TADRErk, /kl]

—kopt
2 ]e

i 1 1
~Ee"‘?"ﬁx/wkzp[F(p)—i(ngo)1/2+(2ip)1[F(g0)—§(1+i) (3.283
2
1+i [7 K
—elkop >1
4 ¢ " Nigpida’ lol>1,
~ 1 (3.28h
-1 . T P
Z elkop 4/ — & <1,
e \/kzpa, ||
1 . kl o
¢ _ T hi(kp-mia)_L
g~ —5¢€t 2a Vi (3.29
From formulas(3.4—(3.9), with k,a>1, k3<|k?|, k,a¢>1, and# sufficiently small
n=0_. wpok3 - ik pﬁ‘/i . w2, Kap _ 12
E>5, |27-rk cos¢[ ie 2k1 Kop F(p)—i(2mp)~ +2k Flp)—i(2mp)~
1 ke [ 1 p
+(2i§7)1[|:(50)—§(1+i) tizz T+ Vakip—| 1, (3.30
2P a

2 2
n=0_ wpoky ik pﬁ _ vz, Kip _ 12
E2o 27k, COS¢(6 2 2 sz Flp)—i(2mp)~ +2k Flp)—i(2mp)~

eiklp

+ —_—
k3p?

1-i

1+ 4 \/Wklpg) ] , (3.3)

| 1
+(2um-1[F(p>—§<1+l>
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k [ kip
Eg;o 2:“0 25|n¢[ |k2p_2 k2 [F(go) 2i(2mp) Y24 2 o3 1F(gg)—l(27750) 1/2
Col1 1 . . ek 1—i p
+H(2ip) | Flp)— 5 (1+1)(1-2ip) +|—k§p2 1+ —— \/Wklpg , (3.32

eiklp
2 2
kap

1-i

1- 7 \/71'k2p£ —

a

1-i

1+ T\/Wklpgﬂ , (3.33

2 ik
oks elver
n=0__
Bar 27 SIﬂ(ﬁ( kZp?

eikzp

n=0__ “0k2 N w2, Kip
Byy ~ 2 klsm¢| kl Kop F(p)—2i(2mp)~ +2k

F(p)—i(2mp) 12
) k 1-i
+elk1pkg;2 ( l+ T \ 7Tk1p£

7))

1
+(2i@)1[F(50)— 5 (1) (1-2ip)
(3.39

n=0_ ok ik K2 _ w2, Kip _ 12
B~ 5. cos¢[ 2k1 \/kz Flp)—i(2mp)~ +2k Flp)—i(2mp)~

F2ip) Y Fo) - S(1+i eiklp | B el 3.3
(2ip) 7| Flp) = 5(1+1) Ik_l_kgp 5 Vmk | (339
Consequentlyjl ;. j|~[15, ;| provided that, for reak,
pNa(kja/2)71/3: Perj=abe, =12, (3.39

wherep,, , is essentially Fock’s “reduced distancé®Both perj» J =1, 2, enter as parameters in
the analysis for a vertical electric dipolé: Evidently, expressmn(:*S 30—(3.35 imply that

<0, . (3.37)

Of course, ifk; is complex, one of these inequalities is replaceddks] 6, 4.
When 1<k, p<|kip|<|kipe o, the maximum magnitudes i of the field components trav-
eling with the air phase velocity satisfy

|ESr Dl ESy 3l m | E55 Y m=0(1):0(ka/ky):O[(kip) "], |p|<O(1),
=0(1):0(kp/ky):O(KJIK3), |p|>1, (3.383

B3, 2lm: |Bzez m- |Bz¢2| =0[(kip) " 11:0[(kop) "1:0(1), |p|=<1,
=0[(kop) ¥?:0[ (kop) ']:0(1), »=0(1),
=0(k3/k3):0(k3/k?):0(1), |p|>1. (3.38h

IV. WAVES IN THE CRITICAL RANGES, 6=0(0,, ))

When 6 becomes of the order @, ; or 6, , introduced in Eq(3.36, approximationg3.4)—
(3.9) break down. The approximation of Bessel functions by Airy integrals §i8s

k2 1/3

/C_l(v)~—k—l

k3
1+P H(E;0)|, &=(ka/2) R (v—ka)=0(1), (4.1a
1

kia
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- k2a 1/3 ) B 3
K 1(V)~—(7) [H(é;2m3)—ia] ™, &=(kal2) "3 (v—k,a)=0(1), (4.1b

while
2 1/3
M Hv)~1+ k—a) H(£1;0), §,=0(1), (4.29
1
k2 2 1/3
M‘l(v)~i+k—l(k2—a) H(&Ey;2mI3), &,=0(1). (4.2b
In the above,
A
H(é,w)—e‘”Ai(e.d,g) : (4.3
B k2 kza 1/3
a—k—l 7 (4.4)

Notice the appearance of the Airy function &j(and its derivativé® The Legendre functions are
replaced by Bessel functioffs® of argumentr6 wherev6>1.
By using the subscript to denote the contribution from=k;a (j=1, 2),
ky

2/3 \/T
r.2 4’7Ta kl szaHICOS(ZS, (453
n=0_ _ @H0 ik,a6-mia) | 2
Eor 1 It Wklaﬂzl COS¢, (4.5b

k,a

ED-0 @to gi(kpa 0+ m/4) :

2 213 - ~213
n=0_ _ MO a0t may K2 [ KoB |2 i (ko2
52027 " 270 ® K212 ka0 | kap| 2| T2fcost (463
n=0_ “H0 ik a0+mia) || 2
E201 47Tae Wk1a0I1COS¢’ (4.6
2
n=0_ _ “H0 itya0+ mia) K2 L +-0Lr,2 .
S22 ma® @ Vkgao |72 2 1) 5% .73
n=0_ _ @M ikao+miay | | 2 ;
E20. 41Tae Wklaﬁzlsmd)’ (4.7
Bn=0~_'u'0_k2ei(k2a0+ﬂ-/4)£§ N 2 ,sin (4.83
r2 41a k2 V wk,ad 2 ' '

n-o__ Mok i(kya6+ /) | 2 -
Bor1 Zma C wklaazl sing, (4.8b
2
BN=0_ _ oKy ei(k2a0+w/4)ﬁ A/ 2
26.2 47a ki wkoa6

Ocr,2

I,+i==1|sing, (4.93
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k 2
n=0_ _ MO®1 i(kjap-m/4) ;
B2o1~~ 7.2 ¢ V WklaHIl sing, (4.9b
2/3\/7 i [kpa| 22
’7Tk2a0 I+ kzaa 7) IZ
1 ik \——— ° 71 4.10
kad kg N 7ka0 1C0S¢, (4.10

k,a
2

n=0_ KoKz oi(k a¢9+11'/4)k2
202" 47a © Ky

cos¢, (4.10a9

n=0_ '“Ok2 oi (kyab+mid)

2617 47a
where
L=T,(0)= fw:ldée‘<0’0cm>fH<§;0), (4.1
T,=T,(0) = f:ildgei(6’9°f~2)§7i(§;277/3), (4.12
w—is gl (065 9¢
I=I(0;a)=fxigd§m, s>0. (4.13

Because the sole singularities of the integrands are poles in the &ipteane, including the real
axis, terms with factore '(?%)¢ are integrated out to zerd. and Z, describe propagation

through region 2.
For #<| 6, the leading contributions to integration in E¢4.11)—(4.13 are determined by

the large¢ behavior of H(¢; ¢). Accordingly

»—ig 2 p 32 g
— i(0/0c 7)€ —l=e —iml4 _
7, L,c .gdge \/_+ Y \/kl 5 (4.14
while, for << 6y, ,,
w—is . 27 (p\ %2 inm
~ |(0/0°r2)§ _ = _a-iml4 N o
7| _dee ([ f) ®* "Nicala] ~2° @19
w—ig '(0/0cr2)§ k, [ k.a 1/3 k
» - imlan3/2 2 "29 _ 1/2
. Lo .gdg@ Uag—ia 7€ 2 kl( 2) [F(‘O) 1(2mp)” +2ka o)
s —12 - _1 :
i(2mp) 74 (2ip) [F(so) 2(1+I) ] (4.19

in agreement with formula&3.30—(3.35.

A. Propagation through air

The integralZ, of Eq. (4.12 is expressed as a general Dirichlet séfies/er the residues
associated with poles 6f(&;27/3). (See Appendix A fork=k,/k;.) By closing the contour in
the upperé-plane,

T,=2mi 21 el (#l0cr Dlagle ™ (4.1
S=
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wherea, are the zeros of AK) numbered in order of ascending magnitd8i&eries(4.17) is
approximated by its first term i#> 6, ,.
The poles associated withare obtained by solving

. Ai r(geiZ-rr/?») . k2 1/3
e|211'/3 _ 5 =ila a=—
Ai(ge?™) —'M Ty

k,a

- (4.18

Let{és=¢s(a)}s—1, 2, .. be the sequence of these roaig,0) are numbered in order of increasing
imaginary part. The integral equals

* ei(“}/‘gcrj)fs
I=27i 2, ————— 4.1
m 521 &t a? 419
Becausd &} do not have any finite limit, they should approach the Stokes linegrar/3 as
s—oo. Eachéy(z) satisfies

dés i .
d—i=§s—Jrzz. £(0)=|age'™", (4.20

via differentiation of both sides of Eq4.18 in a=z. & denote the zeros of Ajz).*° Equation
(4.20 was given by Fock and has been studied numerically in the literafidrBy integrating
(4.20 along a path wherggy(z)|>]2?,

e
fs(a)’\“fs(O) + gs(o) . (4.21)
Clearly,
ol (0166 9E
I~ 2mi —— 0> ﬁcr,za (422'
&+ a?

Whereg=g(a) is the root of Eq.(4.18 with the smallest imaginary part. It is of interest to
compare miglm &) with its limiting value fora—o. With a=te™'? (0<t<o, 0<I<m/4)
and fixedd, the trajectory of eaclf;(«)=g;(t)+iv;(t) can be described by the coupled equa-

tions
dg; yj cosd+(B;—t?)sind 423
dt  (Bj+12cos 29)%+ (y;—t?sin 29)%’ (4.233
dy +12)cosd— y; sind
dn____B*D) L (4.23b

dt  (B;+t?cos29)?+ (y;—t?sin 289)’

where.,Bl-%(O).=|éj|/2,. yj(O)szléj |_/2, and |éj|§|f’aj|<|éj+1l. Of course, lim_..&(a(t))
=|a;|e'™ uniformly in 9. For definiteness, consid¢r1. If 9=0, B;(t) and y,(t) are mono-
tonically increasing irt, and the slope of;(«(t)) equalsw/6 for t=0 and approaches/2 as
t—o. A close inspection of Eqg4.23 shows thaty,(t) remains monotonically increasing for
fixed ¥ € (0,7/6], while 8,(t) reaches a maximum. For fixele (7/6,7/4], v,(t) is monotoni-
cally decreasing and reaches a minimum, and then progresses monotonically to its limiting value.
The lowest minimum ofy,(t) is reached fory = m/4, when the slope of;(«(t)) is — #/12 for
t=0 and 3r/4 ast—o. By relaxing routine rigor, the assumed analyticity §f(«) in Ag
={a: 0<|a|<R, —m/4<Arg «a<0}, where R is positive and arbitrarily large, entails that
Im &;(«) is harmonic inAg and hence cannot attain any maximum or minimum there. It follows
from Fig. 3 that the maximum occurs along the boundary |a| =R, Arg a=m/4}.
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20— ——T — T ——T — T
1.8 =]
S 16 -
Iq) ]
T 14 =
“ ]
£ 12 =
1.0 .
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]
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2.00F-0=0°
——— D =15° B
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(¢l

FIG. 3. Imaginary part of the roai;(«) of (4.1 for fixed values of the phase 9 and varying magnitudér|, where
a=|ale "= (k,/k;)(k,a/2)*?, for (a) 0<|a|<5, and(b) 0<|a|<50.

It is therefore implied that, for=<O(1),

T,1T=0[ e~ (2],

3 V3|ag—minIméy(@), 6> 06.,, (4.24a

S
while for a— o,
I,/7=0(a?) as a—x. (4.24b

Formulas(4.69 and(4.104 are further simplified:

2

213

n=0_ _ @H0 ikyao+mia)_ 2 ij 2 MQ n=0

ES58~— g€ &\ 2| Naiaslo0s0 i ELS. (4.29
213

n=0__ oKz i(k2a0+w/4)ﬁ @ </ - N_} n=0

262" 47a © kel 2 wkzaazcosd) cEeras (4.26
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wherec is the velocity of light in air.
From expression&4.79 and(4.93,

ka [ 2 6
n=0_ _; @Ko gl (koad+mia) 2 2 .
E2s2~~15 3 @\ 7ias 6 —=Tsing, (4.27)

ok k2 [ 2 ¢
n=o0__ _ . MoK1 gl (kad+mid) —2 cr.2 > <
B2 |87ra k2 w20 6 —=TIsing, 6>6,, |a|<O(1). (4.28

It is inferred that wherD(6,, )< <1, |a|<0O(1),

B3l | B3 Sl E35m=0(1):0(kz/k): Ol (kya6) 1], (4.293
I, ks [ koa
B3 81m: (B35 2l B35 S m= { : 2( ;) }0[<k2a0>—1]:0<1). (4.299

B. Propagation through region 1

Difficulties in the evaluation of ; arise because of the presence of poles in the negative real
axis. These poles stem from zeroskofr) or M(v), as outlined in Appendix A. By use of the
Wronskian of Ai¢ e”'™3) and Ai(Z € ™),

'(Glecrl)g

|7T/3) AI(—g)’
(4.30

where L is a path that extends along the negative real axis, passes through zero and then extends
slightly above the positive real axis. This integral can be cast in a form that is amenable to
numerical computatioft Alternatively, rewriteZ; as

|1T/6
_ e _ e —i(0/0g )¢ — _

i7/6 i(6010 1) & w+ig i(0/6cr 1)l
h=" 2 Uo UxeraE ), Cage Ai(—g)}
i [, exd = (66c,)ye ™+ 2exd (0] 6 Dye ™
T a fo dy Ai(y)?+Bi(y)?

(= exiT—(0106,)ye™] Bi(y)
*'fd A(Y)Z+ Bi(y)? Ai(y)]’

(4.31

by rotation of each integration path in tlie or -plane by 27/3 or #/3 counterclockwise. The
right-hand side of Eq(4.31) involves exponentially converging integrals.
When 6> 6., 4, Z; is further simplified. By virtue of the equality

AI(— é«)+ei277/3Ai(ge—i7r/3)+e—i27r/3Ai(§eiTr/3):0,

it is deduced that

1 il d jm(() dy 43
AE A 2" Tdrly 1y (432
where
Ai(ge—iw/3)
— 273
m(g)—e m (433
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Note thatw ({) is bounded everywhere except near the zeros of Aif’%). Substitution of Eq.
(4.32 into (4.30 and application of integration by parts furnish

0 = (—LP —i(6l6 +1
=i 3 O Ldge 01060 o3 ()P L4+ R0 ey 1) |, (4.3
cr,l| p=
where
o (e yP
Rp(X)=(—1) Ldge ngfo dy1+y, P=1, (4.35
(_1)P i é')P-Fl
Rp(X)~ 511 fdg 51+ 0 P>1. (4.3

For 6>|6,,, the leading contributions in Eq4.34 come from points{, that render the
phase ofe (?/0cD¢ o3 (£)P+1 stationary. Consequently,, obey

w’ 0
w(ggpp)) “p D (4.3
or
1 1 0
7 AI(— )2+ Bi(—p)?  260g4pt1) XP (4.38
Whenp<O(6/ 1), {, is positive and largé’ viz.,
=X+ 00, Ixpl>1. (439

On the other handy,=O(1) implies{,=0(1). Inview of approximation4.36), the remainder
in Eq. (4.34 can be neglected # is of the order of6/ 6., ;. With

4
w(é)p“~<—i>p+lex+§<p+ 1)53’2}, (4.40
an ordinary stationary-phase calculation leads to
- 0 0(9/0“1) (_1)p i 93 L
Iy~ —i ex | (—i)PF
01 p=0 pt+1 12 O A(P+1)?
o 0 [Oga(pt1) i
xf_wdgexp[| acﬂ[T (£—=&p)
. 0 3/2
~—e'ﬂf4(0—l) V7 S(k,a63), (4.41)
cr,
S(z)= i " | z 4.4
(@)= 2 r2® " 24(pr 1 (4.42
Finally, for 6>6,, 4, k3<|K3| andk,a6>1,
n=0 a),u 0 |k af 3
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_, lowgb .

Bl S a1 S(kyad®) sing, (4.44)
_o 1moksf
bi~ o € S(kial®) sing~iB3, 7, (4.45

_ |/.L0k20 . 1 . k2
n=0___ TYe” ikqab| _— i % 3
Bos1 yp— e (k2a0 |k1 S(kia6°) cose

Mo k20
~ _47Tk1a Ik130 S( klaaa) COS¢ k2a0>|k1|/k2 (446)

V. FIELD IN THE RANGE O(0., )<O0<m
A. Formulation

Consider the identity

H® (kia)  WHO(k;a),H?(ka)]  k, HY (kpa)

M(v)—

HP(kja)  2HP(ka)d (ki) ki HO(kea)
2i k, HY (k,a)
= @) — T am : (5.9
mkia Hy (k@) J,(kia) ki HY(kza)
which is implied from Eq(4.32 and leads to the decomposition
P-1
1 1 G(v)?
M) D)~ V)E G(v)P -7'_(1/)1_—?/(]}), (5.2
where
H® (ki) kp HY (ko)
P 1 a) kA T(ka) 53
o 4 1 £ 4
V)= kA D)2 A P(ka)! 54
-HM(ka) 4 1 .
G(v)= H®(ka)  mk,a D(v) HP(ka)? 9

When P—x, Eq. (5.2) reduces to an expansion of the Debye typalso employed by
Nussenzveig®3?In the lowerv-plane slightly below the positive real axis, the lifit- in Eq.
(5.2 is meaningful becausgi(v)|<1. However, care should be exercised in taking this limit
under the integral sign.

A corresponding decomposition fé¢ ~%(v) reads as

P-1 P
o ey B S, e (56
K~ A P A B =gy |
where
HY (ka) ko H'(ga) 1 K 1
A= H0Ga) ik AP(a) T 2ka K 2kea’ 7
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g A ke 1 58

()= ka ke AZAD(ka)?" ©9
—HM(k,a)  4i Kk 1

Cv) = (kia) 2 (5.9

+ — .
H®(ka)  wkia k; A(v) HP(k;a)?

Expressiong5.6)—(5.9) are also derived in Ref. 33 for the field of a vertical electric dipole over a
spherical earthA(v) andD(v) are entire functions of satisfying®

A(=v)=A(v), D(—v)=D(v). (5.10

A brief discussion on the location of their zeros is given in Appendix B.

Residues that are associated with the polgsf A Y(w) and7; of D~ Y(v) in the upper
v-plane give rise to exponentially decreasing waves that propagate through air. On the other hand,
stationary-phase contributions froff(v)C(»)P and F(»)G(v)P, combined withe'?™” and the
Legendre functions, give rise to rays that travel in region 1. Contributions from these rays become

significant when Ink;a<<1.
With Egs.(C1) and (C5) of Appendix C,

E,=EF+EP, B,=By*+BY, (5.1

where

1 H®(ka)

2k1a+ H(Z)(kla) P}/—l/Z(Cose)l

(5.12

: . .,
res__ _ n i2mnv
Eles= —2 K a3cos¢ E (-1) fo dve a0

® . 14
res —2005(]5 2 (_1)nJ dvelanvz_
0

n=—c ye—

Bl

H? (ka) k, 1 | 1 HP'(ka)

2] 9P:_(cos0)

X + — +
HP(kja) ki A(v)|2kia HP(k,a) a0
@Ko - _an | i2mny_ Y 1
27Tk1a25im9cos¢n=2m( 1) fo dve _,,2_‘11_2)(1/) PL_,.(cosh), (5.13
* ) 14
res __1\n i2mny
Ez 277k a’ smesmd)nzw (=1) JO dve p2—1
H®' (ka) k, 1 | 1 H®(kal
+ = +
HPa) | ks A0 | Zka - A@(a) | | Fr-vA00s?)
lopo - o (T iz v L Py
+2wk1a23'n¢n;x( 1) fo dve 1D b (5.19
res__ n i2mnv,
Bar=— 5, k 3S|n¢n2x( 1) j dve D(V)P}} (C0Sh), (5.15
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Bres— _ in 2 _1)njwd i2any_ Y 1 1 H(Z) (k a)
20~ 2 3 ¢ =, ! 0o 8¢ 21D | 2a T HP(kqa)
P, 12 oKz , . omnw V1
T 27Tk1azsinesm¢n:2_m (= f dve 22— 1 A()
1 H®'(ka)
X 2k1a+ M (a) PL_,(cos6), (5.16
Bres cos¢ E ( 1)nf dvelZﬂ'nV v 1
~ 2ma’sing sme NS 12— 1D(v)

oo

1 HY (k) K
SR (c0s) — 502 cosp S (—1)"
2’7Tkla n=—wx

X +
2k;a HP(ka)

N v 1 1 H® (ka) | P_y)p
X i2mny + v v 1
fodye -1t A(w)|2kia " HP(ka) | 96 (.17
and
iopg 1 - - fw .
ray_ Y _ n i2mny p
B = Woo&bnzw (—1) pgo | dvemB(p)C(v)
1 HY (kea)
X 2k2a+ M (a) PL_,.(cosf), (5.18
Eray_2 2003¢n2 (_1)np§:0 J;) dyeiZﬂ'nV .
- — .
1 H®'(kpa) |2 9P:_,(cosh) o -
14 v _ n
| 2ka T A (ka) 96 2wk1a2sine°05¢n;m (-1
xE f dve'z””V f(y)g(u)Ppl 1(Cc0sh), (5.19
4
ray i2mnv_______
E" " Srkoa S|n05m¢n—2w (—1)" E dve = B(V)C(v)
1 H(l)’(kza) 2 |(1),lL0 ”
14 _ . _ n
X 2k2aJr HB(k,a) P, yc0s0) 2wkla28'n¢n§_m (=1
- * . v (9P,1,_
x> f dv €27 —— F(»)G(r)P—2, (5.20
p=0 Jo -1 a0

B&Y= —gsm(pE (—1)“20 :dvei%“vvf(v)g(y)pPi,l,z(cosa), (5.21)
“=

n=-—ow
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k - Z( . v
B =5 asing 3 (—1)"S | dve?™— Au)G(nP
n=—o p=0 Jo z

2mkia° 21
1 H(l)’(kza) 5P1—1/2 Mo
% v v __13\n
2ka  HO(ka) | a6 2mal smHSInd)n,z_m (=1

H® (k)

T Aga) | e 522

xZ f dve'z””” B(V)C()

B

lu‘OkZ - ” o . v
ke L — n i2mnv, p
2¢ 2wk1azsinecos¢n;m (=1) pZO o dve Vz_%f(V)Q(V)

1 HP' (kpa)
X +
2k,a  HM(kya)

PL_1(c0S6) — 5 2cos¢2 (—1)"

@y’ pl
i2mnu_ Y H (kpa) | 0P,y
><2 f dve 21 B g+ Hka) | 90 (5.23
B. Residue series
The residue contributions are illustrated by
i S 1 H®'(ka)
res__ i(2n+1)mv v

Ear= kl ,a SCOS 92 Zl |e "2k T HP(ka)

xPi_l,z(—cosa)} ResF,,j{A‘l(v)}, (5.24
V=
k%ssmE (=1 2 [ D™y B (~c0s6)],-5Res 5 (D ()},

(5.25

where the poles are numbered in order of ascending imaginary part.
If both # and w— 6 areO(1),%

—Is [v(m— 0)+7r/4]
PL_,(—cosf)~ Vqusme (5.26

Hence, each in Egs.(5.24) and(5.25 represents the “winding number” of two wave paths in
air, namely, one of lengthp. (#)=(27n+ #)a and another of lengtp, =p, (27— 6). Both
paths originate from the source and reach the observation point clockwis®r counterclock-
wise (—) in the plane determined by the point source, center of sphere and observation point. This
plane is henceforth called the meridian plane. The configuration is shown in Fig. 4.
The approximations for the Hankel functions yi&d

13
[H(&2m3)—ia], a=(Ky/ky)(kpa/2)'?, (5.27

A(v)~= k,a

k 2 1/3
D(v)~—(k—) H(E2mR)—i, E=(v—ka)(k,al2)~ 3 (5.28
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— — n=1,p; =2n+0)a

FIG. 4. Paths of lengthg, (n=0) traveled by exponentially decreasing waves that reach the observation point through
the air.

whereH(¢; ) is defined by Eq(4.3). Retainment of the=0 terms in the residue seri€s.24
and (5.295 and use of approximatiotb.26) recover formulag4.5a and (4.88, when O(6,; )
<0< andk,a(w— 0)>1. This procedure is also applied to the tangential field components.
Care should be exercised whei) (#<O(#6,,,), because the relevant residue series converge
slowly, calling for the procedure of Sec. lll, andi Y w— #<O[(k,a) 1], where the Legendre
functions must be replaced by Bessel functions of argumént- 6).

By following point (i) above and extending MacDonald’s formifas the rangeO (., »)
< @<, one ge

213
wug Ky [ koa 1 T—0
ESS _ Ot 2| 2 ——\/——€"17)(vy(7— 6)) cos, (5.29

a ki\ 2 E+a? ¥ osing

s 4022 10 s e ) sing (5.30
2 a ki Vsing o ’ '

where
vi~koa+ (kpal2) 3¢, y~koa+ (kal2)ay|el ™. (5.30)

Bear in mind that is introduced in Eq(4.22 anda, is the first zero of Aig).

Evidently, for fixed a=(k,/k;)(k,a/2)"® and 6> 6., ,, the H-type wave attenuates faster
than the E-type one. Due to the factors of:P,(—cos#)/siné, the latter prevails for all
O( 6.0 <O=<. For example,
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. 2
ErzeSN _ lwpo eikzaﬂ-ﬁ T
¢ a k? V sing

im/3

Lei(ﬂ'/ﬂcrl)g\]l( Vl(ﬂ-_ 0)) _ 1
20 5 sing E+a?

+ gl (b 2)lagfe I (vq(m— 0))1 sing

iw ) m— 60 k2 J.(v(m— 6 ei(ﬂ'/gcr,Z)g
20 ikpan \/— —i (vl ) — sing. (5.32
2pcr2 siné ki T—0 &+ a?

C. Ray representations
1. Case 6=0(1), m—6=0(1)

Attention is now turned to Eq$5.18—(5.23. Approximations of the Bessel functions outside
the transitional regions fdka/|k|>1 yield®

,4'1(’}2*21”2 5.3
W=V ia) T Vi kel (533

2

-1/2

TE(V/a)eXF{ 2i\/(k;a)?—v?—2iv arcco%k—va) —i % ,
1

k2
B(r)~=2ij 1=

koa

(5.39
C(v)~Rg(v/a) ex;{ 2i \/(kla)z— 2= 2iv arcco%é) —i g} (5.395

1

o v \% Kk, | v \?
D(V)~—I 1- kl_a _Ik_l 1- kz_a , (536)
F(v)~—2i T,(vla) exp[zi Jk@a) 2= 12— 2iv arcco%é) i g} (5.37)

1

G(v)~Ry(vla) exp{ 2i \(kpa)2— 12— 2iv arcco% i) i g} , (5.38

k,a
where

\/1_()\/k2) _(kzlkl) \ 1_()\/kl)
V1= (MKy)Z+ (Ko /Ky) V1= (Nkp)2

R ()\)_ \1_()\“(1 _(kzlkl) \/1_()\”(2)

e 1= (W k) 2+ (Ko k)N I— (M kp)2
V1= (NKy)? V1= (N/ky)?
[V1=(NKy)2+ (kalky) V1= (Nky)?T?

)= V1= (N ky)?
Hl V1= (MK 2+ (Ko Tky) V1= (Nkp)2T2

Reg and Ry are the usual Fresnel reflection coefficients. The corresponding integrands are sepa-
rated into two groups as follows.

Re(N)=— (5.39

(5.40

Te(N)= (5.41

(5.42
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() The first group contains terms of the radial components along with integrands proportional
to 9P-_, /9. For instance,

HY' (kpa)

p i2mny
vB(v) C(v) T HTa) PL_,,(cosh) e
Kz 2v P(ai® i®
Nk—lv m?};(vla) Re(v/a)P (e'®pn+ +e'%pn-), (5.43
v HO (kpa) |2 Pt 4,
p v v i2mny
, 1B ) e W a) | a0 ©
2=
4
k 2v v \2]¥2 ) .
Nik_j 1 @ Te(vla) Re(vla)P[el(Pons + 712) 4 gi(®pn-—712)]
(5.44
where
14 o o
CDpni(v;0)=2(p+1)\/(k1a)2—v2—2(p+1)v arcco€ﬁ>—(p+1)5+2wnvt(v0+ Z)'
1
(5.495
The phaseb .. (v; ) becomes stationary at
2mn=* 0
V= vpne = K18 COSYpp ‘/’pnt:ma O<ypn==ml2, (5.49

where the “+” sign holds if 0<2n=p and the “— " sign holds if 0<2n=p+ 1. The integrals are
calculated by the stationary-phase method with

dszpnt
dv?

_2(p+1)
kasingpn.

V=Vp +

(5.47

The radial components involve the integrals

HY (kpa)
+
2ka  HW(kya)

J:dv e'2™ vB(v) C(v)P PL_,,(cos6)

i k1k2a2 e—ip'n'/Z E
Ne [ ——
Vsing p+1ls==

Xexd 2i(p+1)kasing,,stisw/a], (5.48

COS‘/’pns\/ sin 2'//pns7IE( Ky COS‘//pns) Re(kq Cos‘!’pns)p

f “dv €2 L F(v) G(v)P PL_y 5 CoS)
0

) (kla)Z e*ipﬂn'IZ :
l
~—¢ 4—sin¢9 \/p+_15§: COSYpnsy/SiN 20pnshi(Ky COSPpne) Ru(Ky COSYpn) P

xXexd 2i(p+1)ksasingynstisa/4]. (5.49
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(i) Terms of the second group pertain to the tangential components containing the factor
P1 1(cosé). The respective integrals are treated similarly, but the leading contributions stem
from the endpointy=0 with width O(1) and from the stationary-phase poimts,. with width
O(vVksa). The former contributions are cancelled. The surviving terms are corrections
O[ (k@) 1] when Ypn+=0(1) and7/2— .- =O(1). Forinstance,

E 2 dvelany v 1 .7:(1/) g( V)p Plj;—l/Z(Cosa)

n=-—ow

Y7 a
el ! i eiipﬂ/zZ > 2tany
VSin@p=0 \p+1 s== neSy pns

X Tyy(K1 COSYrpne) Riy(Ky COSYrpne)P Xl 2i (p+ 1)kqasingpnstism/4], (5.50

where

Sp+={n: 0=2n<p}, S,_={n: 0<2n<p+1}. (5.50)

The preceding considerations lead to the rays

°° —ipw/2
oA ook, COS e

ESY~ —1)"cosyynsVsin 2
2wk,a \/singp=o0 Vpt1ls== neESps ( ) ‘/’pns '//pns
X Te(Ky COSYpns) Re(Kq COSYpng P exd 2i(p+1)kjasinyg,,o+isw/4],  (5.52
0o COSP o e P72 .
EfY~e 74 —1)" {sin2
2ma ‘/sng Vp+1 szt nEESpS ( ) \/7pns
X Te(Ky COSYrpne) Re(Ky COSYpne) P eXH 21 (p+ 1)kya Sin gy ns— ism/4]
1 wpg COSp — e P72
+—e 174 . —1)"2ta
k,a 27asing W/Singpz‘o Jp+1 Sz‘i n;éps (=1 Wpns
X Ty (K1 COSYpns) Ry(Ky COSYrpne)? ex 2i(p+ 1)kjasinygpnst+ism/4],  (5.53
2yt K0 sing < e "7
E3 > E (= 1)"/sin 2¢ipns

2ma mpzo \/ms + ne$§

X Tyy(Ky COSYrpne) Ryy(Ky COSYrpno)P X 2i (p+ 1)Kqa Singy,s—is/4]

[

1 4 @Ko SiNg e
+klae 2masiné \/mz \/_Szi n;éps( 1) V2tan/’pns

X Te(ky COSYpne Re(Ky COSYrpn)P exd 2i(p+ 1)kasingpnstism/4],  (5.54

—|p77/2

e—ipﬂT/Z

HM8

MoKy Sing .
Bfay il 2 E (—1)"cos s
27a \jsingp 0 Jp+1s=x nESy PpnsV Ypns

X Tiy(Ky1 COSYrpne) Riy(Ky COSYrne)P Xl 2i (p+ 1)Ksasingpnstism/4],  (5.595
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)

_imaoka Sing e P2 .
Brzaglw_e i nzs (=1)"ysin 2‘/"pns
€Sps

2ma \mp=0 \/ms=i

X Tyy(Ky COSPpns) Riy(Ky COSYrpno)P X 2i (p+ 1)Ky a Sin s~ is /4]

Cima MoKa o SiNg i efip”’z2 s o 3
kia 2masing mpzo \/p-i-_ls:t nESps( v2tangpns

X Te(Ky COSYpns) Re(Kq COSrpng P exd 2i(p+1)ksasinyg,,stism/4],  (5.56

A k, COS¢p — e P72
—imia MOK2 n_/ai
E E -1 sin2
2ma Jsin @ p=0 Vpt1ls== neSpS( ) ¢pns

X Te(Ky COSYpns) Re(Kq COSYpng P €xd 2i(p+ 1)K asingy,s—ism/4]

1 . MmoKo  COSo
+o—e '™ : -1)"V2ta
kla 2masing sSin@p=0 p_|_1 S:Ei HEESPS ( ) n//pns

X Tyy(Ky COSPpne) Rit(Ky COSYipne)P exl 2i (p+1)ksasingpnstism/d],  (5.57

ra

g ipTl2

M s

where

Te(N)=V1—(Nky)2T(\), F=E,H. (5.58

Note that corrections to the leading terms of the first group introduced above are omitted.

An inspection of the summands fpe=2n>1, §=0(1) and 7w— 6=0(1) shows that their
magnitudes decrease H&}P/p? when medium 1 is lossless. Of course, convergence is improved
when Imk; is positive andO(1). In general,|R(\)|<1 for complex\ while the conditionk%
<|kg| forces|R(ky cosypn.)| to be nearly

The rays described by formul&s.52—(5.57) circulate around the origin in the meridian plane
while they are multiply reflected at the spherical boundary, as depicted in Rigisshe number
of reflectionsn is the number of circulations, the sigs = specifies the sense of circulation, and
¥pn+ 1S the angle between the incident ray and the corresponding local tangent. The overall phase
of each ray undergoes a change-o#r/2 at each reflectiofisee also Ref. 33

2. Reduction to a wave through region 1, 6<1
When 6=0J[ (k;a) 3] andn=0, the widthO(\k;a6) of the stationary-phase contribution
above becomes comparable to the widfH{k,a)*®] of the transitional region about=k,a. This
suggests the transition of rays to the wave propagating in region 1 according to the ifi{eigral
Sec. IV. The two asymptotic formulas connect smoothi@ffk,a) ~°]< 6<O[ (k;a) ~®]. The
approximation
i ~ — 3.6, |ki|ag®<245!
Slnl/’p0+ l//p0+ '71pr+ ’ | 1|a€ < )
in the phase, along witk3a6/|ky|> 1, sin(2pyo+)~24i0 , and
R(ky singrpo4)~—1,
Te(kySingrpo )~ —i(Ka/Ky) ¥pos Tu(KySingpoy )~ — oo

in the amplitude reduce the=0 terms in(5.52—(5.57) to formulas(4.42—(4.45).
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Source

p=0, n=0, +sign
p=1, n=0, +sign

p=1, n=1, —sign

p=2, n=0, +sign
p=2, n=1, +sign

_______ p=2, n=1, —sign

FIG. 5. Geometry of rays bouncing and circulating in the interior of the splfere.the observation point.

3. Field close to the antipodes, w—60<1

Care should be exercised whér- 7. This condition implies that a combination of exponen-
tials may no longer be a reasonable approximation for the Legendre furittiofect, in order to
overcome this difficulty, one has to seek an alternative representatipriori. The identity
P'(cos6)=(—1)"*P}(cos— 6)) suggests the replacement

PL_,(cosh)—ie'™ PL_,(cogm—6)). (5.59

The new representation is illustrated by

opng 1 ” , ” e ) ,
ray_ _ %Y _ _1\n im(2n"+1)v p
E5; 2ma (Kya)? Cos¢ E (-1 p§:0 fo dve vB(v)C(v)

n'=—-w

1 HW' (k)

2k2a+ H(l)(kza) P11/71/2(_COS‘9)- (5.60

X

The ray f,p,s==*) of Sec. V C 1 is identified with the rayn(=n,p,s'=-) if s=+, or

(n"=n-1p,s'=+) if s=— in the present formalism. The stationary-phase points are given by
5 — — 2n'+)7x 6’ —
Vpn't:klacosvbpn't ) wpn/t:W1 (S l/’pn’tgﬂ'/zy (5613
0'=m—0, (5.61bH

with the sign conventiof+: 0<2n’<p—1} and{—: 0<2n’<p}.
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An interesting case arises when— 6<0OJ[(k;a) *?] and :'=p (s'=—), because the
endpoint of integrationy=0, then falls inside the critical vicinity of a stationary-phase point. The
requisite integrals for @ =p are evaluated through MacDonald’s formdfasith |\|=|v/a]
<1 in the radicals of expression.33—(5.42. The phase ofe'™" *DB(1)C(v)P and
e "'+ DY 7)) G(v)P is expanded about=0 up to O(v?). Let aP:_,J36'=—aP:_,,
(—cos#)/a6. The requisite integral foE,, is

HY' (kya)

14

+
HP(k,a)

[ fo v e DY LB(1)C()P K PL_,x(cosd’)

~_2k2 2i(p+l)kla—ip77/2fwdy VZ_E J (Va/)ei(p+1)1;2/(kla)
kl 0 4 1

klkza g ipm2 .
5 (p+1)2(ﬂ- fexd2i(p+1)ka—(ildka(m—60)°/(p+1)], (5.62

provided thatk,a|(7— #)><0O(1). Comparison with formuld5.48 shows that the character of
this ray is not modified ag approachesr, in contradistinction to the case of a vertical dipdie.
Indeed, the approximation

(m=0)% |k (m—0)*

Slndl(Zn)n+~l_ 8(p+ 1)2: (p+ 1)4 <1,
in the phase of formulé5.48), along with
T 6 ) T 60
COSY(anyn+~ 200+ 1)° SIN 24 onyn+~ pr1’ Te~1, Rg~1,

readily furnish formula5.62. Similar considerations apply ®5”, with the requisite integral

i fmdv e "PTIY , F(1)G(v)P P, (cosh’)
0

(kla)Z —ipm/2 ,
> (p+1)2(77 0)exd 2i(p+1)k,a—(ild)ka(7—0)7/(p+1)].

(5.63

For EZY, it suffices to compare the following integrafs:

/ 2
—i (=, HY (k,a) |~ 9Py,
. im(p+1)v p 4 v
e =ioa ), 9 , 1B gt B Ga) | a8
2—Z
4
_ —2i e2i(p+1)kja— |p77/2 f dv Iy(ve’ )el(p+1)v2/(k1a)
k,a
e—(i/4)k1a(-n-—6')2/(p+l) 1_e—(i/4)kla(7r—0)2/(p+1)
= — +2i 2i(p+1)k;a—ipm/2 )
p+1 A am-0? |° (564

and
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i * . v
Bpp=r——— | dve™PTD'—— F(1)G(v)PP,_,,(coSH’
% Ka(m—0) Jo VZ—E (MG P, -1 )
4
1— @ (4K (m=0)%(p+1)
~2i e2i(p+1)k1afipﬂ-/2. (565)

kia(m— )2

The three terms of formulé5.64 become of the same order in magnitudekj(7— 6)2
=0(1). Thefirst term is dominant iflk,a|(7— #)?>>1 and then recovers the corresponding
geometrical ray with A=p ands= +. In contrast, in formuld5.65 all terms must be retained;
the second term multiplied by, a(7— 6) connects smoothly to the correction appearinpis3),
while the first term is the contribution from the endpoint 0. This contribution is cancelled by
the corresponding term i5.64), viz.,

—ipm/2

eoptBop~—i e 2i(pr Dkna—(i4)ka(m— 0)%(p+1)]. (5.60

These considerations can be repeated for the integraEff with PL_,.(cos#)/¢' and
aPi_l,zl&H' interchanged. Along the same lines is the analysis for the components of the magnetic

field, because the presence of the fag{@k,a) 1+ H" (k,a)/H V) (k,a) ] amounts to multipli-
cation byi.

The amplitudes of other rays withn2<p—1 are determined by noticing that the Bessel
function varies slowly over the region of widtb(yk,a) about each stationary-phase point, and
can therefore be pulled out of the corresponding integrals. This program can be carried out
straightforwardly; this case is not discussed further in this article.

VI. REMARKS AND DISCUSSION

Before closing this article, it is worthwhile making the following remarks.

(i) The order of magnitude of the critical distanpg; in Eq. (3.36 can be obtained by
postulating that, whep=0O(p, ;), the difference between the arc lengtk a¢ and its projection
on the tangent a#=0 becomes comparable to the wavelength in pir2) or earth {=1).%*

(ii) It is tempting to compare the field of a horizontal dipole to that of the vertical dipole with
equal moment, examined, for example, in Ref. 33. The dominant components of the former field
are E,r, Epy andB,,. These are precisely the nonzero components of a vertical dipole. The
corresponding maximum magnitudesdgnsatisfy the relations

ka

ka
1 L1

T i [ET, (B~

|B‘(§,er|. (6.1

(iii) The present analysis offers some insight into the problem of a dipole elevated at a height
h (h=b—a<a). A complication in this case stems from the additional transitional point in the
integrands of the Poisson summation formula. For example,

_iMow a\? 1 - nj‘x’ S Hg,l)(kzb) 1
2= Zmal\b (kza)zcosd)n;m( D7), dv e e a) Koo

1 HW (k,b)

X +
2kb - HB(k,b)

} P._/(c0s6). 6.2)

It is readily concluded that elevation of the dipole results in the increase of the critical @ngle
by O(y2h/a). The analysis is simplified whek,h<(k,a)* so that the point&,a andk,b can
be treated, in some sense, as a single transitional point.
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For arbitraryh, the residue series fdt,, when §>0(+/2h/a) contains the factors

HO(keb)
fith)= TG i=1,2, ..., (6.3
Yj

wherev; are zeros of thed(v) defined by Eq(5.7) that lie in the vicinity ofv=ksa. f;(h) is the
“height-gain factor” introduced by Bremmeéf.In the corresponding fact&rj(h) for By, the v;
need to be replaced by the zefsof the D(v) defined by Eq(5.3). These factors express the
dependence of the field beyond the horizon on the paramksje)(®\/2h/a. The height-gain
factors for thed- and ¢-components are defined in a similar fashion. With regar&4gp, one
needs to consider the factor

H(kob) (Lkab) + [HEY' (kob) HE (kab) ]
H(ko2) (1) + [HD (koa)/H ko))

(iv) The method of solution here needs to be modified when the medium in region 1 or 2
contains inhomogeneities, as is the case with ionospheric effects. The ionosphere can be modeled
crudely via replacement of the air for>d (d>a) by a perfect conductor.

A problem of interest arises when the index of refraction near the earth’s surface exhibits
variations due to high moisture. This phenomenon is called “ducting” and may cause super-
refraction when rays emitted from the radiating source bend downwarisnodel for the di-
electric permittivity give&*

A+B(r—rg)?
ey(r)= €0z (6.4
(v) The method of stationary phase for the rays employed in Sec. V becomes questionable
whenv,,. liesin a neighborhood of widt®(Vk,a) of any pole ofA ~1(») or D () close to
the positive real axis. The valug,,. ~kj,a corresponds to a ray that undergoes total internal
reflection?® Such a case follows, for instance, from taking=2p, s= + and

kl m—

—k—zm, le|<1. (6.5

vpnt =Koa(l—€), €=1
A remedy to this anomaly is quite elaborate, in principle involving sums of Fresnel integrals, and
is provided elsewher&.

VII. SUMMARY AND CONCLUSIONS

The problem of the radiating electric dipole lying just below and tangential to the surface of
an electrically large, homogeneous, isotropic and nonmagnetic sphere surrounded by air has been
revisited. The present analysis, however, has a different perspective from previous works, since it
was guided by the physical concept of the creeping WavEhe Poisson summation formula,
employed over 40 years ago in the study of plane-wave scattering by impenetrable Tbjects,
provided a useful starting point. In the present case the creeping wave, although evidently two-
dimensional, has a more intricate structure being dependent on the nature and orientation of the
source.

All six components of the electromagnetic field on the boundary were determined without
recourse to scalar potentials. For an optically dense sphere, each component is decomposed into
waves propagating through air and through the sphere. When the polamasgiefficiently lower
than a critical value given by E¢3.36), known planar-earth formulas are recoveéfealong with
simplified corrections to account for the curved boundary. In particular, the electric-type wave in

Downloaded 19 Jan 2005 to 18.87.1.204. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



3196 J. Math. Phys., Vol. 43, No. 6, June 2002 Dionisios Margetis

the tangential components with the air phase velocity gives rise to Fresnel integrals and surface
waves3* and therefore has a character distinctly different from solutions to plane-wave scattering
within the scalar wave and Schtiager’s equationé’

As 6 progresses to values that are comparable to or exéged the electric-type wave
through air is described by series of exponentials decreasiry rhe attenuation rates were
determined to the lowest order itkfa) ~* andk,/k; by solving a transcendental equation, also
encountered in the problem of the vertical radiating dif8lés roots depend on the widely
varying parameter = (k,a/2)*k, /k; . On the other hand, lowest-order attenuation constants for
the magnetic-type wave are fixed numbers, in agreement with early findings by“Gtagher-
order corrections to these equations are easily obtained within this scheme. By starting with the
zeroth-order equations, an argument was presented to show thattiipe wave attenuates faster
than theE-type one whema|<O(1); aconjecture made by Fotkwas therefore placed on firmer
grounds. The electric field was found to have a dominant component perpendicular to the bound-
ary, while the magnetic field has a dominant component in the azimuthal direction. The ensuing
polarization resembles that of a vertical electric dipole, but the maximum magnitude of the field in
this case is multiplied by the factde,/|k;|. When §=0(6,, 1) the wave inside the sphere is
described by a well-converging integral of Airy functions.

A physical picture of waves exponentially decreasing in air and rays circulating in the interior
of the sphere via their multiple reflections at the boundary was exposed #hé&n(1) and
—6#=0(1). These ray contributions are significant whenkja<1. As expected from elementary
geometrical optics, only one type of watalectric or magneticprevails in each component, with
the amplitude of the dominant ray being described by the corresponding Fresnel reflection coef-
ficient. There are features of both the amplitude and phase of these rays, however, that are
attributed to the nature of the source and are not fully predictable by standard geometrical optics.
This ray picture breaks down at the antipodal poiét-(7), or any point of total internal
reflection® In both cases, the modified analysis unveils characteristics due to the nature of the
source. For instance, the two types of polarization in the tangential components can provide
comparable ray contributions #~m, when 2h=p, s=+ in the notation of Sec. V; the total
amplitude then recovers the Fresnel reflection coefficient of geometrical optics. This situation is to
be contrasted with the case of a vertical dipole, where the ray amplitude changes drastically at the
antipodes.
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APPENDIX A: ON THE ZEROS OF K(v), M(»)

To simplify the calculations in this appendix, considgrto be real, unless it is stated other-
wise. Fork,a>1, k3<k? andk3a/k,>1, the terms (R,a) * andk,k; }(2k;a) ! in K(v) are
neglected. Following Refs. 29 and 33, define

J(ka)  HY (kya)
Jka)  “HD(ka)

P(vix)= (A1)

wherek =Kk, /k, corresponds td&C(v) and k=Kk,/k; corresponds toM(v). In this appendix, the
task is to locate those that satisfy

P(v;k)=0. (A2)

For 0<w<k,a and|v—ky a|> (k. )"
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J, (ki) v |2 v T
Jy(kla)w_vl_(kl_a tar{\/(kla)z—vz—varcco%kl) Z}’ (A3)

2

H S;l),(kza)
HD(ka)

14

“lka (A4)

and the branch cut emanating fram k,a lies in the uppew-plane. Accordingly,

14
L \/%2 (A5)

No zeros of the right-hand side lie in K9a). The analytic continuation tdkga,k,a) through the
lower v-plane does not exhibit any zeros either. More precisely,

HO (k) Yi(ksa) { WY, ] (A6)

HDO(k,a) Y, (k) Y, (ka) Y (koa) |’

where WJ,,Y,]=(2/7)(k,a) ! denotes the Wronskian df,(k,a) andY,(k,a). This approxi-
mation produces a recessive imaginary termifork,a. Hence,(A2) reads as
tar{ J(kja)?— 12— v arcco% z

v
kia] 4
vl(k,a)]°—1 ) v
K m[l—lex%—ZVCOSh 1(@

This equation cannot be satisfied by any redh fact, it is satisfied only in the upperplane.
Let v=v,+iv;, wherev, andy; are real|v;|<v,, andk,a<v,<k;a. Then,

tal \/(kla)z—v?—vr arcco o —iwvjarcco i
kla kl 4

2_
~K \/%[14 ex;{—Zvrcosh (k_
FOI’K=k1/k2,
[[vel(ko2)]°—1 ™
~arcta k2 W +ma+ Z, (Ag)

2= (kar

] . (A7)

+2v?—(koa)?

| o

14
V(ka)2— 12—, arcco%—r
kia

v, k, [1—[v/(ksa)]? ) 1 ) ”
v; arcco k1 k1 [0 1 (kga) 2= —7 ©XR — 2w, cos k_ +2\v; 2 (kpa)?
(AlO)
wherem is any integer. In particular, k,a<v,<k;a,
2k,a 3 4k, [kpa| 2t
v~ —| 2m+ E), Vi"’ﬂ_—kl 2_1/r e, (All)

FOI‘K=k2/k1,

Downloaded 19 Jan 2005 to 18.87.1.204. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



3198 J. Math. Phys., Vol. 43, No. 6, June 2002 Dionisios Margetis

v, kK, [[v,/(kya)]>—1 T
ka ~arctar{k—1 W} +mm+ 2 (A12)

V(kja)2—v2—v, arcco%
Ky

. arcco%é) - t—i Vi () 2= 1 1= [ v, I (k@) ]2

—1 P 2 2
Xexp —2vy,cosh *| —| +2\vi—(koa)?|. (A13)
k,a
These expressions are trivially simplifiedkifa< v, <k;a, i.e.,
2k,a 1 2v, [kpa|?r
Ve~ - 2m+§ , ViNWkla Z_Vr e, (A14)
Consider 6<Rev<ks,a. Setting the right-hand side ¢A5) equal to zero in the upperplane
yields
K,a— — +7T'tkllvz A15
1a > mar 7 i arcta K, ka (A15)
for k=k,/k,, or
e et Tk Jro[ ) A6
N L R k,a (A16)
fOI‘ K= kzlkl. W|th O<|V|<k2a,
2kia 3 A17
v~ m+ 3| +i, (A17)
or
2k,a 1\ 2k,
v~ ———|2m+ o | +i—. (A18)
2 ’7Tk1
In consideration of the transitional region i (k,a),® (A2) becomes
13 V1 ai2mi3
77 N B i ioma A (€77
tar{ Vkja)cs—rve—v arcco% ka 2 K koa m (A19)
This is not satisfied by any real In the lowerv-plane,
_ Ai I(ei27T/3§) o
|21T/3m:|,<’ (AZO)
where
k,a 1/3
K=t % (A21)

Use of the large-argument approximation for the Airy function wh_d|§>1 evinces that no zeros
exist for —7<Arg £<0. In the upperé-plane, Eq.(A20) is satisfied at pointg, lying in the
neighborhoods of zeros of the denominator:
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i~ (—age™[1+e™a 1], |«|>1, s=1, 2, ..., (A22)

wherea, are the zeros of AK) (as<0) numbered in order of ascending magnitdd@©n the
other hand,

i~ (—age ™1+ ™A %], |«k|<1, s=1, 2,..., (A23)

where&, are zeros of Ai(z).*° A function can be constructed which is holomorphic in the sector
{k:—wlA<Arg «<l4} and whose values are determined by the zeros in the Igvpdane
given by Eq.(A20). By starting with expressiofA22), it can be shown via analytic continuation
that no such zeros exist. Such a construction is given in Ref. 33.

APPENDIX B: ON THE ZEROS OF A(v) AND D(v)

In the spirit of Appendix A, consider the equation

H? (ka)  HY (ka)
HP(ka) H(l)(k a)

(B1)

wherexk =Kk, /k, for A(v) and k=k,/k, for D(v). The following conclusions are reached.

(i) A(v) andD(v) exhibit no zeros for & Rev<k,a and k,a<Rewr<k;a outside the tran-
sitional regions associated with=k,a or v=Kksa.

(ii) The zeros inside the transitional region rebtl)(kza) are approximated by those of the
correspondindgC(v) and M(v) in the upperv-plane according t9A20) of Appendix A.

(iii) A(v) and D(v) have zeros inside the transitional region tf?(k,a) in the lower
v-plane. In view of Eq(4.3), the equation there is

ky (kia|® 18
H(é;—27/3)=;<k— -] &=(v—kja)(ka/2)~ (B2)
2
which is in turn approximated by
Ai(e 2™R¢g)=0. (B3)

APPENDIX C: AN INTEGRAL IDENTITY

In this appendix, it is shown that

o)

> (- 1)“f:dv e'2™ f(v) PL_,,,(cosh)

n=—=

o

=—2w2 (—1)"Y > st umipl  (—cosh) Regf(1)},—e  (CD)
J

=+ j=1

wheref(v) is a meromorphic function with simple poléaf} in the first (s=+) and fourth §
=—) quadrantj=1, 2, ..., inorder of ascending imaginary parand with no singularities in
the imaginary and real axes other than poles that coincide with zero%_qu(léose). f(v) is
assumed to satisfy

f(—v)=—f(v) Vv, f(r)=0("% asr—w, Rer>0, (C2

whered is a real number that may depend on Arg
In the spirit of Ref. 9, the left-hand side ¢€1) is written as an integral over a contoGr
encircling the positive real axis clockwise, as shown in Fig. 6. Then,
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—
T \/”
v-plane AN
Y
> c \‘
O
0 1/2 3/2 . 5/2 crom+1/2
) /
Y /
e
~
—
o —

FIG. 6. ContourC that serves the derivation of identitZ1) of Appendix C;m is a non-negative integer.

o)

> (_1)nJ:dV 2™ f(v) P,_1,(COS0)

n=—w
- 1
:|2 el(|+1/2)wf(|+é)l;)|1(_cosa)
=0

3 1 dv £
" 2i Jccosmy ()P, 1 —COS0)

Pl'sf 1 —cosb)

14

1 (ie d
-7 > ]COTVJSRGSU(V)HV—vf—EJ . f(v) Py_yo(—cOS0),

s=+ j=1 —i=COSTYV
(C3
by employing I%(cosa)=(—1)'+1P,1(cos(7-r— 0)) and properly closindC at infinity. By virtue of

(C2) and the identity P,_1,5(x)=P,_15(X), the integral in the right-hand side ¢€3) is identi-
cally zero. The expansion

— *imy _ n*i2wny
oo, = 2e nzo( 1)"e , (C4)

where Imv>0 (+) or Imv»<0 (—), immediately yieldSC1). As a corollary,

S (=10 v i) PL_ycosn =0, (5

n=-—owx 0

if f(v) is holomorphic for Re>0.
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