1. [15 pts] (a) Let T be a complete theory of L, and let $\Phi(x)$ and $\Psi(y)$ be types each of which is realized on some model of T. Prove that T has some model realizing both Φ and Ψ.

[5 pts] (b) Give an example to show that the result in part (a) can fail if the theory T is not complete.

2. [20 pts] Let $\mathfrak{A} = (\mathbb{Q}, +, \cdot, 0, 1)$. Prove that $T = Th(\mathfrak{A})$ is not ω-categorical.

3. [20 pts] Let $\Phi(x)$ be a type consistent with the complete theory T but which is realized by at most one element in every model of T. Prove that there is some formula $\psi(x)$ consistent with T such that $T \models \forall x(\psi(x) \rightarrow \varphi(x))$ for all $\varphi \in \Phi$.

4. [20 pts] Let T be a complete theory of L, and let \mathfrak{A} and \mathfrak{B} be models of T. Prove that there is some $\mathfrak{C} \models T$ such that both \mathfrak{A} and \mathfrak{B} can be elementarily embedded in \mathfrak{C}.

NOTE: Your solutions must include enough detail to justify your conclusions.