Central Limit Theorem for Excited Random Walk in the Recurrent Regime

Dmitry Dolgopyat
Department of Mathematics University of Maryland College Park MD 20742 USA
E-mail address: dmitry@math.umd.edu
URL: http://www-users.math.umd.edu/~dmitry

Abstract

We consider excited random walk on a strip. We assume that the cookies are positive and that the total expected drift per site is less than $1 / L$ where L is the width of the strip. We prove a quenched limit theorem claiming that the position of the walker converges after the diffusive rescaling to a perturbed Brownian Motion.

Let $\mathcal{Y}=\mathbb{Z} \times(\mathbb{Z} / L \mathbb{Z})$, where $L>1$ is an integer, $G=\left\{-e_{1}, e_{1},-e_{2}, e_{2}\right\}$ where e_{j} are coordinate vectors. We denote the coordinates of points $y \in \mathcal{Y}$ by $(x(y), s(y))$. Consider a cookie environment on \mathcal{Y}, that is, for each $y \in \mathcal{Y}, j \in \mathbb{N}$, there is a probability distribution $\omega(y, j, e)$ on G. Consider an excited random walk $Y_{n}=$ $\left(X_{n}, S_{n}\right)$ that is

$$
\mathbb{P}\left(Y_{n+1}-Y_{n}=e \mid Y_{1}, \ldots, Y_{n}\right)=\omega\left(Y_{n}, l_{n}, e\right)
$$

where l_{n} is the number of visits to Y_{n} by time n. (We denote by \mathbb{P} and \mathbb{E} the quenched probability and expectation with fixed ω and by \mathbf{P} and \mathbf{E} the annealed probability and expectation.) Y_{n} is called (multi-) excited random walk (ERW). We make the following assumptions:
(A) $\delta(y, j):=\omega\left(y, j, e_{1}\right)-\omega\left(y, j,-e_{1}\right) \geq 0$,
(B) There exists $\kappa>0$ such that $\omega(y, j, e) \geq \kappa$,
(C) ω is stationary with respect to G-shifts and ergodic.
(D) Let $\delta(y)=\sum_{j=1}^{\infty} \delta(y, j)$ then

$$
\delta:=\mathbf{E}(\delta(y))<\frac{1}{L}
$$

(E) For each $\varepsilon>0$ there exists $N(\varepsilon, y)$ such that for each $j \geq N$, for each $e \in G$ $\left|\omega(y, j, e)-\frac{1}{4}\right|<\varepsilon$. Moreover $\mathbf{E}(N(\varepsilon, y))<\infty$.

The quantity δ introduced in (D) plays a crucial role in description of the behavior of ERW. In particular Y_{n} is recurrent in the sense that every site is visited infinitely often iff $\delta L \leq 1$, see Zerner (2005, 2006); Aschenbrenner (2010). (In case

[^0]$\delta L<1$ which is a subject of the our work recurrence also follows from Lemma 8 of the present paper.) Several papers addressed the limiting behavior of the ERW in the transient regime Mountford et al. (2006); Basdevant and Singh (2008a,b); Kosygina and Zerner (2008); Kosygina and Mountford (2011). Our paper deals with recurrent ERW.

Let $\mathcal{B}(t)$ denote the Brownian motion with variance $\frac{t}{2}$. Recall (Chaumont and Doney (1999)) that for all $\alpha, \beta<1$ and for almost every realization of \mathcal{B} there exists a unique solution $\mathcal{W}(t)$ of the equation

$$
\begin{equation*}
\mathcal{W}(t)=\mathcal{B}(t)+\alpha \max _{[0, t]} \mathcal{W}(s)+\beta \min _{[0, t]} \mathcal{W}(s) \tag{1}
\end{equation*}
$$

which is called (α, β)-perturbed Brownian Motion.
Define $\mathcal{W}_{n}(t)$ by setting $\mathcal{W}_{n}(m / n)=\frac{X_{m}}{\sqrt{n}}$ and interpolating linearly in between.
Theorem 1. For almost every ω, \mathcal{W}_{n} converges weakly as $n \rightarrow \infty$ to (α, β) perturbed Brownian Motion where $\alpha=-\beta=\delta L$.

Remark 2. A similar result is valid for ERW on \mathbb{Z} with obvious modifications. Namely, $G=\{-e,+e\}$, condition (E) becomes $\left|\omega(y, j, e)-\frac{1}{2}\right|<\varepsilon$ and the variance of the limiting Brownian Motion equals t.

Remark 3. Our result leaves open the critical case $\delta L=1$. (Observe that (1) is not well posed if $\alpha=1$.)

We divide the proof into several steps. Fix $\mathbf{T}>0$.
Lemma 4. For any m there is a constant γ_{m}^{-}such that for any ω, for any stopping time σ, for any numbers $R \in \mathbb{R}_{+}, N \in \mathbb{N}$ we have

$$
\mathbb{P}\left(\min _{k \leq N}\left(X_{\sigma+k}-X_{\sigma}\right) \leq-R \sqrt{N}\right) \leq \frac{\gamma_{m}^{-}}{R^{2 m}}
$$

In particular

$$
\mathbb{P}\left(\min _{[0, \mathbf{T}]} \mathcal{W}_{n}(t)<-R\right) \leq \frac{\hat{\gamma}_{m}^{-}}{R^{2 m}}
$$

where $\hat{\gamma}_{m}^{-}=\mathbf{T}^{m} \gamma_{m}^{-}$.
Proof: Denote

$$
\begin{gathered}
\Delta_{k}=X_{k+1}-X_{k}, \quad \bar{\Delta}_{k}=\mathbb{E}\left(\Delta_{k} \mid Y_{1}, \ldots, Y_{k}\right)=\delta\left(Y_{k}, l_{k}\right) \\
C_{n}=\sum_{k=0}^{n-1} \bar{\Delta}_{k}, \quad B_{n}=\sum_{k=0}^{n-1}\left[\Delta_{k}-\bar{\Delta}_{k}\right]
\end{gathered}
$$

By assumption (A), $X_{\sigma+k}-X_{\sigma} \geq B_{\sigma+k}-B_{\sigma}$. Since $M_{k}=B_{\sigma+k}-B_{\sigma}$ is a martingale with respect to the σ-algebra generated by $\Delta_{0}, \ldots, \Delta_{\sigma+k-1}$ and the quadratic variation of M grows at most linearly, it follows from Hall and Heyde (1980), Theorem 2.11 that that for each $m \in \mathbb{N}$ there is a constant γ_{m}^{-}such that

$$
\mathbb{E}\left(\left(\max _{k \leq n}\left|M_{k}\right|\right)^{m}\right) \leq \gamma_{m}^{-} n^{m}
$$

and so by Markov inequality

$$
\begin{equation*}
\mathbb{P}\left(\max _{k \leq n}\left|M_{k}\right| \geq R \sqrt{n}\right) \leq \frac{\gamma_{m}^{-}}{R^{2 m}} \tag{2}
\end{equation*}
$$

which implies the result we need.

Denote

$$
A_{n_{0}}=\left\{\omega: \sum_{x(y)=-\frac{(1-\delta L) n}{3}}^{n} \delta(y)<\frac{(2+\delta L) n}{3} \text { for all } n \geq n_{0}\right\}
$$

Note that by the Ergodic Theorem

$$
\begin{equation*}
\mathbf{P}\left(A_{n_{0}}\right) \rightarrow 1 \text { as } n_{0} \rightarrow \infty \tag{3}
\end{equation*}
$$

Let T denote the space shift $\left(T^{k} \omega\right)((x, s), j, e)=\omega((x+k, s), j, e)$
Lemma 5. There is a constant γ_{m}^{+}such that for any $n_{0} \in \mathbb{N}$, for any ω such that $T^{x} \omega \in A_{n_{0}}$ for any stopping time σ such that $X_{\sigma}=x$, for any numbers $R \in \mathbb{R}_{+}, N \in \mathbb{N}$ such that $R \sqrt{N} \geq n_{0}$ we have

$$
\mathbb{P}\left(\max _{k \leq N}\left(X_{\sigma+k}-X_{\sigma}\right) \geq R \sqrt{N}\right) \leq \frac{\gamma_{m}^{+}}{R^{m}}
$$

In particular for almost every ω we have

$$
\mathbb{P}\left(\max _{[0, \mathbf{T}]} \mathcal{W}_{n}(t)>R\right) \leq \frac{\hat{\gamma}_{m}^{+}}{R^{m}}
$$

provided that n is large enough, where $\hat{\gamma}_{m}^{+}=\mathbf{T}^{m} \gamma_{m}^{+}$.
Proof: Denote

$$
\tilde{X}_{k}=X_{\min (\sigma+k, \tilde{\sigma})}-X_{\sigma}, \quad \tilde{M}_{k}=M_{\min (k, \tilde{\sigma}-\sigma)}
$$

where M is the martingale from the proof of Lemma 4 and $\tilde{\sigma}$ is the first time after σ when $X_{\tilde{\sigma}}=X_{\sigma}-\left[R \sqrt{N} \frac{1-\delta L}{3}\right]$. In view of Lemma 4 it suffices to show that given m there is a constant $\bar{\gamma}_{m}$ such that

$$
\mathbb{P}\left(\max \tilde{X}_{k} \geq R \sqrt{N}\right) \leq \frac{\bar{\gamma}_{m}}{R^{2 m}}
$$

By the definition of $A_{n_{0}}$ we have $\tilde{X}_{k} \geq \tilde{M}_{k}+R \sqrt{N} \frac{2+\delta L}{3}$ so if $\tilde{X}_{k} \geq R \sqrt{N}$ then $\tilde{M}_{k} \geq R \sqrt{N} \frac{1-\delta L}{3}$. Now the statement of the lemma follows from (2).

Let $r_{n}=\max _{k \leq n}\left(X_{k}\right)-\min _{k \leq n}\left(X_{k}\right)$ denote the range of the walk. Define $\mathcal{B}_{n}(t)$ by setting $\mathcal{B}_{n}\left(\frac{m}{n}\right)=\frac{B_{m}}{\sqrt{n}}$ and interpolating linearly in between.

Lemma 6. For almost every $\omega \mathcal{B}_{n}$ converges weakly to \mathcal{B} as $n \rightarrow \infty$.
Proof: Since B_{n} is a martingale it suffices, due to Hall and Heyde (1980), Theorem 4.4, to show that for almost every ω

$$
\sup _{t \in[0, \mathbf{T}]}\left|\frac{V_{[n t]}}{n}-\frac{t}{2}\right| \rightarrow 0 \text { in probability as } n \rightarrow \infty
$$

where V_{n} is the quadratic variation of B_{n}. For the discrete time process it is enough to show that for almost every ω

$$
\max _{0 \leq m \leq n}\left|\frac{V_{m}}{n}-\frac{m}{2 n}\right| \rightarrow 0 \text { in probability as } n \rightarrow \infty
$$

Fix $\varepsilon>0$. Choose N_{0} such that

$$
\begin{equation*}
\mathbf{E}\left(\left[N(\varepsilon, y)-N_{0}\right]^{+}\right)<\varepsilon \tag{4}
\end{equation*}
$$

where $N(\varepsilon, y)$ is a constant from condition (E). Split $V_{m}=V_{m}^{-}+V_{m}^{+}$where

$$
\begin{aligned}
& V_{m}^{-}=\sum_{k=0}^{m-1} \mathbb{E}\left(\left[\Delta_{k}-\bar{\Delta}_{k}\right]^{2} \mid Y_{1} \ldots Y_{k}\right) I\left(l_{k} \leq N_{0}\right), \\
& V_{m}^{+}=\sum_{k=0}^{m-1} \mathbb{E}\left(\left[\Delta_{k}-\bar{\Delta}_{k}\right]^{2} \mid Y_{1} \ldots Y_{k}\right) I\left(l_{k}>N_{0}\right) .
\end{aligned}
$$

Then $V_{m}^{-} \leq 4 N_{0} L r_{m} \ll n$ (by Lemmas 4 and 5) whereas

$$
V_{m}^{+}=\frac{m}{2}+\epsilon_{m}^{\prime}+\epsilon_{m}^{\prime \prime}
$$

where

$$
\begin{aligned}
\epsilon_{m}^{\prime} & =\sum_{k}\left(\mathbb{E}\left(\left[\Delta_{k}-\bar{\Delta}_{k}\right]^{2} \mid Y_{1} \ldots Y_{k}\right)-\frac{1}{2}\right) I\left(l_{k}>\max \left(N\left(\varepsilon, Y_{k}\right), N_{0}\right)\right), \\
\epsilon_{m}^{\prime \prime} & =\sum_{k}\left(\mathbb{E}\left(\left[\Delta_{k}-\bar{\Delta}_{k}\right]^{2} \mid Y_{1} \ldots Y_{k}\right)-\frac{1}{2}\right) I\left(N_{0}<l_{k} \leq N\left(\varepsilon, Y_{k}\right)\right) .
\end{aligned}
$$

Observe that on $l_{k}>N\left(\varepsilon, Y_{k}\right)$ we have

$$
\begin{gathered}
\left|\mathbb{E}\left(\left[\Delta_{k}-\bar{\Delta}_{k}\right]^{2} \mid Y_{1} \ldots Y_{k}\right)-\frac{1}{2}\right|= \\
\left|\left[\omega\left(Y_{k}, l_{k}, e_{1}\right)+\omega\left(Y_{k}, l_{k},-e_{1}\right)-\frac{1}{2}\right]-\left[\omega\left(Y_{k}, l_{k}, e_{1}\right)-\omega\left(Y_{k}, l_{k},-e_{1}\right)\right]^{2}\right| \leq 2 \varepsilon+(2 \varepsilon)^{2}
\end{gathered}
$$

and so $\left|\varepsilon_{m}^{\prime \prime}\right| \leq\left(2 \varepsilon+(2 \varepsilon)^{2}\right) n$. On the other hand

$$
\begin{equation*}
\left|\varepsilon_{m}^{\prime \prime}\right| \leq \sum^{*}\left[N(\varepsilon, y)-N_{0}\right]_{+} \tag{5}
\end{equation*}
$$

where the summation in $\left(^{*}\right)$ runs over y with

$$
\min _{k \leq n}\left(X_{k}\right) \leq x(y) \leq \max _{k \leq n}\left(X_{k}\right)
$$

So (4) and the ergodic theorem ensure that $\left|\varepsilon_{m}^{\prime \prime}\right|$ is less than $2 \varepsilon L r_{n}$ provided that r_{n} is large enough (if r_{n} is small then our claim that $\left|\varepsilon_{m}^{\prime \prime}\right| \ll n$ is obvious). This concludes the proof of Lemma 6.

Lemma 7. $\left\{\mathcal{W}_{n}\right\}$ is tight.
Proof: Since $X_{0}=0$ Billingsley (1999), Lemma 8.3 implies that in order to prove tightness it suffices to show that for almost all ω given positive constants ε, η there exists a positive constant δ such that if n is sufficiently large then for all $t \leq \mathbf{T}$

$$
\frac{1}{\delta} \mathbb{P}\left(\sup _{s \in[t, t+\delta]}\left|W_{n}(s)-W_{n}(t)\right| \geq \varepsilon\right) \leq \eta
$$

Without rescaling this amounts to showing that for all $n_{1} \leq n \mathbf{T}$ we have

$$
\frac{1}{\delta} \mathbb{P}\left(\max _{n_{1} \leq n_{2} \leq n_{1}+\delta n}\left|X_{n_{2}}-X_{n_{1}}\right| \geq \varepsilon \sqrt{n}\right) \leq \eta
$$

Take δ such that

$$
\begin{equation*}
\frac{\gamma_{2}^{-} \delta}{\left(\frac{23 \varepsilon}{25}\right)^{4}}<\eta \text { and } \frac{\gamma_{2}^{+} \delta}{\left(\frac{23 \varepsilon}{25}\right)^{4}}<\eta \tag{6}
\end{equation*}
$$

By Lemmas 4 and 5 given η, δ there exists R such that

$$
\mathbb{P}\left(\max _{k \leq \mathbf{T} n}\left|X_{k}\right| \geq R \sqrt{n}\right) \leq \frac{\delta \eta}{3}
$$

so it suffices to show that

$$
\frac{1}{\delta} \mathbb{P}\left(\max _{n_{1} \leq n_{2} \leq n_{1}+\delta n}\left|X_{n_{2}}-X_{n_{1}}\right| \geq \varepsilon \sqrt{n} \text { and }\left|X_{n_{1}}\right| \leq R \sqrt{n}\right) \leq \frac{2 \eta}{3}
$$

We shall show that

$$
\begin{equation*}
\frac{1}{\delta} \mathbb{P}\left(\max _{n_{1} \leq n_{2} \leq n_{1}+\delta n} X_{n_{2}} \geq X_{n_{1}}+\varepsilon \sqrt{n} \text { and }\left|X_{n_{1}}\right| \leq R \sqrt{n}\right) \leq \frac{\eta}{3} \tag{7}
\end{equation*}
$$

the lower bound on $X_{n_{2}}$ is similar. Take n_{0} such that $\mathbf{P}\left(A_{n_{0}}^{c}\right) \leq \frac{\varepsilon}{100 R}$. Then by the Ergodic Theorem for large n

$$
\sum_{x=-2 R \sqrt{n}}^{2 R \sqrt{n}} I_{A_{n_{0}}^{c}}\left(T^{x} \omega\right) \leq \frac{2 \varepsilon}{25} \sqrt{n}
$$

where I denotes the indicator function. Hence there exists x such that $X_{n_{1}} \leq x \leq$ $X_{n_{1}}+\frac{2 \varepsilon}{25} \sqrt{n}$ such that $T^{x} \omega \in A_{n_{0}}$. Let σ be the first time after n_{1} when $X_{\sigma}=x$. Applying Lemma 5 with $m=2$ we get

$$
\frac{1}{\delta} \mathbb{P}\left(X_{\sigma+k}-X_{\sigma}>\frac{23 \varepsilon}{25} \sqrt{n}\right) \leq \frac{\gamma_{2}^{+} \delta}{\left(\frac{23 \varepsilon}{25}\right)^{4}}<\eta
$$

where the last inequality follows from (6). This proves (7) and completes the proof of Lemma 7.

Let

$$
Z(a, b)=\sum_{(x, s): a \leq x \leq b} \delta(x, s)
$$

denote the total amount of cookies stored between a and b. We shall denote by τ_{x} the first time $X_{\tau}=x$. Let

$$
\hat{\tau}(x, M)=\left\{\begin{array}{ll}
\tau_{x+M} & \text { if } x \geq 0 \\
\tau_{x-M} & \text { if } x<0
\end{array} .\right.
$$

The next lemma is a quantitative version of the recurrence results of Zerner (2005, 2006).

Lemma 8. For each N, ε there exists a number M and a set Ω_{M} such that $\mathbf{P}\left(\Omega_{M}\right)>$ $1-\varepsilon$ and for each $x \in \mathbb{Z}$, for each ω such that $T^{x} \omega \in \Omega_{M}$, for each $s \in \mathbb{Z} / L \mathbb{Z}$ we have

$$
\begin{equation*}
\mathbb{P}\left(Y_{n} \text { visits }(x, s) \text { at least } N \text { times before } \hat{\tau}(x, M)\right) \geq 1-\varepsilon . \tag{8}
\end{equation*}
$$

Proof: To fix our ideas consider the case $x \geq 0$. Thus $\hat{\tau}(x, M)=\tau_{x+M}$.
By ellipticity (condition (B)) it is enough to prove the result with (8) replaced by

$$
\mathbb{P}\left(X_{n} \text { visits } x \text { at least } N \text { times before } \tau_{x+M}\right) \geq 1-\varepsilon .
$$

Let $\tilde{\tau}_{m}$ be the first time strictly greater than τ_{x} when either $\left|X_{\tilde{\tau}}-x\right|=m$ or $X_{\tilde{\tau}}=x$. Pick two numbers p, p^{\prime} such that $\delta L<p^{\prime}<p<1$. We claim that if m_{1} is large enough then for most environments

$$
\begin{equation*}
\mathbb{P}\left(X_{\tilde{\tau}_{m_{1}}}=x\right)>1-p \tag{9}
\end{equation*}
$$

There are two cases to consider: $X_{\tau_{x}+1}=x+1$ and $X_{\tau_{x}+1}=x-1$ (the case $X_{\tau_{x}+1}=x$ is trivial). We consider the first case (the second case is easier).

By Optional Stopping Theorem

$$
\mathbb{P}\left(X_{\tilde{\tau}_{m_{1}}}=x+m_{1} \mid X_{\tau_{x}+1}=x+1\right)=\frac{\mathbb{E}\left(C_{\tilde{\tau}_{m_{1}}}-C_{\tau_{x}}\right)+1}{m_{1}} \leq \frac{Z\left(x, x+m_{1}\right)+1}{m_{1}} .
$$

So (9) holds if $Z\left(x, x+m_{1}\right)<m_{1} p^{\prime}$ (observe that we need not impose any restrictions in case $\left.X_{\tau_{x}+1}=x-1\right)$. Next
$\mathbb{P}\left(X_{\tilde{\tau}_{m_{2}}}=x+m_{2} \mid X_{\tilde{\tau}_{m_{1}}}=x+m_{1}\right)=\frac{\mathbb{E}\left(C_{\tilde{\tau}_{m_{2}}}-C_{\tilde{\tau}_{m_{1}}}\right)+m_{1}}{m_{2}} \leq \frac{Z\left(x, x+m_{2}\right)+m_{1}}{m_{2}}$.
Thus if $\frac{m_{1}}{m_{2}}<\frac{p-p^{\prime}}{2}$ and $Z\left(x, x+m_{2}\right)<p^{\prime} m_{2}$ then

$$
\mathbb{P}\left(X_{\tilde{\tau}_{m_{2}}}=x+m_{2} \mid X_{\tilde{\tau}_{m_{1}}}=x+m_{1}\right)<p
$$

Thus if both $Z\left(x, x+m_{1}\right)<p^{\prime} m_{1}$ and $Z\left(x, x+m_{2}\right)<p^{\prime} m_{2}$ then

$$
\mathbb{P}\left(X_{\tilde{\tau}_{m_{2}}}=x+m_{2}\right)<p^{2}
$$

Inductively let m_{k} be the smallest number such that

$$
m_{k}>\frac{2}{p-p^{\prime}} m_{k-1}
$$

Then on $\bigcap_{j=1}^{k}\left\{Z\left(x, x+m_{j}\right)<p^{\prime} m_{j}\right\}$ we have

$$
\mathbb{P}\left(X_{\tilde{\tau}_{m_{k}}}=x+m_{k}\right)<p^{k} .
$$

Thus on this set

$$
\mathbb{P}\left(X \text { returns to } x \text { before } \tau_{x+m_{k}}\right) \geq 1-p^{k} .
$$

Since the amount of cookies between x and $x+m_{j}$ only decreases between the returns the same argument shows that

$$
\mathbb{P}\left(X \text { returns to } x \text { at least } N \text { times before } \tau_{x+m_{k}}\right) \geq\left(1-p^{k}\right)^{N}
$$

Choose k so that $\left(1-p^{k}\right)^{N}>1-\varepsilon$. Let $M=m_{k}$ and $\Omega_{M}=\bigcap_{j=1}^{k}\left\{Z\left(0, m_{j}\right) \leq p^{\prime} m_{j}\right\}$. Then the Ergodic Theorem implies that if m_{1} is large enough then $\mathbf{P}\left(\Omega_{M}\right) \geq$ $1-\varepsilon$.

Lemma 9. For almost all $\omega, \frac{C_{n}-\alpha r_{n}}{r_{n}} \rightarrow 0$ in probability.
Proof: Let $\varepsilon>0$. Take N such that

$$
\sum_{j=N+1}^{\infty} \mathbf{E}(\delta(y, j))<\frac{\varepsilon}{L}
$$

Split $C_{n}=C_{n}^{-}+C_{n}^{+}$, where

$$
C_{n}^{-}=\sum_{k} \bar{\Delta}_{k} I\left(l_{k} \leq N\right), \quad C_{n}^{+}=\sum_{k} \bar{\Delta}_{k} I\left(l_{k}>N\right) .
$$

By ergodicity we have $C_{n}^{+} \leq 2 \varepsilon r_{n}$ for large n so the main contribution comes from C_{n}^{-}. Next

$$
C_{n}^{-}=\sum^{*} \sum_{j=1}^{N} \delta(y, j) I(Q(y, j, n))
$$

where $Q(y, j, n)$ is the event that Y visits y at least j times before time n and the meaning of \sum^{*} is the same as in (5). Take a large number M (the precise conditions on M will be given in equations (15) and (17) below) and split $C_{n}^{-}=C_{n}^{\partial}+C_{n}^{i}$ where C_{n}^{∂} contains the terms $y=(x, s)$ where x is within distance M from either maximum or minimum of $X_{k}, k \leq n$ and C_{n}^{i} contains the remaining terms. Then $C_{n}^{\partial} \leq 2 L M N$ since there are $2 L M$ sites within distance M from either maximum or minimum of $X_{k}, k \leq n$ and for each site only the first N visits give a non-zero contribution to C_{n}^{-}. On the other hand

$$
\begin{equation*}
C_{n}^{i}=\sum^{* *} \sum_{j=1}^{N} \delta(y, j)-\sum^{* *} \sum_{j=1}^{N} \delta(y, j) I\left(Q^{c}(y, j, n)\right) \tag{10}
\end{equation*}
$$

where the summation in $\left({ }^{* *}\right)$ runs over y with

$$
\min _{k \leq n}\left(X_{k}\right)+M \leq x(y) \leq \max _{k \leq n}\left(X_{k}\right)-M
$$

Due to ergodicity for large n

$$
\left|\sum^{* *} \sum_{j=1}^{N} \delta(y, j)-\left[L \sum_{j=1}^{N} \mathbf{E}(\delta(y, j))\right] r_{n}\right| \leq \varepsilon r_{n}
$$

and by the choice of $N, L \sum_{j=1}^{N} \mathbf{E}(\delta(y, j))$ within ε from α. The second term in (10) is less than

$$
\hat{C}_{n}=\sum^{* *} \sum_{j=1}^{N} I(\hat{Q}(y, j, M))
$$

where $\hat{Q}((x, s), j, M)$ is the event that the j-th visit to (x, s) occurs after time $\hat{\tau}(x, M)$. Therefore to complete the proof of Lemma 9 it remains to show that for almost every ω given ε there exists M such that for large n we have

$$
\begin{equation*}
\mathbb{P}\left(\hat{C}_{n}>\varepsilon r_{n}\right)<\varepsilon . \tag{11}
\end{equation*}
$$

To this end we show that there exists η such that

$$
\begin{equation*}
\mathbb{P}\left(r_{n}<\eta \sqrt{n}\right)<\frac{\varepsilon}{3} \tag{12}
\end{equation*}
$$

Indeed $X_{n}=B_{n}+C_{n}$ and by the Ergodic Theorem for almost every ω there is a constant $K(\omega)$ such that for all n we have

$$
0<C_{n}<r_{n}+K(\omega)
$$

Since we also have $\left|X_{n}\right| \leq r_{n}$ the inequality $r_{n}<\eta \sqrt{n}$ implies that $\left|B_{n}\right|<2 \eta \sqrt{n}+$ $K(\omega)$ but by Lemma $6 \mathbb{P}\left(\left|B_{n}\right|<2 \eta \sqrt{n}+K(\omega)\right)$ can be made as small as we wish by taking η small. This proves (12).

Next, by Lemmas 4 and 5

$$
\begin{equation*}
\mathbb{P}\left(r_{n}>R \sqrt{n}\right)<\frac{\varepsilon}{3} \tag{13}
\end{equation*}
$$

in R, n are sufficiently large. Combining (12) and (13) we get

$$
\begin{equation*}
\mathbb{P}\left(\frac{\hat{C}_{n}}{r_{n}} \leq \frac{\sum_{|x(y)|<R \sqrt{n}} \sum_{j=1}^{N} I(\hat{Q}(y, j, M))}{\eta \sqrt{n}}\right)<\frac{2 \varepsilon}{3} \tag{14}
\end{equation*}
$$

Observe that by Lemma 8 we can choose M so large that

$$
\begin{equation*}
\mathbb{P}(\hat{Q}((x, s), j, M)) \leq \frac{\varepsilon^{2} \eta}{100 R N L}+I\left(\Omega_{M}^{c}\left(T^{x} \omega\right)\right) \tag{15}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\mathbb{E}\left(\sum_{|x(y)|<R \sqrt{n}} \sum_{j=1}^{N} I(\hat{Q}(y, j, M))\right) \leq \frac{\varepsilon^{2} \eta \sqrt{n}}{50}+L N \sum_{|x|<R \sqrt{n}} I\left(\Omega_{M}^{c}\left(T^{x} \omega\right)\right) \tag{16}
\end{equation*}
$$

By Lemma 8 we can take M so large that

$$
\begin{equation*}
\mathbf{P}\left(\Omega_{M}^{c}\right) \leq \frac{\varepsilon^{2} \eta}{200 R N} \tag{17}
\end{equation*}
$$

Then by ergodicity the last term in (16) is less than $\frac{\varepsilon^{2} \eta \sqrt{n}}{50}$ provided that n is sufficiently large. Hence

$$
\mathbb{E}\left(\sum_{|x(y)|<R \sqrt{n}} \sum_{j=1}^{N} I(\hat{Q}(y, j, M))\right) \leq \frac{\varepsilon^{2} \eta \sqrt{n}}{25}
$$

Therefore by Markov inequality

$$
\mathbb{P}\left(\sum_{|x(y)|<R \sqrt{n}} \sum_{j=1}^{N} I(\hat{Q}(y, j, M))>\varepsilon \eta \sqrt{n}\right)<\frac{\varepsilon}{25} .
$$

In view of (14) this completes the proof of (11). Lemma 9 follows.
Proof of Theorem 1: We have

$$
\begin{equation*}
\mathcal{W}_{n}(t)=\mathcal{B}_{n}(t)+\mathcal{C}_{n}(t) \tag{18}
\end{equation*}
$$

where $\mathcal{B}_{n}(t)$ and $\mathcal{C}_{n}(t)$ are rescaled versions of the martingale and compensator parts of X_{n} respectively. By Lemma $7\left\{\mathcal{W}_{n}\right\}$ is tight, by Lemma $6\left\{\mathcal{B}_{n}\right\}$ is tight. Since \mathcal{C}_{n} is a difference of two tight processes it is tight. Accordingly the triple $\left\{\left(\mathcal{W}_{n}, \mathcal{B}_{n}, \mathcal{C}_{n}\right)\right\}$ considered as a family of \mathbb{R}^{3} valued processes is tight. Let $(\mathcal{W}, \overline{\mathcal{B}}, \mathcal{C})$ denote a weak limit of $\left(\mathcal{W}_{n}, \mathcal{B}_{n}, \mathcal{C}_{n}\right)$.

By Lemma $6 \overline{\mathcal{B}}(t)=\mathcal{B}(t)$. By (18) we have

$$
\mathcal{W}(t)=\mathcal{B}(t)+\mathcal{C}(t)
$$

Therefore it remains to show that

$$
\begin{equation*}
\mathcal{C}(t)=\alpha\left[\max _{[0, t]} \mathcal{W}(s)-\min _{[0, t]} \mathcal{W}(s)\right] \tag{19}
\end{equation*}
$$

since this implies that $\mathcal{W}(t)$ satisfies (1) and we will be done by Chaumont and Doney (1999).

Hence given $\varepsilon>0$ there exists N such that

$$
\mathbb{P}\left(\max _{\left|t_{2}-t_{1}\right|<1 / N}\left|\mathcal{C}_{n}\left(t_{2}\right)-\mathcal{C}_{n}\left(t_{1}\right)\right| \geq \varepsilon\right) \leq \varepsilon
$$

Consequently to establish (19) it is enough to show that for each N, ε

$$
\mathbb{P}\left(\exists j<N \mathbf{T} \text { such that }\left|C_{n}\left(\frac{j}{N}\right)-\alpha\left[\max _{[0, j / N]} \mathcal{W}_{n}(s)-\min _{[0, j / N]} \mathcal{W}_{n}(s)\right]\right|>\varepsilon\right) \rightarrow 0
$$

Before rescaling this amounts to showing that

$$
\mathbb{P}\left(\left|C_{m_{j}}-\alpha r_{m_{j}}\right| \leq \varepsilon \sqrt{n} \text { for } j=1 \ldots N\right) \rightarrow 1
$$

where $m_{j}=n j / N$. Notice that $r_{m_{j}} \leq r_{n}$ and by Lemmas 4 and $5 \mathbb{P}\left(r_{n} \geq R \sqrt{n}\right)$ can be made as small as we wish by choosing R and n large. Hence it suffices to check that

$$
\begin{equation*}
\mathbb{P}\left(\left|C_{m_{j}}-\alpha r_{m_{j}}\right| \leq \varepsilon r_{m_{j}} \text { for } j=1 \ldots N\right) \rightarrow 1 \tag{20}
\end{equation*}
$$

However for fixed N, m_{j} runs over a set of finite cardinality N and so (20) follows from Lemma 9. This concludes the proof of (19). Theorem 1 is established.

References

D. Aschenbrenner. Master's thesis, University of Tubingen (2010).

Anne-Laure Basdevant and Arvind Singh. On the speed of a cookie random walk. Probab. Theory Related Fields 141 (3-4), 625-645 (2008a).
Anne-Laure Basdevant and Arvind Singh. Rate of growth of a transient cookie random walk. Electron. J. Probab. 13, no. 26, 811-851 (2008b).
Patrick Billingsley. Convergence of probability measures. Wiley Series in Probability and Statistics: Probability and Statistics. John Wiley \& Sons Inc., New York, second edition (1999). A Wiley-Interscience Publication.
L. Chaumont and R. A. Doney. Pathwise uniqueness for perturbed versions of Brownian motion and reflected Brownian motion. Probab. Theory Related Fields 113 (4), 519-534 (1999).
P. Hall and C. C. Heyde. Martingale limit theory and its application. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York (1980). Probability and Mathematical Statistics.
Elena Kosygina and Thomas Mountford. Limit laws of transient excited random walks on integers. Ann. Henri Poincare, Prob. \& Stat. 47, no. 2, 575-600 (2011).
Elena Kosygina and Martin P. W. Zerner. Positively and negatively excited random walks on integers, with branching processes. Electron. J. Probab. 13, no. 64, 1952-1979 (2008).
Thomas Mountford, Leandro P. R. Pimentel and Glauco Valle. On the speed of the one-dimensional excited random walk in the transient regime. ALEA Lat. Am. J. Probab. Math. Stat. 2, 279-296 (2006).

Martin P. W. Zerner. Multi-excited random walks on integers. Probab. Theory Related Fields 133 (1), 98-122 (2005).
Martin P. W. Zerner. Recurrence and transience of excited random walks on \mathbb{Z}^{d} and strips. Electron. Comm. Probab. 11, 118-128 (electronic) (2006).

[^0]: 2000 Mathematics Subject Classification. 60K35, 60F05.
 Key words and phrases. Excited random walk, perturbed Brownian Motion.
 I thank Elena Kosygina for her comments on the preliminary version of this paper. I am also grateful to the referee for useful comments on the preliminary version of this work. The author was partially supported by the NSF.

