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We discuss a new fifth-order, semi-discrete, central-upwind scheme for solving
one-dimensional systems of conservation laws. This scheme combines a fifth-
order WENO reconstruction, a semi-discrete central-upwind numerical flux,
and a strong stability preserving Runge–Kutta method. We test our method
with various examples, and give particular attention to the evolution of the
total variation of the approximations.
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1. INTRODUCTION

In this paper we present a fifth-order, essentially non-oscillatory
central-upwind scheme that is designed to solve systems of conservation
laws of the form

qt +f (q)x =0. (1.1)

Here q ∈R
p is a p-dimensional solution vector and f is a p-dimensional flux

function. The solution of (1.1) may become singular in finite time, which in
turn requires a careful study when dealing with numerical approximations.

One approach to approximating solutions of (1.1) is to use high-order,
non-oscillatory central methods, which were introduced in [15]. Central
methods avoid approximating the solution of (1.1) at singularities of the
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solution, and so do not require solving Riemann problems. The result-
ing simplicity makes central schemes well-suited for systems and multiple
dimensions. Central-upwind schemes, introduced in [7] and refined in [5],
are semi-discrete variants of central methods which have improved effi-
ciency and less dissipation than fully-discrete central methods. Our work
uses the numerical flux of [5], which we refer to as the KNP flux.

In this work we combine the KNP flux with the fifth-order weighted
essentially non-oscillatory (WENO) reconstruction of [3], and the five-
stage fourth-order strong stability preserving (SSP) Runge–Kutta method
of [19], which is based on [1]. This is the first time these particular ingre-
dients are combined into one scheme.

Fourth-order fully-discrete central schemes based on WENO recon-
structions were presented in [10, 13]. The total variation behavior of
these methods was examined in [12], where numerical experiments sug-
gest that though the WENO-based methods are not total variation dimin-
ishing (TVD), they are total variation bounded. Fifth- and ninth-order
fully-discrete central schemes are discussed in [16]. Third-order extensions
of the KNP scheme can be found in [4, 6].

In this paper, we investigate the evolution in time of the total varia-
tion (TV) of our scheme. The TV is defined for a discrete solution uj as
TV (u) :=∑j

∣
∣uj+1 −uj

∣
∣. In the case of systems TV is defined as the sum

of the TV over the components. A scheme is called TV bounded (TVB)
in 0 � t � T if TV (u) � K for fixed K > 0 which depends only on initial
conditions, and ∀n and ∀�t � �t0 such that n�t � T and �t0 is provided
by the stability requirement. In the scalar case, if a scheme is TVB then
there exists a convergent subsequence in L1

loc to a weak solution of (1.1),
which turns into strong convergence if an additional entropy condition is
satisfied (see [9]). Our numerical experiments suggest that our method is
TVB, providing evidence of the convergence of the method.

The structure of this paper is as follows: in Sec. 2 we present our
fifth-order central-upwind scheme, summarizing the derivation of the KNP
flux in Sec. 2.1. The WENO reconstruction is summarized in Sec. 2.2. Sec-
tion 3 presents the results of a number of numerical tests of our method.
We test both the accuracy and the evolution of the total variation of the
resulting approximations.

2. THE NUMERICAL SCHEME

We briefly summarize the components we use to construct our fifth-
order central-upwind scheme: the numerical flux from [5], and the recon-
struction from [3].
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2.1. The KNP Flux

Throughout this section, we assume a one-dimensional grid {xj } with
constant spacing �x. We define x

j± 1
2

:= xj ± 1
2�x and the cell Ij =

[
x
j− 1

2
, x

j+ 1
2

]
. For any function f (x) we use the notation fj :=f

(
xj

)
. The

cell average of q in the cell Ij is given by q̄j := 1
�x

∫ x
j+ 1

2
x
j− 1

2
q (x) dx.

We assume that the cell-averages q̄n
j are known at time tn. The first

step in the derivation of the approximate solution is to generate a piece-
wise-polynomial reconstruction from these cell-averages. Such a global
reconstruction is defined as q̃ (x) =∑

j q̃j (x)χIj (x) , where χIj (x) is the
characteristic function of Ij , and q̃j (x) are polynomials of a suitable
degree.

In each cell Ij the reconstruction q̃j (x) should be conservative, i.e.
1

�x

∫ x
j+ 1

2
x
j− 1

2
q̃j (x) dx = q̄j , formally sth-order accurate, (so q̃j (x) = q (x) +

O (�xs) for sufficiently smooth q and x ∈ Ij ), and non-oscillatory. Given
such a reconstruction, we denote the point-values of q̃ at the interfaces of
the cell Ij by q+

j+ 1
2

:= q̃j+1

(
x
j+ 1

2

)
and q−

j+ 1
2

:= q̃j

(
x
j+ 1

2

)
.

The left- and right-sided local speeds of propagation of information
from the discontinuities at the cell interfaces, a±

j+ 1
2
, are estimated by

a+
j+ 1

2
= max

u∈C

(

q−
j+ 1

2
,q+

j+ 1
2

)

(

λN

(
∂f

∂q
(u)

)

,0
)

,

a−
j+ 1

2
=

∣
∣
∣
∣
∣
∣
∣
∣
∣

min

u∈C

(

q−
j+ 1

2
,q+

j+ 1
2

)

(

λ1

(
∂f

∂q
(u)

)

,0
)

∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Here, λ1 < · · · < λN denote the N eigenvalues of the Jacobian of f and

C

(

q−
j+ 1

2
, q+

j+ 1
2

)

is the curve in phase space connecting q−
j+ 1

2
and q+

j+ 1
2
.

These local speeds of propagation are then used to determine intervals
for averaging that contain the Riemann fans from the cell interfaces. An
exact evolution of the reconstruction is followed by an intermediate piece-
wise polynomial reconstruction and finally projected back onto the orig-
inal cells, providing the cell-averages at the next time-step q̄n+1

j . Further
details can be found in [5]. A semi-discrete scheme is obtained in the limit
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as �t →0, yielding the KNP central-upwind scheme

dq̄j

dt
=−

H
j+ 1

2
−H

j− 1
2

x
j+ 1

2
−x

j− 1
2

. (2.1)

The numerical flux in (2.1) is given by

H
j+ 1

2
=

a+
j+ 1

2
f

(

q−
j+ 1

2

)

+a−
j+ 1

2
f

(

q+
j+ 1

2

)

a+
j+ 1

2
+a−

j+ 1
2

−
a+
j+ 1

2
a−
j+ 1

2

a+
j+ 1

2
+a−

j+ 1
2

[

q+
j+ 1

2
−q−

j+ 1
2

]

.

The accuracy of this scheme is determined by the accuracy of the recon-
structions and the ODE solver.

It is straightforward to generalize this scheme to higher dimensions,
using dimension-by-dimension reconstructions. Care must be taken, how-
ever, to use higher-order quadratures in the derivation of the KNP flux in
higher dimensions to maintain accuracy. See [6] for a third-order example.

2.2. The Fifth-Order WENO Reconstruction

Weighted, essentially non-oscillatory (WENO) reconstructions [3, 14]
are based on the essentially non-oscillatory (ENO) reconstructions of [2,
17]. ENO schemes choose the stencil that provide the least oscillatory
reconstruction. WENO schemes weight all stencils so that accuracy is
gained in smooth regions while trying to avoid crossing discontinuities.

We use the fifth-order WENO reconstruction of the point-value q
j+ 1

2
given in [3]. We begin with the three quadratic reconstructions on three-
point stencils

qk

j+ 1
2
=

2∑

r=0

ak
r q̄j+k+r−2, (2.2)

where k ranges from 0 to 2 and the coefficients ak
r , given in Table I, are

defined so that (2.2) approximates q
(
x
j+ 1

2

)
with third-order accuracy. The

WENO reconstruction is then defined as the convex combination

q
j+ 1

2
=

2∑

k=0

wk
jq

k

j+ 1
2
, wk

j :=
αk

j
∑2

k=0 αk
j

, αk
j := Ck

(
ε +Sk

j

)2
. (2.3)
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Table I. Coefficients ak
r for

the Quadratic Reconstructions
(2.2)

k r =0 r =1 r =2

0 1/3 −7/6 11/6
1 −1/6 5/6 1/3
2 1/3 5/6 −1/6

The constants Ck = {1/10,6/10,3/10} are defined so that
∑2

k=0 Ckqk

j+ 1
2

approximates q
(
x
j+ 1

2

)
with fifth-order accuracy. Sk

j is a smoothness mea-

sure which is large when qk

j+ 1
2

has large variation. Sk
j approximates the

L2
loc-norm of the first two derivatives of q, and is given by

S0
j = 13

12

(
q̄j−2 −2q̄j−1 + q̄j

)2 + 1
4

(
q̄j−2 −4q̄j−1 +3q̄j

)2
,

S1
j = 13

12

(
q̄j−1 −2q̄j + q̄j+1

)2 + 1
4

(
q̄j−1 − q̄j+1

)2
, (2.4)

S2
j = 13

12

(
q̄j −2q̄j+1 + q̄j+2

)2 + 1
4

(
3q̄j −4q̄j+1 + q̄j+2

)2
.

Following [3] we take ε =10−6. The reconstruction of q
j− 1

2
on the stencil

centered at xj is obtained by symmetry. For more details consult [3].

3. NUMERICAL EXAMPLES

We test our method on various examples, measuring both the accuracy
of the approximation and the evolution of the TV over time. To integrate
(2.1) forward in time, we use an optimal, strong stability preserving fourth-
order accurate five-stage Runge–Kutta solver from [19]. We also ran our
examples with the standard Runge–Kutta method and observed no signifi-
cant change in the results. We use the CFL condition �t = 0.45 minj

�x

|λj | ,
where here λj denote the eigenvalues of the Jacobian of f evaluated at xj .

When an exact solution is not available, we use a high-resolution refer-
ence solution computed using the second-order KNP method as presented
in [5], which is known to be TVD. Unless otherwise stated, this reference
solution uses N =5000 nodes.

We first test our method with the scalar advection problem ut +ux =
0, u (x, t =0)= sin4 (πx) on the periodic domain [−1,1] at T =2. The rel-
ative L1- and L∞- norms of the errors are shown in Table II. We also test
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Table II. Relative L1 and L∞ Errors for the Advection Equation and the
Burgers Equation

Relative L1-error L1-order Relative L∞-error L∞-order

N Linear advection of sin4 (πx), T =2
100 8.68×10−4 – 1.14×10−3 –
200 2.55×10−5 5.09 4.18×10−5 4.77
400 6.32×10−7 5.34 9.77×10−7 5.42
800 1.46×10−8 5.44 1.49×10−8 6.03

Burgers equation before the shock, T =0.5
100 1.03×10−6 – 7.51×10−6 –
200 3.87×10−8 4.74 2.89×10−7 4.70
400 1.15×10−9 5.08 8.12×10−9 5.15
800 8.87×10−11 3.69 3.31×10−10 4.61

Burgers equation after the shock, T =2.5
100 3.34×10−3 – 1.42×10−1 –
200 1.99×10−3 0.75 2.12×10−1 −0.57
400 8.72×10−4 1.19 1.65×10−1 0.36
800 4.38×10−4 0.99 1.63×10−1 0.01

accuracy with the Burgers equation ut +
(

u2

2

)

x
=0, u (x, t =0)=3+ sin (x)

on the periodic domain [0,2π ] at T = 0.5, before shock formation, and
at T = 2.5 after shock formation. The results are also shown in Table II.
Figure 1 shows the result at T =2.5, as well as the change in the TV over
time for various resolutions. For this example the exact TV equals to 4
before the singularity formation at T =1.

Our next example is Burgers equation on the same domain with ini-
tial data u (x, t =0) = 2 − sin (x) + sin (2x). This example develops two
shocks which eventually merge. Figure 2 shows the solution at T = 1.2 as
well as the change in the TV over time for various resolutions.

Turning to systems, we consider the Euler equations
⎛

⎝
ρ

ρu

E

⎞

⎠

t

+
⎛

⎝
ρu

ρu2 +p

(E +p)u

⎞

⎠

x

=0 (3.1)

with equation of state p = (γ −1) (E − 1
2ρu2) and γ = 1.4. We first apply

our method to the Lax problem [8] on the domain [0,1] with initial data

(ρ, u,E)=
{

(0.445,0.311,8.928) , x <0.5,

(0.5,0.0,1.4275) , x >0.5.
(3.2)

The results at T =0.16 with N =100 and N =400 grid nodes is shown in
Fig. 3. While the shock and the contact discontinuity are well-captured at
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Fig. 1. Results for the Burgers equation using the central-upwind scheme (2.1) and (2.3).
Top: the solution after shock formation at T =2.5, “−”: exact solution, “◦”: approximation.
Bottom: the change in the TV of the approximation for N = 100,200,400,800 nodes (from
left to right) compared with the TV of a reference solution (the upper curve).
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Fig. 2. Results for Burgers equation with initial data that develops a double shock using
the central-upwind scheme (2.1) and (2.3). Top: the solution after shock formation at T =1.2,
“−”: exact solution, “◦”: approximation. Bottom: the change in the TV of the approximation
for various resolutions compared with the TV of a reference solution.
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low resolution, there are significant oscillations between the contact dis-
continuity and the shock for N =100. Figure 3 also shows the TV behav-
ior of the approximation, compared with a reference solution. We see that
the TV of the approximate solutions are initially greater than that of the
reference solution, but converges to the TV of the reference solution over
time, with a faster rate of convergence for finer meshes. It is interesting,
however, that the over-shoot of the TV at early times does not seem to
depend on the mesh resolution. We observe similar behavior for the Sod
problem [18].

We next apply our method to the reflected blast problem of Woodward
and Colella [20], on the domain [0,1] with reflecting boundary conditions
and initial data

(ρ, u,E)=
⎧
⎨

⎩

(1.0,0.0,2500.0), 0�x <0.1,

(1.0,0.0,0.01), 0.1�x <0.9,

(1.0,0.0,250.0), 0.9�x �1.

(3.3)

The results at T =0.038 with N =400 grid nodes are shown in Fig. 4, com-
pared with a reference solution using 10,000 nodes. We see some numerical
oscillations. Figure 4 also shows the TV behavior of the approximation,
compared with the reference solution. We see that the TV of the approx-
imate solutions converges to the TV of the reference solution for finer
meshes, but do not seem to converge over time. This is not surprising since
this example contains sharp peaks that will not be resolved for coarse
meshes.

For our final example we apply our method to the problem of a mach
three wave interacting with an acoustic shock on the domain [0,1] (see
[17]). The initial conditions for this problem are

(ρ, u,p)=
{

(3.857143,2.629369,10.3333), x �0.1,

(1+0.2 sin (50x),0,1), x >0.1.
(3.4)

The results are shown in Fig. 5, compared with a reference solution using
20,000 nodes. We see the high resolution of our method and indications
that the TV of our approximations converges to that of the reference solu-
tion.

In conclusion, we would like to note that the TV approaches the TV
of the reference solution in different ways for different examples. While in
some cases it is monotone (such as the acoustic-shock problem) in other
cases it is not (such as the Woodward–Colella problem). Our results are
characteristic of the complex structure that one may expect to find with
the TV of solutions of systems (with the lack of any supporting theory).
Trying to convert these observations into a statement on the convergence
of the scheme remains an important topic for future study.
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Fig. 3. Results for the Lax problem (3.2) using the central-upwind scheme (2.1) and (2.3).
Top: Density. “−”: reference solution, “◦”: approximation with N =100 nodes, “+”: approx-
imation with N =400 nodes. Bottom: the change in the TV of the approximation for various
resolutions compared with the TV of a reference solution.
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Fig. 4. Results for the Woodward–Colella problem (3.3) using the central-upwind scheme
(2.1) and (2.3). Top: Density. “−”: reference solution, “◦”: approximation with N = 400
nodes. Bottom: the change in the TV of the approximation for various resolutions compared
with the TV of a reference solution.
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Fig. 5. Results for the acoustic-shock problem (3.4), showing the approximation of the
density field at T = 0.18 using N = 400 nodes. Top: Approximate solution. “−”: reference
solution, “◦”: approximation. Bottom: the change in the TV of the approximation for vari-
ous resolutions compared with the TV of a reference solution.
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