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Abstract. Dispersing billiards with cusps are deterministic dy-
namical systems with a mild degree of chaos, exhibiting “intermit-
tent” behavior that alternates between regular and chaotic pat-
terns. Their statistical properties are therefore weak and delicate.
They are characterized by a slow (power-law) decay of correlations,
and as a result the classical central limit theorem fails. We prove
that a non-classical central limit theorem holds, with a scaling fac-
tor of

√
n log n replacing the standard

√
n. We also derive the

respective Weak Invariance Principle, and we identify the class of
observables for which the classical CLT still holds.
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1. Introduction

We study billiards, i.e., dynamical systems where a point particle
moves in a planar domain D (the billiard table) and bounces off its
boundary ∂D according to the classical rule “the angle of incidence is
equal to the angle of reflection”. The boundary ∂D is assumed to be
a finite union of C3 smooth compact curves that may have common
endpoints.

Between collisions at ∂D, the particle moves with a unit speed and
its velocity vector remains constant. At every collision, the velocity
vector changes by

(1.1) v+ = v− − 2〈v−,n〉n
where v− and v+ denote the velocities before and after collision, re-
spectively, n stands for the inward unit normal vector to ∂D, and 〈·, ·〉
designates the scalar product.

If the boundary ∂D is entirely smooth and concave, and the cur-
vature of ∂D does not vanish, the billiard is said to be dispersing.
Such billiards were studied by Sinai [22], and now they are known as
Sinai billiards. A classical example is a unit torus T

2 with finitely
many fixed disjoint convex obstacles Bi, i = 1, . . . , k, i.e., the table is
D = T

2 \ ∪i(int Bi).
1
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Sinai proved that the resulting billiard dynamics in D is uniformly
hyperbolic, ergodic, and K-mixing. By uniform hyperbolicity we mean
that the expansion rates of unstable vectors are uniform, i.e., they
expand exponentially fast. Gallavotti and Ornstein [15] proved that
Sinai billiards are Bernoulli. Young [24] proved that correlations decay
exponentially fast. The central limit theorem and other limit laws were
derived in [4, 6].

All these results have been extended to dispersing billiards with
piecewise smooth boundaries, i.e., to tables with corners, provided the
boundary components intersect each other transversally, i.e., the angles
made by the walls at corner points are positive.

Figure 1. Billiard table with three cusps.

A very different picture arises if some boundary components con-
verge tangentially at a corner, i.e., make a cusp. Dispersing billiards
with cusps were first studied by Machta [19] who investigated a bil-
liard table made by three identical circular arcs tangent to each other
at their points of contact (Fig. 1). He found (based on heuristic ar-
guments) that correlations for the collision map decay slowly (only as
1/n, where n denotes the collision counter). The hyperbolicity is non-
uniform meaning that there are no uniform bounds on the expansion of
unstable vectors: when the trajectory falls into a cusp (Fig. 1), it may
be trapped there for quite a while, and during long series of collisions
in the cusp unstable vectors expand very slowly.

Rigorous bounds on the decay of correlations were derived recently
in [11, 13]. It was shown that if A is a Hölder continuous function
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(“observable”) on the collision space M , then for all n ∈ Z

(1.2) ζn(A) : =
∣

∣µ
(

A · (A ◦ F n)
)

−
[

µ(A)
]2∣
∣ = O(1/|n|)

where F : M → M denotes the collision map (billiard map) and µ its
invariant measure; we use standard notation µ(A) =

∫

M
A dµ. We refer

the reader to [10] for a comprehensive coverage of the modern theory of
dispersing billiards and to [11] for a detailed description of dispersing
billiards with cusps.

Billiards with cusps are among the very few physically realistic chaotic
models where correlations decay polynomially as in (1.2) leading to a
non-classical Central Limit Theorem. However, the proofs of limit
theorems (Theorems 1, 2 and 3 presented here) require much tighter
control over the underlying dynamics than the proof of (1.2) does. As
for the general strategy, our arguments follow the scheme developed
in [8]. Nonetheless, concerning the specifics of billiards with cusps, we
implement new ideas in the following sense.

Machta’s original argument [19] consists of approximating the dy-
namics in the cusps by differential equations. The proofs in [11] involve
direct, though technically complicated, estimates of the deviations of
the actual billiard trajectories from the solutions of Machta’s equations.
We employ a novel approach: we integrate Machta’s differential equa-
tion and find a conserved quantity, then show that the corresponding
dynamical quantity is within O(1) of that ideal quantity. This gives us
the necessary tight control over the dynamics.

Here we summarize some issues that provide the main motivation
for proving Theorems 1, 2 and 3. Billiards with cusps can be obtained
by a continuous transformation of Sinai billiards. Suppose we enlarge
the obstacles Bi on the torus T

2 until they touch each other. At that
moment cusps are formed on the boundary ∂D and the billiard ceases
to be a Sinai billiard. Thus billiards with cusps appear on a natural
boundary ∂S of the space S of all Sinai billiards. Strong statistical
properties of Sinai billiards deteriorate near that boundary and one
gets slow nonuniform hyperbolicity with ‘intermittent chaos’.

Billiards within the class S but near its boundary ∂S are also inter-
esting, because the obstacles nearly touch one another leaving narrow
tunnels (of width ε > 0) in between. A periodic Lorentz gas with
narrow tunnels was first examined by Machta and Zwanzig [20] who
analyzed (heuristically) the diffusion process as ε → 0. We plan to
investigate billiards with tunnels rigorously, and the current work is a
first step in that direction.

Our interest in billiards with cusps also comes from the studies [9]
of a Brownian motion of a heavy hard disk in a container subject to
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a bombardment of fast light particles. When the slowly moving disk
collides with a wall of the container, the area available to the light
particles turns into a billiard table with (two) cusps, see [9, p. 193],
and some light particles may be caught in one of them, and they would
be hitting the disk at an unusually high rate. An important task is
then to estimate the overall effect produced by those rapid collisions in
the cusp. At each collision the light particle transfers some momentum
to the heavy disk, and the total momentum transferred to the disk can
be represented by a Birkhoff sum of a certain function.

We study the limit behavior of Birkhoff sums

(1.3) SnA = A + A ◦ F + · · ·+ A ◦ F n−1

for Hölder continuous functions on M . As usual, we consider centered
sums, i.e., SnA−nµ(A) = Sn(A−µ(A)), so we will always assume that
µ(A) = 0; otherwise we replace A with A − µ(A).

Because correlations decay as 1/n, the central limit theorem (CLT)
fails. Indeed, due to (1.2)

(1.4) µ
(

[SnA]2
)

=

n−1
∑

k=−n+1

(n − |k|)ζk(A) = O(n log n),

so the proper normalization factor for SnA must be
√

n log n, rather
than the classical

√
n. Our main goal is to establish a non-classical

central limit theorem:

Theorem 1 (CLT). Let D be a planar dispersing billiard table with a
cusp. Let A be a Hölder continuous1 function on the collision space M .
Then we have a (nonclassical) Central Limit Theorem

(1.5)
SnA√
n log n

⇒ N (0, σ2)

for some σ2 = σ2
A ≥ 0, which is given by explicit formula (1.7).

The convergence (1.5) means precisely that for every z ∈ R

(1.6) µ

{

SnA√
n log n

< z

}

→ 1√
2πσ2

∫ z

−∞
e−

s2

2σ2 ds

as n → ∞. In the degenerate case σ = 0, the left hand side of (1.5)
converges to zero in probability; see also Theorem 3.

Remark. Since the map F is ergodic, the limit law (1.5) is mixing in
the sense of probability theory, i.e., the limit in (1.6) holds true if we

1The function A may be piecewise Hölder continuous, provided its discontinuity
lines coincide with discontinuities of F±k for some k ≥ 1.
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replace µ with any measure that is absolutely continuous with respect
to µ; see [14, Section 4.2].

The limit law (1.5) can be interpreted, in physical terms, as superdif-
fusion, and σ2 = σ2

A as superdiffusion coefficient ; see similar studies in
[1, 8, 23]. In [1], an analogue of Theorem 1 was proved for another
billiard model where correlations decay as O(1/n) – the Bunimovich
stadium. In [8, 23] a similar superdiffusion law was proved for the
Lorentz gas with infinite horizon, which is also characterized (after a
proper reduction [12, 13]) by O(1/n) correlations. Our proofs follow
the lines of [8].

r

ϕ π
2

−π
2

n D

Figure 2. Orientation of r and ϕ on ∂D
There are natural coordinates r and ϕ in the collision space M , where

r denotes the arc length parameter on ∂D and ϕ the angle of reflection,
i.e., the angle between v+ and n in the notation of (1.1). Note that
−π/2 ≤ ϕ ≤ π/2; the orientation of r and ϕ is shown in Fig. 2. The
billiard map F preserves measure µ on M given by

dµ = cµ cos ϕ dr, dϕ,

where cµ = [2 length(∂D)]−1 is the normalizing factor. In these co-
ordinates, M is a union of rectangles [r′i, r

′′
i ] × [−π/2, π/2], where the

intervals [r′i, r
′′
i ] correspond to smooth components (arcs) of ∂D.

The Hölder continuity of a function A : M → R means that

|A(r, ϕ) − A(r′, ϕ′)| ≤ KA

(

|r − r′|αA + |ϕ − ϕ′|αA
)

for some αA > 0 (the Hölder exponent) and KA > 0 (the Hölder
norm) provided r and r′ belong to one interval [r′i, r

′′
i ]. The function A

need not change continuously from one interval to another, even if the
corresponding arcs have a common endpoint.

The cusp is a common terminal point of two arcs, ii and i2, of ∂D;
thus the coordinate r takes two values at the cusp, r′ = r′i1 and r′′ = r′′i2.
Now the coefficient σ2

A is given by

(1.7) σ2
A =

cµ

8ā

[
∫ π/2

−π/2

[A(r′, ϕ) + A(r′′, ϕ)]
√

cos ϕ dϕ

]2
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where ā = (a1 + a2)/2 and a1, a2 denote the curvatures of the two arcs
making the cusp measured at the vertex of the cusp.

Remark. Our results easily extend to dispersing billiards with more
than one cusp. To account for the total effect of all the cusps, σ2

A must
be the sum of expressions (1.7), each corresponding to one cusp.

The non-classical limit theorem (1.5) leads to the following lower
bound on the correlations ζn(A) defined by (1.2):

Corollary 1.1. If σ2
A 6= 0, then the sequence |n|ζn(A) cannot converge

to zero as n → ±∞.

Proof. This is an analogue of Corollary 1.3 in [1]. If we had ζn(A) =
o(1/|n|), then the first identity in (1.4) would imply µ

(

[SnA]2
)

=

o(n log n), hence SnA√
n log n

would converge to zero in probability. This

would contradict (1.5). �

Our next result reinforces the central limit theorem (1.5):

Theorem 2 (WIP). Let A satisfy the assumptions of Theorem 1 and
σ2

A 6= 0. Then the following Weak Invariance Principle holds: the
process

(1.8) WN(s) =
SsNA

√

σ2
AN log N

, 0 < s < 1,

converges, as N → ∞, to the standard Brownian motion.

As usual, SsNA here is defined by (1.3) for integral values of sN and
by linear interpolation in between.

The same remark as we made after Theorem 1 applies here: the limit
distribution of the left hand side of (1.8) is the same with respect to
any measure that is absolutely continuous with respect to µ.

Lastly we investigate the degenerate case σ2
A = 0 (which occurs when

the integral in (1.7) vanishes).

Theorem 3 (Degenerate case). Let A satisfy the assumptions of The-
orem 1 and σ2

A = 0. Then we have classical Central Limit Theorem

(1.9)
SnA√

n
⇒ N (0, σ̂2)

for some σ̂2 = σ̂2
A ≥ 0 (see Theorem 6 for a precise formula).

The remark made after Theorem 1 applies here, too, i.e., the limit
distribution of the left hand side of (1.9) is the same with respect to
any measure that is absolutely continuous with respect to µ. Also, if a
billiard table has several cusps, then σ2

A = 0 if and only if the expression
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(1.7) vanishes for every cusp. Lastly, it is standard that σ̂2
A = 0 if and

only if A is a coboundary, i.e., there exists a function g ∈ L2
µ(M) such

that A = g−g◦F almost everywhere (this follows from general results;
see, e.g., [18] and [17, Theorem 18.2.2]).

Remark. The function A is a coboundary if and only if for every peri-
odic point x ∈ M , F px = x, we have

∑p
i=1 A(F ix) = 0; see [7]. And

in dispersing billiards periodic points are dense [5]. Thus cobound-
aries make a subspace of infinite codimension in the space of Hölder
continuous functions, i.e., the situation σ̂2

A = 0 is extremely rare. On
the other hand, σ2

A = 0 occurs whenever the integral in (1.7) vanishes,
hence such functions make a subspace of codimension one (for billiards
with k cusps it would be a subspace of codimension k), so such func-
tions are not so exceptional.

Remark. Correlations decay slowly in discrete time, when each collision
counts as a unit of time. The picture is different in physical, continuous
time: the collisions inside a cusp occur in rapid succession, thus their
effect is much less pronounced. In fact, the corresponding billiard flow
is rapid mixing in the sense that correlations for smooth observables
decay faster than any polynomial rate, and a classical Central Limit
Theorem holds [2].

It is worth noting that any observable Ã on the phase space of the
flow, D × S

1, can be reduced to an observable A : M → R for the
billiard map by integrating Ã between collisions. If Ã is bounded, then
clearly A → 0 near cusps, hence σ2

A = 0, and therefore A, too (just like

Ã), satisfies a classical CLT.
On the other hand, some physically important observables for the

flow are not bounded near cusps, and for them the classical CLT may
fail; for example the number of collisions during the time interval (0, T ),
as T → ∞, does not satisfy a classical CLT.

2. Induced map

It is standard in the studies of nonuniformly hyperbolic maps to
reduce the dynamics onto a subset M ⊂ M so that the induced map
F : M → M will be strongly hyperbolic and have exponential decay
of correlations.

In the present case the hyperbolicity is slow only because of the
cusp. So we cut out a small vicinity of the cusp; i.e., we remove from
M two rectangles, R1 = [r′i1 , r

′
i1 + ε0] × [−π/2, π/2] and R2 = [r′′i2 −

ε0, r
′′
i2]× [−π/2, π/2], with some small ε0 > 0 and consider the induced

map F on the remaining collision space M = M \ (R1 ∪ R2). It
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preserves the conditional measure ν on M, where ν(B) = µ(B)/µ(M)
for any B ⊂ M. The map F : M → M is strongly hyperbolic and has
exponential decay of correlations [11]. On the other hand, the induced
map F is rather complex and has infinitely many discontinuity lines.

Now let

(2.1) R(x) = min{m ≥ 1: F mx ∈ M}
denote the return time function on M. The domains

Mm = {x ∈ M : R(x) = m}
for m ≥ 1 are called cells; note that M = ∪m≥1Mm. Cells are sepa-
rated by the discontinuity lines of F .

Given a function A on M we can construct the “induced” function
on M as follows:

(2.2) A(x) =

R(x)−1
∑

m=0

A(F mx).

We also denote by SnA its Birkhoff sums:

(2.3) SnA = A + A ◦ F + · · ·+ A ◦ Fn−1.

It is standard that ν(R) = 1/µ(M) (Kac’s formula) and ν(A) =
µ(A)/µ(M). Since we always assume µ(A) = 0, we also have ν(A) = 0.

If the original function A is continuous, then the induced function A
will be continuous on each cell Mm, but it may have countably many
discontinuity lines that separate cells Mm’s from each other. So the
discontinuity lines of A will coincide with those of the map F .

Theorem 4 (CLT for the induced map). Let A : M → M satisfy
the assumptions of Theorem 1 and A be the induced function on M
constructed by (2.2). Then

(2.4)
SnA√
n log n

⇒ N (0, σ2
A),

where σ2
A = ν(R)σ2

A.

Remark. The function R itself (more precisely, its “centered” version
R0 = R− ν(R)) satisfies the above limit theorem, i.e.,

(2.5)
SnR− nν(R)√

n log n
⇒ N (0, σ2

R),

where

(2.6) σ2
R =

cµ

2ā

[
∫ π/2

−π/2

√
cos ϕ dϕ

]2

.



LIMIT THEOREMS FOR DISPERSING BILLIARDS WITH CUSPS 9

Indeed, define a function A by

A =

{

1 − ν(R) for x ∈ M
1 for x ∈ M \M

Then by (2.2) we have A = R − ν(R). Note that A is piecewise
constant, with a single discontinuity line that separates M from M \M
(hence its discontinuity line coincides with that of F), and µ(A) = 0.
Thus Theorem 4 applies and gives (2.5). The formula (2.6) follows
from (1.7), because A ≡ 1 in the vicinity of the cusp.

The remark made after Theorem 1 applies here, too. Indeed, the
ergodicity of F implies that of F , hence the limit law (2.4) is mixing,
i.e., the limit distribution of the left hand side of (2.4) is the same with
respect to any measure that is absolutely continuous with respect to ν.

Proof of Theorem 1 from Theorem 4. Our argument is similar to [8,
Section 3.1]; see also [10, Theorem 7.68] and [16, Theorem A.1].

First, according to the previous remark, the limit law (2.4) holds
with respect to the measure ν̃ defined by dν̃/dν = R/ν(R). Our next
step is to prove the limit law (1.5) with respect to ν̃.

Given n ≥ 1 we fix n1 = [n/ν(R)]. For every x ∈ M let n2 = n2(x)
be the number of returns to M of the trajectory of x within the first n
iterations, i.e., n2 satisfies Sn2

R(x) ≤ n < Sn2+1R(x). Then we have

(2.7) SnA = Sn1
A + (Sn2

A− Sn1
A) + (SnA − Sn2

A)

Due to Theorem 4, we have

(2.8)
Sn1

A√
n log n

⇒ N (0, σ2
A),

thus it is enough to show that the other two terms in (2.7) are negligible,
i.e.

(2.9) χ1 =
Sn2

A− Sn1
A√

n log n
, χ2 =

SnA − Sn2
A√

n log n

both converge to zero in probability. It is enough to prove the conver-
gence to zero with respect to ν, because ν̃ is an absolutely continuous
measure. To deal with χ1 we use (2.5), which implies that for any ε > 0
there is a C = Cε > 0 such that

(2.10) ν
(

|n2 − n1| ≤ C
√

n log n
)

≥ 1 − ε

Now the desired result χ1 → 0 would follow if both expressions

(2.11) max
1≤j≤C

√
n log n

1√
n log n

∣

∣

∣

∣

n1+j
∑

i=n1

A(F ix)

∣

∣

∣

∣
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and

(2.12) max
1≤j≤C

√
n log n

1√
n log n

∣

∣

∣

∣

n1
∑

i=n1−j

A(F ix)

∣

∣

∣

∣

converged to zero in probability. Because F preserves the measure ν, we
can replace n1 with 0 in the above expressions. Then their convergence
to zero easily follows from the Birkhoff Ergodic Theorem.

To deal with χ2 we note that A is bounded, hence |SnA − Sn2
A| ≤

‖A‖∞(n−Sn2
R). Note that n− (Sn2

R)(x) = k if and only if F n(x) ∈
F k(Mm) for some m > k, hence

ν
(

x : n − (Sn2
R)(x) = k

)

=

∞
∑

m=k

ν(Mm)

Thus the distribution of n−Sn2
R does not depend on n, which implies

χ2 → 0 in probability.
We just proved (1.5) with respect to the measure ν̃. The latter is de-

fined on M, but it corresponds to a representation of the space (M, µ)
as a tower over M, whose levels are made by the images F i(Mm),
0 ≤ i < m. Thus the space (M, ν̃) is naturally isomorphic to (M, µ),
and the limit law (1.5) on the space (M, ν̃) can be restated as follows:
with respect to the measure µ on M we have

(2.13)
SnA ◦ Π√

n log n
⇒ N (0, σ2),

where Π(x) = F ζ(x)(x) and ζ(x) = max{m ≤ 0: F mx ∈ M}; so Π
plays the role of the “projection” on the base of the tower. Lastly, the
effect of Π is negligible and can be handled in the same way as the
difference SnA − Sn2

A above. �

Theorem 5 (WIP for the induced map). Let A satisfy the assump-
tions of Theorem 1 and σ2

A 6= 0. Let A be the induced function on M
constructed by (2.2). Then the following Weak Invariance Principle
holds: the process

(2.14) WN(s) =
SsNA

√

σ2
AN log N

, 0 < s < 1,

converges, as N → ∞, to the standard Brownian motion.

We derive Theorem 2 from Theorem 5 in Section 8.

Theorem 6 (Degenerate CLT for the induced map). Let A satisfy the
assumptions of Theorem 1 and σ2

A = 0. Let A be the induced function
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on M constructed by (2.2). Then we have a classical Central Limit
Theorem

(2.15)
SnA√

n
⇒ N (0, σ̂2

A)

where σ̂2
A = ν(R)σ̂2

A. The latter satisfies standard Green-Kubo formula

(2.16) σ̂2
A =

∞
∑

n=−∞
ν(A · (A ◦ Fn)).

This series converges exponentially fast.

We derive Theorem 3 from Theorem 6 in Section 7.

Remark Even in the non-degenerate case, σ2
A 6= 0, all the terms in

the series (2.16), except the one with n = 0, are finite and their sum
converges (see our Lemma 3.2 below). Hence σ̂2

A given by the series
(2.16) is finite if and only if its central term (with n = 0) is finite. The
latter occurs if and only if σ2

A = 0 (see our Lemma 4.3 and Section 7
below), so we have

σ̂2
A < ∞ ⇔ σ2

A = 0.

In the bulk of the paper we prove Theorem 4. The degenerate case
is treated in Section 7. The more specialized limit law (Theorem 5) is
proved in the last section 8.

The underlying map F : M → M is strongly hyperbolic and has
exponential decay of correlations for bounded Hölder continuous func-
tions [11]. But we have to deal with a function A that has infinitely
many discontinuity lines and is unbounded; in fact its second moment
is usually infinite; see below.

There are two strategies for proving limit theorems for such func-
tions. One is based on Young’s tower and spectral properties of the
corresponding transfer operator on functional spaces [1]. The other is
more direct – it truncates the unbounded function A and then uses
probabilistic moment estimates [8]. We follow the latter approach.

In Sections 3–4 we describe the general steps of the proof, which can
be applied to many similar models. In the Sections 5–6 we provide
model-specific details.

3. Truncation of A
The constructions and arguments in Sections 3–4 are rather general,

they are based on a minimal collection of properties of the underlying
dynamical system. Thus our arguments can be easily applied to other
models. The necessary model-specific facts are stated as lemmas here;
they will be all proved in Sections 5–6.
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Lemma 3.1. We have ν(Mm) ≍ m−3.

The notation P ≍ Q means that C1 < P/Q < C2 for some positive
constants C2 > C1 > 0. This lemma is in fact proved in [11].

The power 3 here is the minimal integral power for this estimate.
Indeed, the sets F i(Mm), 1 ≤ i ≤ m, are disjoint, hence the se-
ries

∑∞
m=1 mν(Mm) converges; its sum is ν(R) = 1/µ(M). Thus,

if ν(Mm) ≍ m−a for some a > 0, then a > 2.
In most interesting systems with weak hyperbolicity (such as stadia,

semi-dispersing billiards, etc.; see [12, 13]), we have either ν(Mm) =
O(m−3) or ν(Mm) = O(m−4); in the latter case one expects the clas-
sical central limit theorem to hold.

Next we note that A|Mm
= O(m), because the original function A

is bounded. This implies that ν(|A|) < ∞, but usually the second
moment of A is infinite, i.e., ν(A2) = ∞. To cope with this difficulty
we will truncate the function A (in two different ways).

To fix our notation, for each 1 ≤ p ≤ q we denote

Mp,q = ∪p≤m<qMm

(occasionally we let q = ∞). Note that if p ≪ q, then

(3.1) ν(Mp,q) ≍
q
∑

m=p

m−3 ≍ p−2.

We also put Ap,q = A·1Mp,q
, where 1B denotes the indicator of the set

B, and

Âp,q =

(

A− 1

ν(Mp,q)

∫

Mp,q

A dν

)

1Mp,q

the “centered” version of Ap,q. Note that both Ap,q and Âp,q vanish

outside Mp,q. Also, ν(Âp,q) = 0.
Now we choose a large constant ω (say, ω > 10) and fix two levels at

which we will truncate our function:

(3.2) p =

√
n

(log n)ω
and q =

√
n log log n,

so that A = A1,p + Ap,q + Aq,∞.
Due to (3.1) we have

(3.3) ν
(

∃i ≤ n : F i(x) ∈ Mq,∞) = O
(

(log log n)−2
)

→ 0,

so the values of Aq,∞◦F i can be disregarded because their probabilities
are negligibly small. Thus we can replace A with A1,q. Again, due to
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Lemma 3.1

ν(A1,q) = −
∫

Mq,∞

A dν = O
(

1√
n log log n

)

.

Next, we show that A1,q can be further replaced with

(3.4) Â : = A1,q − Âp,q.

To this end we need to prove that the overall contribution of the values
Âp,q◦F i is negligible because they tend to cancel each other. Our proof
involves a bound on correlations:

Lemma 3.2. For each k ≥ 1 and any 1 ≤ p ≤ q ≤ ∞ and 1 ≤ p′ ≤
q′ ≤ ∞ we have

(3.5)
∣

∣ν
(

Âp,q · (Âp′,q′ ◦ Fk)
)
∣

∣ ≤ Cθk

for some C > 0 and θ ∈ (0, 1) that are determined by the function Â
but do not depend on p, q, p′, q′ or k.

The condition k ≥ 1 here is essential, because for k = 0 the resulting
integral ν

(

Âp,qÂp′,q′
)

is not uniformly bounded (and it actually turns
infinite for q = q′ = ∞).

We now return to (3.4). The second moment of SnÂp,q =
∑n−1

i=0 Âp,q◦
F i can be estimated by

(3.6) ν
(

[SnÂp,q]
2
)

= O(n log log n),

where the main contribution comes from the “diagonal” terms

ν
[

Âp,q ◦ F i
]2

= O
(

log(q/p)
)

= O(log log n),

as all the other terms sum up to O(n) due to (3.5). Now by Chebyshev’s
inequality for any ε > 0

(3.7) ν
(

|SnÂp,q| ≥ ε
√

n log n
)

≤ const · n log log n

ε2n log n
→ 0.

Hence we can replace A1,q with Â given by (3.4), i.e., Theorem 4 would
follow if we prove that

(3.8)
SnÂ√
n log n

⇒ N (0, σ2
A)

with respect to the measure ν. We prove (3.8) in Section 4.

We record several useful facts. The function Â is constant on the set
Mp,q, and its value on this set is

Â|Mp,q
=

1

ν(Mp,q)

∫

Mp,q

A dν = O(p).
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The first few moments of Â can be roughly estimated as

ν(Â) = ν(A1,q) = −ν(Aq,∞) = O(1/q),(3.9)

ν(Â2) = O
( p
∑

m=1

m2

m3

)

+ O
(

p2

p2

)

= O(log p),(3.10)

ν(|Â|3) = O
( p
∑

m=1

m3

m3

)

+ O
(

p3

p2

)

= O(p),(3.11)

ν(Â4) = O
( p
∑

m=1

m4

m3

)

+ O
(

p4

p2

)

= O(p2).(3.12)

Also note that Â = Â1,q − Âp,q + ν(Â), hence due to (3.9) and the
correlation bound (3.5) we have

(3.13)
∣

∣ν
(

Â · (Â ◦ Fk)
)
∣

∣ ≤ 4Cθk + C ′/q2

for some constant C ′ > 0 and all k ≥ 1.

4. Moment estimates

Here we begin the proof of the CLT for the truncated function, i.e.,
(3.8). Our truncations have removed all excessively large values of the
function A, so now we can apply probabilistic arguments.

We shall use Bernstein’s classical method based on the “big small
block” technique. That is, we partition the time interval [0, n− 1] into
a sequence of alternating big intervals (blocks) of length P = [na] and
small blocks of length Q = [nb] for some 0 < b < a < 1. The number of
big blocks is K = [n/(P + Q)] ∼ n1−a. There may be a leftover block
in the end, of length L = n − KP − (K − 1)Q < P + Q.

We denote by ∆k, 1 ≤ k ≤ K, our big blocks and set

S(k)
P =

∑

i∈∆k

Â ◦ F i, S ′
n =

K
∑

k=1

S(k)
P

and

S ′′
n = SnÂ − S ′

n =
∑

i∈[0,n−1]\∪∆k

Â ◦ F i.

The second sum S ′′
n contains no more than n′′ = KQ+P ≤ 2nh terms,

where h = max{a, 1 − a + b} < 1.
Just as in the proof of (3.6), we estimate

ν
(

[S ′′
n]2
)

= O(n′′ log n) = O(nh log n)
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where the main contribution comes from the “diagonal” terms

ν
[

Â ◦ F i
]2

= O(log p) = O(log n),

as all the other terms sum up to O(n′′) due to (3.13). Now by Cheby-
shev’s inequality for any ε > 0

ν
(

|S ′′
n| ≥ ε

√

n log n
)

≤ const · nh log n

ε2n log n
→ 0.

Hence we can neglect the contribution from the small blocks, as well
as from the last leftover block.

Thus Theorem 4 is equivalent to

(4.1)
S ′

n√
n log n

⇒ N (0, σ2
A),

By the Lévy continuity theorem, it suffices to show that the character-
istic function

φn(t) = ν

(

exp

(

itS ′
n√

n log n

))

= ν

( K
∏

k=1

exp

(

itS(k)
P√

n log n

))

converges, pointwise, to that of the normal distribution N (0, σ2
A), i.e.,

to exp(−1
2
σ2
At2).

First we need to decorrelate the contributions from different big
blocks, i.e., we will prove that

(4.2) φn(t) =
K
∏

k=1

ν

(

exp

(

itS(k)
P√

n log n

))

+ o(1)

This requires bounds on multiple correlations defined below.
Let f be a Hölder continuous function on M which may have dis-

continuity lines coinciding with those of F . Consider the products

f− = (f ◦ F−p1) · (f ◦ F−p2) · · · (f ◦ F−pk)

for some 0 ≤ p1 < · · · < pk and

f+ = (f ◦ F q1) · (f ◦ F q2) · · · (f ◦ F qr)

for some 0 ≤ q1 < · · · < qr. Note that f− depends on the values of f
taken in the past, and f+ on the values of g taken in the future. The
time interval between the future and the past is p1 + q1.

Lemma 4.1. Suppose f is a Hölder continuous on each cell Mm with
Hölder exponent αf and Hölder norm Kf . Then

(4.3)
∣

∣ν(f−f+) − ν(f−)ν(f+)
∣

∣ ≤ Bθ|p1+q1|
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where θ = θ(αf ) ∈ (0, 1), and

(4.4) B = C0Kf‖f‖k+r
∞ ,

where C0 = C0(D) > 0 is a constant.

To prove (4.2) we apply Lemma 4.1 to the function f = exp(itÂ/
√

n log n).
We obviously have ‖f‖∞ = 1; for the Hölder exponent we have αf = αÂ
and for the Hölder norm Kf = tKÂ/

√
n log n.

Now the proof of (4.2) goes on by splitting off one big block at a time,
and the accumulated error in the end will be O

(

KKÂθQ/
√

n log n
)

.
This is small enough due to the following lemma:

Lemma 4.2. The induced function A is Hölder continuous on each cell
Mm. Its restriction to Mm has Hölder exponent αA > 0 determined
by αA alone (i.e., independent of m) and Hölder norm KA,m = O(md)
for some d > 0.

Since we truncated our function A at the level q =
√

n log log n, we
have KÂ = O(nd), and since we chose Q = nb for some b > 0, the
factor θQ will suppress KÂ and K. This completes the proof of (4.2).

Due to the invariance of ν we can rewrite (4.2) as

(4.5) φn(t) =

[

ν

(

exp

(

itSP√
n log n

))]K

+ o(1)

where SP = S(1)
P corresponds to the very first big block. Next we use

Taylor expansion

(4.6) exp

(

itSP√
n log n

)

= 1 +
itSP√
n log n

− t2S2
P

2n log n
+ O

( |SP |3
(n log n)3/2

)

and then integrate it. For the linear term, we use (3.9) and get

(4.7) ν(SP ) = O(P/q).

For the quadratic term, we have

(4.8) ν(S2
P ) = Pν(Â2) + O(P ) = O(P log p).

Indeed, the main contribution comes from the “diagonal” terms, ν(Â2) =
O(log p), as all the other terms sum up to O(P ) due to (3.13). More-

over, ν(Â2) = ν(A2
1,p) + O(1), hence (4.8) can be rewritten as

(4.9) ν(S2
P ) = Pν(A2

1,p) + O(P ).

The value ν(A2
1,p) must be computed precisely, to the leading order:

Lemma 4.3. We have ν(A2
1,p) = 2σ2

A log p + O(1).
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Therefore, (4.9) takes form

(4.10) ν(S2
P ) = 2Pσ2

A log p + O(P ).

For the cubic term, we apply the Cauchy-Schwartz inequality:

(4.11) ν(|SP |3) ≤
[

ν(S2
P )ν(S4

P )
]1/2

.

For the fourth moment we use expansion

(4.12) ν(S4
P ) =

∑

ν
(

Âj1Âj2Âj3Âj4

)

where we denote Âj = Â ◦ F j, for brevity. We will consider ordered
sets of indices, i.e., 0 ≤ j1 ≤ j2 ≤ j3 ≤ j4 < P . We fix a large
constant C1 ≫ 1 and divide the products Âj1Âj2Âj3Âj4 into several
types depending on the gaps between indices

D1 = j2 − j1, D2 = j3 − j2, D3 = j4 − j3.

Case 1 (most significant): |Di| ≤ C1 log p for all i = 1, 2, 3. Then by
the Hölder inequality and (3.12)

∣

∣ν
(

Âj1Âj2Âj3Âj4

)
∣

∣ ≤ ν(Â4) = O(p2),

thus the total contribution of such terms is O
(

Pp2 log3 p
)

.

Case 2 (of moderate significance): |D2| > C1 log p and |Di| ≤ C1 log p

for i = 1, 3. We again apply Lemma 4.1 to the function f = Â, then
use Lemma 4.2 and the Hölder inequality:

ν
(

Âj1Âj2Âj3Âj4

)

=
[

ν
(

Â2
)]2

+ O
(

‖Â‖4
∞ndθC1 log p

)

It follows from (3.10) that the first term is O(log2 p), and if C1 is
large enough, the second term will be, say, o(p−10). Hence the total
contribution of all the above terms is O(P 2 log4 p).

Other cases (least significant): If |D1| > C1 log p and |Di| ≤ C1 log p
for i = 2, 3, then the same argument gives, due to (3.9) and (3.11),

ν
(

Âj1Âj2Âj3Âj4

)

= O
(

|ν(Â)|ν(|Â|3)
)

= O(q−1p),

(here and below we suppress correlations as they are just o(p−10)), so
the total contribution of all these terms is O(P 2q−1p log2 p). If |Di| >
C1 log p for i = 1, 2 and |D3| ≤ C1 log p, then we get

ν
(

Âj1Âj2Âj3Âj4

)

= O
(

|ν(Â)|2ν(Â2)
)

= O(q−2 log p),

so the total contribution of all these terms is O(P 3q−2 log2 p). Lastly,
if |Di| > C1 log p for i = 1, 2, 3, then we get

ν
(

Âj1Âj2Âj3Âj4

)

= O
(

|ν(Â)|4
)

= O(q−4),
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so the total contribution of all these terms is O(P 4q−4).
Summarizing all the above cases gives an overall bound:

(4.13) ν(S4
P ) = O

(

Pp2 log3 p
)

.

Then (4.11) becomes, due to (3.10) and (4.13),

(4.14) ν(|SP |3) = O(Pp log2 p).

Now integrating (4.6) gives

ν

(

exp

(

itSP√
n log n

))

= 1 − t2σ2
AP

2n
+ O

(

P

n
√

log n

)

= exp

(

−t2σ2
AP

2n
+ O

(

P

n
√

log n

))

.(4.15)

Finally, (4.5) can be rewritten as

(4.16) φn(t) = exp

(

−t2σ2
APK

2n
+ O

(

PK

n
√

log n

))

+ o(1)

which converges to exp(−1
2
σ2
At2), as desired. �

Remark. Now we can justify the need for the second truncation at
level p. If we did not use it, our estimates on the first and second order
terms in (4.6) would be still adequate, but the estimate on the third
order term would not be satisfactory. Indeed, if we just replace p with
q in (4.14), then the first error term in (4.16) would diverge.

5. Basic facts, Hölder norms, and correlations

In this section we begin our proofs of the model-specific facts stated
as lemmas in the previous sections.

Dispersing billiards with cusps have been studied in [19], then with
a mathematical rigor in [11]; see also [2] and [13]. Here we briefly
summarize the basic facts; the reader is advised to check [11] for more
details.

The map F : M → M is uniformly hyperbolic, i.e., it expands un-
stable curves and contracts stable curves at an exponential rate. More
precisely, if u is an unstable tangent vector at any point x ∈ M, then
‖DxFn(u)‖ ≥ cΛn‖u‖ for some constants c > 0 and Λ > 1 and all
n ≥ 1. Similarly, if v is a stable tangent vector, then ‖DxF−n(v)‖ ≥
cΛn‖v‖ for all n ≥ 1. There is no uniform upper bounds on the ex-
pansion and contraction rates, because those approach infinity near
grazing (tangential) collisions.

The singularities of the original map F : M → M are made by trajec-
tories hitting corner points (other than cusps) or experiencing grazing
(tangential) collisions with ∂D. The singularities of F lie on finitely
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many smooth compact curves. Those curves are stable in the sense that
their tangent vectors belong to stable cones. Likewise, the singularities
of F−1 are unstable curves.

The singularities of the induced map F are those of F plus the
boundaries of the cells Mm, m ≥ 1. Those boundaries form a count-
able union of smooth compact stable curves that accumulate near the
(unique) phase point whose trajectory runs directly into the cusp.

The structure of cells Mm and their boundaries are described in
[11]. Each cell has length ≍ m−7/3 in the unstable direction and length
≍ m−2/3 in the stable direction. Its measure is µ(Mm) ≍ m−7/3 ×
m−2/3 = m−3. Incidentally, this is our Lemma 3.1.

The map F = F m expands the cell Mm in the unstable direction
by a factor ≍ m5/3 and contracts it in the stable direction by a factor
≍ m5/3, too. So the image F(Mm) has ‘unstable size’ ≍ m−2/3 and
‘stable size’ ≍ m−7/3. The images accumulate near the (unique) phase
point whose trajectory emerges directly from the cusp.

A characteristic feature of hyperbolic dynamics with singularities is
the competition between hyperbolicity and the cutting by singularities.
The former causes expansion of unstable curves, it makes them longer.
The latter breaks unstable curves into pieces and thus produces shorter
curves. One of the main results of [11] is a so called one-step expansion
estimate [11, Eq. (5.1)] for the induced map F , which guarantees that
the expansion is stronger than the cutting by singularities, i.e., “on
average” the unstable curves grow fast, at an exponential rate.

The one-step expansion estimate is a main tool in the subsequent
analysis of statistical properties for the map F . It basically implies
the entire spectrum of standard facts: the growth lemmas, the cou-
pling lemma for standard pairs and standard families, equidistribution
estimates, exponential decay of correlations (including multiple corre-
lations) for bounded Hölder continuous functions, limit theorems for
the same type of functions, etc. All these facts with detailed proofs are
presented in [10, Chapter 7] for general dispersing billiards (without
cusps), but those proofs work for our map F almost verbatim (see [11,
p. 749]). In particular, our Lemma 4.1 follows by a standard argument
(see [10, Theorem 7.41]), so we will not repeat its proof here.
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Proof of Lemma 4.2. Given x, y ∈ Mm, we obviously have

|A(x) −A(y)| ≤
m−1
∑

i=0

|A(F ix) − A(F iy)|

≤
m−1
∑

i=0

KA[dist(F ix, F iy)]αA.(5.1)

The images F i(Mm), i = 1, . . . , m− 1, keep stretching in the unstable
direction and shrinking in the stable direction, as i increases (see [11,
pp. 750–751]), thus we can assume that x, y lie on one unstable curve.

It was shown in [11, Eq. (4.5)] that unstable vectors u at points
x ∈ Mm are expanded under F = F m by a factor

(5.2) ‖DxF
m(u)‖/‖u‖ ≍ mλ1λm−1,

where

λ1 = ‖DxF (u)‖/‖u‖, λm−1 = ‖DxF
m−1(u)‖/‖DxF

m−2(u)‖
are the one-step expansion factors at two“special” iterations at which
the corresponding points F (x) and F m−1(x) may come arbitrarily close
to ∂M , i.e., experience almost grazing collisions. For this reason λ1 and
λm−1 do not admit upper bounds, they may be arbitrarily large (see
[11, p. 741]).

For those two iterations with unbounded expansion factors we can
use the Hölder continuity (with exponent 1/2) of the original billiard
map F , i.e.,

dist(Fx, Fy) ≤ C1[dist(x, y)]1/2

for some C1 > 0 (see, e.g., [10, Exercise 4.50]). Then due to (5.2) for
all i = 2, . . . , m − 2 we have

dist(F ix, F iy) ≤ C2m dist(Fx, Fy) ≤ C1C2m[dist(x, y)]1/2

for some C2 > 0. Lastly, again by the Hölder continuity of F

dist(F m−1x, F m−1y) ≤ C1[dist(F m−2x, F m−2y)]1/2

≤ C
3/2
1 C

1/2
2 m1/2[dist(x, y)]1/4.

Adding it all up according to (5.1) gives

|A(x) −A(y)| ≤ KA,m[dist(x, y)]αA/4

with KA,m = O(m2). Lemma 4.2 is proved. �

Proof of Lemma 3.2. Our argument is analogous to the proof of a
similar correlation bound for the Lorentz gas with infinite horizon [8,
Proposition 9.1].
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The domain F(Mm) can be foliated by unstable curves of length
≍ m−2/3. Thus the conditional measure ν on F(Mm) can be repre-
sented by a standard family Gm such that Z(Gm) = O(m2/3); see [10,
Section 7.4] for the definition and properties of standard families and
the respective Z-function. We just remind the reader that given a
standard family G = {(W, νW )} of unstable curves {W} with smooth
probability measures {νW} on them, and a factor measure λG that
defines a probability measure µG on ∪W , the Z-function is defined by

Z(G) : = sup
ε>0

µG(rG < ε)

ε

where rG(x) denotes the distance from a point x ∈ W ∈ G to the
nearer endpoint of W , i.e., rG(x) = dist(x, ∂W ). If the curves W ∈ G
have lengths ≍ L, then Z(G) ≍ 1/L (see [10, p. 171]). The images
Gn = Fn(G) are also standard families, and their Z-function satisfies

(5.3) Z(Gn) ≤ c1ϑ
nZ(G) + c2

where ϑ ∈ (0, 1) and c1, c2 > 0 are constants.
The further images Fn(M), n ≥ 1, have the same property: the

conditional measure ν on Fn(Mm) can be represented by a standard
family (for example, by Fn−1(Gm)) whose Z-function is O(m2/3) (in
fact, the Z-function decreases exponentially under F due to (5.3)).

Now since the size of Mk in the instable direction is k−7/3, we have

(5.4) ν
(

Mk ∩ Fn(Mm)
)

= ν(Mm) · O(m2/3k−7/3) = O(m−7/3k−7/3)

for all n ≥ 1 (this estimate was first derived in [13, p. 320]). Next

we turn to the estimation of correlations ν
(

Âp,q · (Âp′,q′ ◦ Fn)
)

that

are involved in Lemma 3.2. For brevity, we denote A(1) = Âp,q and

A(2) = Âp′,q′. Recall that
∣

∣A(i)|Mm

∣

∣ ≤ cm for i = 1, 2 and some c > 0.

We truncate the functions A(i) at two levels, p < q, which will be
chosen later, i.e., we consider

A(i) = A(i)
1,p + A(i)

p,q + A(i)
q,∞.

The functions A(i)
1,q are bounded (their ∞-norm is Ci : = ‖A(i)

1,q‖∞ =

O(q)) and have Hölder norm K(i) = O(qd) by Lemma 4.2. Thus
the standard correlation estimate [10, Theorem 7.37] (which is our
Lemma 4.1 with k = r = 1, applied to two different functions) gives

ν
(

A(1)
1,q · (A(2)

1,q ◦ Fn)
)

= O
(

(K(1) + K(2))C1C2θ
n
)

+ ν
(

A(1)
1,q

)

ν
(

A(2)
1,q

)

= O(qd+2θn) + O(q−2).(5.5)
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Next,

∣

∣ν
(

A(1)
1,p · (A(2)

q,∞ ◦ Fn)
)
∣

∣ ≤ c2

p
∑

m=1

∞
∑

k=q

mkν(Mk ∩ Fn(Mm))

≤ c2p

p
∑

m=1

∞
∑

k=q

kν(Mk ∩ Fn(Mm))

≤ c2p

∞
∑

k=q

kν(Mk) = O(p/q),(5.6)

and a similar estimate holds for ν
(

A(1)
q,∞ · (A(2)

1,p ◦Fn)
)

. Lastly, by (5.4)

∣

∣ν
(

A(1)
p,∞ · (A(2)

p,∞ ◦ Fn)
)
∣

∣ ≤ c2
∞
∑

m=p

∞
∑

k=p

mkν(Mk ∩ Fn(Mm))

≤ c2
∞
∑

m=p

∞
∑

k=p

m−4/3k−4/3

= O(p−2/3).(5.7)

Combining our estimates (5.5)–(5.7) gives

ν
(

A(1) · (A(2) ◦ Fn)
)

= O
(

qd+2θn + q−2 + p/q + p−2/3
)

(the shrewd reader shall notice that ν
(

A(1)
p,q · (A(2)

p,q ◦ Fn)
)

is accounted
for twice – once in (5.5) and once in (5.7) – but since (5.7) estimates
absolute values, such a duplication cannot hurt).

Now choosing q = θ−n/(d+3) and p = q1/2 gives the desired exponen-
tial bound on correlations. �

6. Second moment calculation

Here we prove Lemma 4.3. This is the only place where we need a
precise asymptotic formula, rather than just an estimate of the order
of magnitude. This entails a detailed analysis of the ‘high’ cells Mm

(where m is large) which are made by trajectories that go deep into
the cusp and after exactly m − 1 bounces off its walls exit it.

We use the results and notation of [11]. Let a cusp be made by two
boundary components Θ1, Θ2 ⊂ ∂D. Choose the coordinate system
as shown in Fig. 3, then the equations of Θ1 and Θ2 are, respectively,
y = f1(x) and y = −f2(x), where fi are convex C3 functions, fi(x) > 0
for x > 0, and fi(0) = f ′

i(0) = 0 for i = 1, 2. We will use Taylor
expansion for the functions fi and their derivatives:

fi(x) = 1
2
aix

2+O(x3), f ′
i(x) = aix+O(x2), f ′′

i (x) = ai+O(x),
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where ai = f ′′
i (0). Since the curvature of the boundary of dispersing

billiards must not vanish, we have ai > 0 for i = 1, 2.

x

y

γn

γn+1

(xn, yn)

(xn+1, yn+1)

Θ1

Θ2

0

Figure 3. A cusp made by two curves, Θ1 and Θ2.

Consider a billiard trajectory entering the cusp and making a long
series of N reflections there (so it belongs to MN+1). We denote re-
flection points by (xn, yn), where yn = f1(xn) or yn = −f2(xn) depend-
ing on which side of the cusp the trajectory hits. We also denote by
γn = π/2 − |ϕn| the angle made by the outgoing velocity vector with
the line tangent to ∂D at the reflection point (xn, yn).

When the trajectory goes down the cusp, xn decreases but γn grows.
Then γn reaches π/2 and the trajectory turns back and starts climbing
out of the cusp. During that period xn grows back, but γn decreases.
Denote by N2 the deepest collision (closest to the vertex of the cusp),
then

x1 > x2 > · · · > xN2
≤ xN2+1 < xN2+2 < · · · < xN .

It was shown in [11] that N2 = N/2 +O(1). The following asymptotic
formulas were also proven in [11]:

(6.1) xn ≍ n−1/3N−2/3 ∀n = 1, . . . , N2

Also, γ1 = O(N−2/3) and

(6.2) γn ≍ nxn ≍ n2/3N−2/3 ∀n = 2, . . . , N2.

During the exiting period (N2 ≤ n ≤ N), we have, due to time reversal
symmetry, xn ≍ (N −n)−1/3N−2/3 and γn ≍ (N −n)2/3N−2/3, with the
exception of γN = O(N−2/3). We also note that γN2

= π/2 + O(1/N).
The sequence (xn, γn) satisfies certain recurrence equations (that fol-

low from elementary geometry). If we assume that yn = f1(xn), and
hence yn+1 = −f2(xn+1), then

(6.3) γn+1 = γn + tan−1 f ′
1(xn) + tan−1 f ′

2(xn+1)
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and

(6.4) xn+1 = xn − f1(xn) + f2(xn+1)

tan
[

γn + tan−1 f ′
1(xn)

] .

If, on the other hand, yn = −f2(xn) (and hence yn+1 = f1(xn+1)), then
the above equations hold, but f1 and f2 must be interchanged. This is
all proven in [11].

To motivate our further analysis we note that equations (6.3)–(6.4)
can be approximated, to the leading order, by

(6.5) γn+1 − γn ≈ 2āxn xn+1 − xn ≈ − āx2
n

tan γn

where ā = (a1 + a2)/2. Now (6.5) can be regarded as discrete versions
of two differential equations

γ̇ = 2āx, ẋ = − āx2

tan γ
.

These equations were first derived (and solved) by Machta [19]. They

have an integral I = x2 sin γ (i.e., İ = 0). This suggests that the
quantity In = N2x2

n sin γn should remain almost constant (the factor
N2 is included so that to make In ≍ 1).

Indeed, we have for all n = 2, . . . , N − 2

(6.6) In+1 − In = O(N2x4
n/γn)

which follows by Taylor expansion of the functions involved in (6.3)–
(6.4) and using the asymptotic formulas (6.1)–(6.2). (The largest er-
ror terms comes from the approximation of tan

[

γn + tan−1 f ′
1(xn)

]

by
tan γn.) As a result, we have

In+1 − In = O
(

max{n−2, (N − n)−2}
)

,

hence

(6.7) |In − IN2
| = O(n−1).

Next we use an elliptic integral to introduce a new variable

(6.8) s = Φ(γ) : =

∫ γ

0

√
sin z dz

and accordingly we put sn = Φ(γn) for n ≤ N2 (i.e., while γn keeps
increasing). Then

sn+1 − sn =

∫ γn+1

γn

√
sin z dz =

√

sin γ∗
n (γn+1 − γn)
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for some γ∗
n ∈ (γn, γn+1). Again using Taylor expansion and (6.1)–(6.4)

we obtain

sn+1 − sn = 2āN−1
√

In + O(1/n)

= 2āN−1
√

IN2

(

1 + O(1/n)
)

.(6.9)

Summing up from 1 to n gives

(6.10) sn =
2ān

N

√

IN2
+ O

( log n

N

)

.

In particular, for n = N2 = N/2 + O(1) we get
∫ π/2

0

√
sin z dz = ā

√

IN2
+ O(N−1 log N),

thus

(6.11) IN2
=

[

1

ā

∫ π/2

0

√
sin z dz

]2

+ O
(

log N

N

)

and (6.10) becomes, with notation κ =
∫ π

0

√
sin z dz,

(6.12) sn = κn/N + O
(

N−1 log N
)

.

We now estimate the sum SN2
=
∑N2

n=1 A(rn, ϕn), where (rn, ϕn) are
the standard coordinates of the reflection points (rather than (xn, γn)).
If the n’th collision occurs at the curve Θin , in = 1, 2, then rn =
r̄in + rin(xn) where r̄1 = r′i1 and r̄2 = r′′i2 are the r-coordinates of the
vertex of the cusp, on the curves Θ1 and Θ2, respectively (see Section 1),
and

ri(x) : = (−1)in+1

∫ x

0

√

1 + [f ′
i(x)]2 dx.

Also, ϕn = (−1)in(π/2−γn), which can be verified by direct inspection.
Now

SN2
=

N2
∑

n=1

A
(

r̄in + rin(xn), (−1)in(π/2 − Φ−1(sn))
)

.

First, recall that the function A is Hölder continuous with exponent
αA in the variables r and ϕ. It has the same Hölder continuity with
respect to x, but in terms of s we have
∣

∣A
(

r, π/2 − Φ−1(s′)
)

− A
(

r, π/2 − Φ−1(s′′)
)
∣

∣ = O
(

|s′ − s′′|2αA/3
)

because Φ−1(s) ∼ s2/3 for small s, so our Hölder exponent reduces to
2αA/3. Also note that the collisions at the curves Θ1 and Θ2 alternate,
and the angle ϕ is negative when colliding at Θ1 and positive when
colliding at Θ2 (see Fig. 3). Thus it is convenient to introduce

Ā(ϕ) : = 1
2
[A(r′i1 ,−ϕ) + A(r′′i2 , ϕ)].
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Approximating an integral by Riemann sums gives

SN2
=

N2
∑

n=1

Ā
(

π/2 − Φ−1(κn/N)
)

+ O
(

N(N−1 log N)2αA/3 +
∑

xαA
n

)

=
N

κ

∫ Φ−1(κ/2)

0

Ā
(

π/2 − Φ−1(s)
)

ds + O
(

N1−αA/2
)

=
N

κ

∫ π/2

0

Ā(π/2 − γ)
√

sin γ dγ + O
(

N1−αA/2
)

=
N

κ

∫ π/2

0

Ā(ϕ)
√

cos ϕdϕ + O
(

N1−αA/2
)

(6.13)

By the time reversibility, the trajectory going out of the cusp during
the period N2 ≤ n ≤ N has similar properties, but now the angle ϕ is
positive when colliding at Θ1 and negative when colliding at Θ2. Thus

(6.14)
N
∑

n=N2

A(rn, ϕn) =
N

κ

∫ 0

−π/2

Ā(ϕ)
√

cos ϕ dϕ + O
(

N1−αA/2
)

,

Combining (6.13) and (6.14) gives

(6.15)

N
∑

n=1

A(rn, ϕn) =
N

κ

∫ π/2

−π/2

Ā(ϕ)
√

cos ϕdϕ + O
(

N1−αA/2
)

where again κ =
∫ π/2

−π/2

√
cos ϕ dϕ. This can be written as

(6.16) A|MN+1
= JAN + O

(

N1−αA/2
)

where

(6.17) JA =
1

2κ

∫ π/2

−π/2

[

A(r′i1 , ϕ) + A(r′′i2 , ϕ)
]√

cos ϕdϕ

For example, if A is a constant function (A ≡ A0), then the left hand
side of (6.16) is (N + 1)A0, and on the other hand JA = A0.

Next we turn to the proof of Lemma 4.3 per se. By (6.16)

ν(A2
1,p) = J2

A

p
∑

m=1

ν(Mm)m2 + O(1)

= 2J2
A

p
∑

m=1

ν(Hm)m + O(1)(6.18)
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where Hm = ∪∞
k=mMk is the union of ‘high’ cells. Note that

µ(Hm) = µ(H′
m), H′

m = ∪∞
k=mF [k/2](Mk),

because the domains F [k/2](Mk) do not overlap. They consists of phase
points deep in the cusp that are nearly half way in their excursions into
the cusp. More precisely, if for x ∈ H′

m we denote by i+ the number of
forward collisions in the cusp before exiting it and by i− the number
of backward (past) collisions in the cusp before exiting it, then either
i+ = i− or i+ = i− + 1.

Also, the domain H′
m consists of two parts, one on Θ1 (where the

r-coordinates are near and above r′i1) and the other on Θ2 (where the
r-coordinates are near and below r′′i2). On both parts the ϕ-coordinates
are near zero.

More precisely, in our previous notation we have

IN2
= N2x2

N2
sin γN2

= N2x2
N2

(

1 + O(1/N2)
)

(because γN2
= π/2+O(1/N)), hence (6.11) implies xN2

= κ/(2āN)+
O(N−2 log N). Thus our domains have the range of x-coordinates

0 < x < κ/(2ām) + O(m−2 log m)

The same bounds obviously hold for |r − r′i1 | and |r − r′′i2 |.
Now for each fixed x, the range of the ϕ-coordinate corresponds to

the change of that coordinate during one iteration of F (indeed, at
every iteration ϕ changes by ≍ x, while x only changes by O(x2), cf.
(6.3)–(6.4); besides, x is near it “stationary point” at iteration N/2,
because it stops decreasing and starts increasing). So the range of ϕ
can be estimated from (6.8)–(6.9): ϕ ∈ [ϕ1, ϕ2] with

ϕ2 − ϕ1 = κ/N + O(N−2 log N) = 2āxN2
+ O(N−2 log N).

Thus (remembering that H′
m consists of two parts)

µ(H′
m) = 2cµ

∫ κ
2ām

+O( log m

m2 )

0

[

2ār + O(r2| log r|)
]

dr

=
cµκ2

2ām2
+ O

( log m

m3

)

.

We disregard the density sin γ of the measure µ because γN2
= π/2 +

O(1/N). Now recall that ν(B) = ν(R)µ(B) for any set B. Therefore
(6.18) becomes

ν(A2
1,p) = ν(R)cµκ

2ā−1J2
A log p + O(1)

which completes the proof of Lemma 4.3. �
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7. Degenerate case

Here we prove the classical Central Limit Theorem (Theorem 3) for
degenerate functions A, which are characterized by σ2

A = 0. We begin
with Theorem 6 that deals with the induced map.

Proof of Theorem 6. As it follows from (6.16), we now have A|Mm
=

O(m1−αA/2), because JA = 0. Hence ν(A2) < ∞. Moreover ν(|A|2+δ) <
∞ for some small δ > 0. So the proof of the CLT will be much easier
than it was in Sections 3–4 for the generic case JA 6= 0.

Still, we will have to truncate A at least once, for two reasons: (i)
the third and fourth moments of A may be infinite, and (ii) there is no
uniform upper bound on the Hölder norm of A|Mm

, thus the multiple
correlations estimate (Lemma 4.1) does not apply to A.

We truncate A at a single level q =
√

n log log n, i.e., we replace A
with A1,q. Due to (3.3), this truncation does not affect any limit laws.
The formulas (3.9)–(3.12) are now replaced with

ν(A1,q) = −ν(Aq,∞) = O
( ∞
∑

m=q

m1−α/2

m3

)

= O
(

q−1−α/2
)

,(7.1)

ν(A2
1,q) = ν(A2) − ν(A2

q,∞)(7.2)

= ν(A2) + O
( ∞
∑

m=q

m2−α

m3

)

= ν(A2) + O(q−α),

ν(|A1,q|3) = O
( q
∑

m=1

m3−3α/2

m3

)

= O
(

q1−3α/2
)

,(7.3)

ν(A4
1,q) = O

( q
∑

m=1

m4−2α

m3

)

= O
(

q2−2α
)

.(7.4)

where we denote α = αA for brevity. Next, because A1,q = Â1,q +
ν(A1,q) we have by Lemma 3.2 and (7.1)

(7.5) ν
(

A1,q · (A1,q ◦ Fk)
)

= O
(

θk + q−2−α
)

The estimate (7.5) remains valid if we replace either one of the A1,q’s
(or both) with Aq,∞. We also have A = A1,q + Aq,∞, thus

(7.6) ν
(

A · (A ◦ Fk)
)

= ν
(

A1,q · (A1,q ◦ Fk)
)

+ χn,k

where the remainder term can be bounded as follows:

(7.7) |χn,k| = O
(

min{θk + q−2−α, q−α/2}
)

.

The first bound follows from the above modification of (7.5), and the
second bound, q−α, comes just from the Cauchy-Schwartz inequality,
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because ν(A2
q,∞) = O(q−α); see (7.2). We will use the first bound for

k > log n and the second one for k ≤ log n.
Now the analysis of Section 4 carries through with a few changes

described below. First, naturally,
√

n log n is replaced everywhere with√
n. The Taylor expansion (4.6) now reads

(7.8) exp

(

itSP√
n

)

= 1 +
itSP√

n
− t2S2

P

2n
+ O

( |SP |3
n3/2

)

.

For the linear term we have ν(SP ) = O
(

Pq−1−α/2
)

due to (7.1).
For the main, quadratic term we have (according to (1.4))

ν(S2
P ) = Pν(A2

1,q) + 2

P−1
∑

k=1

(P − k)ν
(

A1,q · (A1,q ◦ Fk)
)

.

By using (7.2) and (7.5)–(7.7) we can replace A1,q with A and get

ν(S2
P ) = Pν(A2) + 2

P−1
∑

k=1

(P − k)ν
(

A · (A ◦ Fk)
)

+ χ′
n,P

with χ′
n,P = O(Pq−α log n + P 2q−2−α). Since P ≪ q2 we have χ′

n,P =
O(Pq−α log n). Lastly, by Lemma 3.2

ν(S2
P ) = P σ̂2

A + O(1) + χ′
n,P ,

where σ̂2
A is given by (2.16).

For the cubic term we apply (4.11) and then analyze the fourth order
term as in Section 4 (except log p is now replaced with log q). The
most significant case gives a contribution of O(Pq2−2α log3 q), and the
moderate significance case gives O(P 2 log2 q) which can be neglected if
we choose P = [na] with a < 1 − α. Thus we get

ν
(

|S3
P |
)

= O(Pq1−α log2 q).

Now integrating (7.8) gives

ν

(

exp

(

itSP√
n

))

= 1 − t2σ̂2
AP

2n
+ O

(

P

n1+α/4

)

= exp

(

−t2σ̂2
AP

2n
+ O

(

P

n1+α/4

))

.(7.9)

Finally, raising to the power K gives the desired result, just like in the
end of Section 4. �

Proof of Theorem 3. Our argument is very similar to the derivation
of Theorem 1 from Theorem 4 in Section 2, so we only describe the
differences.
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The decomposition (2.7) remains valid, but (2.8) changes to

Sn1
A√
n

⇒ N (0, σ̂2
A),

which follows from Theorem 6 that we just proved. Now (2.9) become

χ1 =
Sn2

A− Sn1
A√

n
, χ2 =

SnA − Sn2
A√

n

which must both converge to zero in probability. The argument for χ2

is the same as it was in Section 2, but our analysis of χ1 requires more
work. Indeed, since (2.10) remains valid, we now have to show that

(7.10) max
1≤j≤C

√
n log n

1√
n

∣

∣

∣

∣

j
∑

i=0

A(F ix)

∣

∣

∣

∣

converges to zero in probability (note that (7.10) replaces (2.11), while
(2.12) should be replaced similarly and we omit it).

Since the number of iterations C
√

n log n in (7.10) exceeds the nor-
malization factor

√
n, we cannot use the Birkhoff Ergodic Theorem

anymore. Instead, we use specific features of our function A to prove
an even stronger fact:

Proposition 7.1. The function max1≤k≤n |SkA|/n5/6 converges to zero
in probability, as n → ∞.

Proof. First, we truncate the function A replacing it with A1,q as before.
Note that A1,q = O(q1−α/2) = O(n1/2−α/4) (we drop less important
logarithmic factors). Hence

SkA1,q − Sk′A1,q = o(n5/6)

whenever
|k − k′| ≤ ∆: = [n1/3+α/5]

Thus it is enough to show that

(7.11) max
1≤j≤n/∆

|Sj∆A1,q|/n5/6

converges to zero in probability. By Chebyshev’s inequality

ν
(

|Sj∆A1,q| ≥ εn5/6
)

≤ const · j∆
ε2n5/3

because ν
(

[SkA1,q]
2
)

= O(k). Summing up over j = 1, . . . , n/∆ gives

ν
(

max
1≤j≤n/∆

|Sj∆A1,q| ≥ εn5/6
)

≤ const · n2/∆

ε2n5/3
→ 0.

This proves the proposition, which guarantees that (7.10) converges to
zero in probability. �
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The rest of the proof of Theorem 3 is the same as the proof of The-
orem 1 in Section 2.

8. Weak Invariance Principle

Here we turn to the more specialized limit law, the WIP (Theorems 2
and 5). First we derive Theorem 2 from Theorem 5. Our argument is
similar to [8, Section 3.1].

Proof of Theorem 2 from Theorem 5. To prove that a family of sto-
chastic processes WN(s) weakly converges to a limit process W (s),
0 < s < 1, one needs to verify two conditions: (i) finite-dimensional
distributions of WN (s) converge to those of W (s), and (ii) the family
{WN(s)} is tight.

The first condition means that the random vector {WN(s1), . . . , WN(sk)}
converges in distribution to {W (s1), . . . , W (sk)} for every k ≥ 1 and
0 ≤ s1 < · · · < sk ≤ 1. For k = 1 this is just Theorem 1 derived in
Section 2, and our argument extends to k > 1 easily.

The tightness means that the family of probability measures {PN}
on the space C[0, 1] of continuous functions on [0, 1] induced by the
processes WN have the following property: for any ε > 0 there exists a
compact subset Kε ⊂ C[0, 1] such that PN(Kε) > 1 − ε for all N . The
compactness of Kε means that the functions {F ∈ Kε} are uniformly
bounded at s = 0 and equicontinuous on [0, 1].

All our functions vanish at s = 0, hence we only need to worry about
the equicontinuity. That is, we need to verify that for any ε > 0 there
exists δ > 0 such that

ν

(

sup
0<s<s′<1
|s′−s|<δ

|WN(s′) − WN(s)| > ε

)

< ε

for all N ≥ N0(ε). Since the function WN(s) is continuous and piece-
wise linear, we only need to compare its values at “breaking points”,
where ns and ns′ are integers.

We denote n = sN and use notation n1 and n2 introduced in the
previous derivation of Theorem 1 from Theorem 4. Similarly we denote
n′ = s′N and use the respective values n′

1, n′
2. We have the decompo-

sition (2.7) for both n and n′. Now

ν

(

sup
∣

∣

∣

Sn
′

1
A√

N log N
− Sn1

A√
N log N

∣

∣

∣
> ε

)

< ε

due to the tightness of the family {WN (s)} (which follows from Theo-
rem 5).
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Next, due to the Birkhoff Ergodic Theorem, SmR = mν(R) + o(m),
hence sup |n2 − n1|/N converges to zero in probability, i.e., for any
ε > 0 and δ > 0 there exists N0 such that for all N > N0

ν

(

sup
0<s<1

|n2 − n1| > δN

)

< ε.

Thus, again due to the tightness of the family {WN(s)}, we get

ν

(

sup
∣

∣

∣

Sn2√
N log N

− Sn1√
N log N

∣

∣

∣
> ε

)

< ε.

A similar estimate obviously holds for n′
2 and n′

1.
Lastly, due to Lemma 3.1, we have

ν
(

|SnA − Sn2
A| > ε

√

N log N
)

= O
( ∞
∑

√
N log N

1

m3

)

= O
(

1

N log N

)

,

hence

ν
(

sup
0<n<N

|SnA − Sn2
A| > ε

√

N log N
)

= O(1/ log N) → 0,

and a similar estimate holds for n′ and n′
2. This completes the proof

of Theorem 2 from Theorem 5. �

Note that at the last point of the proof we had to use Lemma 3.1, i.e.,
a specific power law for the measures of the cells Mm. The derivation
of Theorem 1 from Theorem 4 did not require such specifics.

Proof of Theorem 5. First we note that N now plays the role of n in
the proof of the CLT (Theorem 4). In particular, the truncation levels
p and q must be defined by

(8.1) p =

√
N

(log N)ω
and q =

√
N log log N.

Recall that the function A was replaced by its truncated version Â
defined by (3.4) based on the estimates (3.3) and (3.7). Now, since the
WIP requires us to control the entire path {SnA}, 0 ≤ n ≤ N , not just
its final state SNA, the estimate (3.7) must be upgraded to

(8.2) ν
(

max
1≤n≤N

|SnÂp,q| ≥ ε
√

N log N
)

→ 0,

The proof of (8.2) resembles the reflection principle in the theory of
random walks. We consider “bad” sets

Bn,ε =
{

|SnÂp,q| ≥ ε
√

N log N
}
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and “new additions” Nn,ε = Bn,ε \∪n−1
i=1 Bi,ε. Due to (3.7), ν(BN,ε) → 0,

thus it is enough to show that

(8.3) ν
(

∪N
n=1Bn,ε \ BN,ε/2

)

=

N
∑

n=1

ν(Nn,ε \ BN,ε/2) → 0.

Each point x ∈ Nn,ε\BN,ε/2 satisfies (simultaneously) three conditions:

|SnÂp,q| ≥ ε
√

N log N(8.4)

Âp,q ◦ Fn−1 6= 0,(8.5)

|SNÂp,q − SnÂp,q| ≥ 1
2
ε
√

N log N.(8.6)

Since Âp,q ◦ Fn−1 6= 0, we have Fn−1(x) ∈ Mm for some p ≤ m < q,
i.e., the point Fn−1(x) lies in a ‘high’ cell with index m ∼ √

n (modulo
less significant logarithmic factors; see (8.1)).

The image F(Mm) intersects cells Mm′ with c1

√
m < m′ < c2m

2 for
some c1, c2 > 0, see [11, 13], but typical points y ∈ Mm are mapped
into cells Mm′ with m′ ∼ m1/2. Their further images are typically
mapped into cells Mm′′ with m′′ ∼ m1/4, etc. Since m1/2 ∼ n1/4 ≪ p,
we typically have Âp,q ◦ Fn+i = 0 for several small i’s.

Precisely, there exist a, b > 0 such that for any large C > 0 there is
a subset M∗

m ⊂ Mm of measure

ν(Mm \M∗
m) < Km−aν(Mm),

where K = K(C) > 0 and such that for every y ∈ M∗
m the images

F i(y) for i = 1, . . . , C log m never appear in cells Mk with k > m1−b.
This was proved in [13, p. 320]. We will apply this fact to cells Mm

with p ≤ m < q, hence we can replace C log m with C log N .
The points falling into Mm \ M∗

m for p ≤ m < q make a set of a
negligibly small measure:

ν
(

∪N
n=1F−n

[

∪q
m=p(Mm \M∗

m)
])

= O(Np−2−a) → 0.

Hence we can assume that whenever Âp,q ◦ Fn−1 6= 0, we have Âp,q ◦
Fn+i = 0 for all i = 0, 1, . . . , C log N .

For i > C log N , the correlations between Âp,q ◦ F j, j < n, and

Âp,q ◦Fn+i are small due to Lemmas 4.1 and 4.2. One can easily check
that they are < N−50 if C > 0 is large enough. In the following, we
use shorthand notation

Fn = |SnÂp,q|1Nn,ε
, Gn = |SNÂp,q − SnÂp,q|
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where 1B stands for the indicator of the set B, and we also denote
DN = ε

√
N log N . Now we have

ν(Nn,ε \ BN,ε/2) ≤ ν
(

Fn ≥ DN & Gn ≥ 1
2
DN

)

≤ ν
(

FnGn ≥ 1
2
D2

N

)

≤ 4ν(F 2
nG2

n)/D4
N

≤ 4
[

ν(F 2
n)ν(G2

n) + O(N−50)
]

/D4
N .

The term O(N−50) accounts for correlations and is negligibly small.
The second moment estimate (3.6) can be easily adapted to ν(G2

n) =
O(n log log N) ≤ cN log log N for some c > 0. Also note that

Fn = |SnÂp,q|1Nn,ε
≤ (DN + ‖Âp,q‖∞)1Nn,ε

≤ 2DN1Nn,ε
,

because ‖Âp,q‖∞ ≤ ‖A‖∞q ≪ DN for large N ’s. Thus

N
∑

n=1

ν(Nn,ε \ BN,ε/2) ≤ 16cN log log N/D2
N + o(1) → 0,

which completes our proof of (8.3) and that of (8.2).
Thus we again can replace the unbounded function A with its trun-

cated version Â. That is, Theorem 5 would follow if we prove that

(8.7) ŴN(s) =
SsNÂ

√

σ2
AN log N

, 0 < s < 1,

converges, as N → ∞, to the standard Brownian motion.
Our proof of (8.7) is analogous to that of a similar property of the

Lorentz gas with infinite horizon [8, Section 11]. The proof consists of
two parts: (i) the weak convergence of finite-dimensional distributions

of ŴN (s) to those of the Brownian Motion, and (ii) the tightness, see
below. To derive (i), by the Lévy continuity theorem it is enough to
show that for any 0 < s1 < · · · < sk ≤ 1, any sequences

n1

N
→ s1,

n2

N
→ s2, . . . ,

nk

N
→ sk,

and any fixed t1, t2, . . . , tk we have

(8.8) ν

(

exp

(

i
∑k

j=1 tjSnj
Â

√
N log N

))

→
k
∏

j=1

exp

(

−σ2
A(sj − sj−1)

2T 2
j

2

)

where s0 = 0 and Tj =
∑k

r=j tr. This convergence can be proved by
the same big small block technique as in Section 4: small blocks allow
us to decorrelate the contributions from big blocks, and in particular
the contributions from the intervals sj − sj−1, which implies (8.8).
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It remains to show that the family of functions

{ŴN (s)} = {SsNÂ/
√

N log N}, 0 < s < 1

is tight. By the standard argument (see, e.g., [3, Chapter 2]) it is
enough to show that there exists a sequence {δk} with

∑

k δk < ∞
such that ν(M̃K,n) → 0 as K → ∞ uniformly in N , where

(8.9) M̃K,N =
{

∃j, k : j < 2k and
∣

∣ŴN

(

j+1
2k

)

− ŴN

(

j
2k

)
∣

∣ > Kδk

}

.

Let δk = 1/k2. First we estimate the ν-measure of

(8.10) M̃K,N,k,j =
{

|Sn1
Â − Sn2

Â| ≥ 1
k2 K

√

N log N
}

where n1 = [jN/2k] and n2 = [(j + 1)N/2k]. Recall that Â = O(p),
hence

Sn2
Â − Sn1

Â = O
(

p(n2 − n1)
)

= O
(

pN/2k
)

.

Thus the set (8.10) is empty if 2k/k2 > N , in particular if k >
100 logN . For k < 100 logN , we use the fourth moment estimate
(4.13) and the Markov inequality to get

ν(M̃K,N,k,j) ≤
k8ν
(

[Sn2
Â − Sn1

Â]4
)

K4N2 log2 N

= O
(k8(n2 − n1)p

2 log3 N

K4N2 log2 N

)

= O
( k8

K42k log99 N

)

.

Summing over j = 0, . . . , 2k − 1 and then over k ≤ 100 log N gives
ν(M̃K,N) = O(1/K4) → 0 as K → ∞, uniformly in N , which implies
the tightness. This completes the proof of Theorem 5. �
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[18] Leonov V. P., On the dispersion of time-dependent means of a stationary sto-

chastic process, Th. Probab. Appl., 6 (1961), 87–93.
[19] Machta J., Power law decay of correlations in a billiard problem, J. Statist.

Phys. 32 (1983), 555–564.
[20] Machta J., Zwanzig R., Diffusion in a periodic Lorentz gas, Phys. Rev. Lett.

50 (1983), 1959–1962.
[21] Melbourne I. and Török A. Statistical limit theorems for suspension flows,

Israel J. Math. 144 (2004), 191–209.
[22] Sinai Ya. G., Dynamical systems with elastic reflections. Ergodic properties of

dispersing billiards, Russ. Math. Surv. 25 (1970), 137–189.
[23] Szasz D. and Varju T. Limit Laws and Recurrence for the Planar Lorentz

Process with Infinite Horizon, J. Statist. Phys. 129 (2007), 59–80.
[24] Young L.-S. Statistical properties of dynamical systems with some hyperbolicity,

Ann. Math. 147 (1998) 585–650.



LIMIT THEOREMS FOR DISPERSING BILLIARDS WITH CUSPS 37

P. Bálint: Institute of Mathematics, Budapest University of Tech-

nology and Economics, Budapest, Hungary

N. Chernov: Department of Mathematics, University of Alabama

at Birmingham, Birmingham, AL 35294

D. Dolgopyat: Department of Mathematics, University of Mary-

land, College Park, MD 20742


