1. [4 pts] Give a formula \(\varphi(x) \) of \(\mathcal{L}_{\bar{N}} \) which defines the set
 \[X = \{2^0, 2^1, 2^2, \ldots, 2^k, \ldots\} \] in \(\mathcal{N} \). Explain why your formula works.

2. [4 pts] Show that \(X \subseteq \bar{N} \) is definable in \(\mathcal{N} \) iff \(K_X \) is definable in \(\mathcal{N} \).

3. [4 pts] (a) Show that \(\text{PA} \models \forall x(0 \cdot x = 0) \).

 [4 pts] (b) Show that \(\text{PA} \models \forall x \neg(x < x) \).

4. [4 pts] Assume that the binary relation \(R \) is representable in \(\text{PA} \) by the
 formula \(\varphi(x, y) \). Define \(X \) as \(\{k : R(k, l) \text{ holds for some } l\} \). Prove that
 \(k \in X \) iff \(\text{PA} \models \exists y \varphi(x, y) \).

NOTE: Your solutions must include enough detail to justify your conclusions.