1. [10 pts] Give an example of a language L (with just finitely many non-logical symbols) and some finite set $\Sigma \subseteq S_{n_L}$ such that the theory $T = Cn(\Sigma)$ has models and all models of T are infinite.

2. [15 pts] Let $L^{nl} = \{R\}$ where R is a binary relation symbol and let $\mathfrak{A} = (\omega, <)$. Let \mathfrak{B} be such that $\mathfrak{A} \equiv \mathfrak{B}$ but \mathfrak{A} is not isomorphic to \mathfrak{B}. Prove that there is some infinite sequence $\{b_n\}_{n \in \omega}$ of elements of B which is strictly decreasing, that is $R^B(b_{n+1}, b_n)$ holds for all $n \in \omega$.

3. [15 pts] Let T_1 and T_2 be theories of L, and assume that there is no sentence θ of L such that $T_1 \models \theta$ and $T_2 \models \neg \theta$. Prove that $(T_1 \cup T_2)$ has a model.

 [Warning: $(T_1 \cup T_2)$ need not be a theory]

4. [15 pts] Let T_1 and T_2 be theories of L. Assume that for every L-structure \mathfrak{A} we have

 $\mathfrak{A} \models T_1$ iff $\mathfrak{A} \not\models T_2$.

 Prove that there is some sentence σ of L such that $T_1 = Cn(\sigma)$.

NOTE: Your solutions must include enough detail to justify your conclusions.