
INTRODUCTION TO AVERAGING.

1. Averaging in Markov Chains.

1.1. Statement. Consider a recurrence

(1) xε
n+1 − xε

n = εF (xε
n, ωn), x0 = a

where x ∈ R
d, F = (F(1), F(2), . . . F(d)). We assume that {F (,̇ωn)} are

independent identically distributed functions, that F takes values in
a ball of fixed radius (independent of x) and that for each k1, k2 . . . kd

the map x→ E(
∏d

l=1 F
kl

(l)(x, ω)) is smooth and has two bounded deriva-
tives. Denote

F̄ (x) = E(F (x, ω)),

Dαβ(x)(x) = E
((

F(α)(x, ω) − F̄(α)(x)
) (

F(β)(x, ω) − F̄(β)(x)
))

.

Let y(t) denote the solution of

ẏ = F̄ (y), y(0) = a.

Fix T > 0.

Theorem 1. [16, 12] (a) For each δ > 0 we have

P

(

max
[0,T ]

∣

∣x[t/ε] − y(t)
∣

∣ > δ

)

→ 0 as ε→ 0.

(b) Moreover define Zε(t) by letting Zε(εn) = 1√
ε
[xn − y(nε)] and in-

terpolating linearly in between. Then as ε → 0 Zε(t) converges to a
Gaussian random process Z(t). Z(t) satisfies the following equation

(2) Z(t) = W (t) +

∫ t

0

DF̄ (y(s))Z(s)ds, Z(0) = 0

where W (t) is a Gaussian Markov process starting at 0 with indepen-
dent increments, zero mean and covariance

(3) E(Wα(t)Wβ(t)) =

∫ t

0

Dαβ(y(s))ds.

(c) For each 1 ≤ R ≤ c(
√
ε)−1 there exist constants C1, C2 such that

P
(

Zε(t) > R
√
ε
)

≤ C1 exp(−C2R
2).
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2 INTRODUCTION TO AVERAGING.

1.2. Proof of Theorem 1. The proof consists of several steps. Let
yn be a sequence satisfying the following recursion

yn+1 − yn = εF̄ (yn), y0 = a.

Then yn differs from y(nε) by terms of order ε, so it suffices to study
zn = xn − yn. We have

zn+1 − zn = ε[Fn(x, ωn) − F̄n(x)] + ε[F̄ (xn) − F̄ (yn)].

Denote

ξn = F (xn, ωn) − F̄ (xn), wn =
n
∑

j=1

ξj , w0 = 0.

Lemma 1.1.

(a) |zn| ≤ Const max
k≤n

|wk|ε.

(b) |zn2 − zn1 | ≤ Const max
k≤n2−n1

|wn1+k − wn1| ε.

Proof. We prove (a). (b) is similar except for notational complications.
Conditions of Theorem 1 and Hadamard Lemma imply that

F̄ (xn) − F̄ (yn) = A(yn, zn)zn

where A(y, z) is a bounded matrix valued function. Denote An =
A(yn, zn). Then

zn+1 − zn = εξn + εAnzn.

This equation is linear so it can be solved. Namely let Bn satisfy

Bn+1 − Bn = εAnBn, B0 = 1,

then Bn and B−1
n are uniformly bounded for n ≤ T/ε. Substitute zn =

Bnrn, then

(4) rn = ε

n−1
∑

j=0

B−1
j+1ξj =

ε

n−1
∑

j=0

B−1
j+1(wj − wj−1) = ε

n−1
∑

j=0

(B−1
j+1 − B−1

j+2)wj + εBn+1wn−1 = I + II.

Since

||B−1
j+1 −B−1

j+2|| ≤ Const||Bj+2 − Bj+1|| ≤ Constε

we get

|I| ≤ Constε2

∣

∣

∣

∣

∣

n
∑

j=0

wj

∣

∣

∣

∣

∣

≤ Const(εn)

(

max
0≤k≤n−1

|wk|
)

ε
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Since εn ≤ T we have the required bound on the first term. On the
other hand |II| ≤ Constεmax0≤k≤n−1 |wk|. Since |zn| ≤ Const|rn| the
lemma follows. �

We now give some a priori bounds for zn. Define the process W ε(t)
by W ε(nε) =

√
εwn with linear interpolation in between.

Lemma 1.2. {W ε(t)} is tight.

Proof. Since W ε(0) = 0 it is enough to show that for all [t1, t2] we have

E(|W ε(t1) −W ε(t2)|4) ≤ Const|t1 − t2|2.
In terms of wn we have to show that

E(|wn1 − wn2|4) ≤ Const|n1 − n2|2.
Therefore lemma 1.2 follows from Lemma 1.3 below. �

Lemma 1.3. Let n2 > n1. Denote

S = Sn1,n2 = wn2 − wn1 =

n2
∑

j=n1+1

ξj.

Then

(a) E(S) = 0.

(b) E(S(α)S(β)) =

n2
∑

j=n1+1

E(Dαβ).

In particular,

(c) E(|S|2) ≤ Const(n2−n1).

(d) E(|S|4) ≤ Const(n2−n1)
2.

Proof. (a) is clear from the definition of F̄ . Next,

E(S(α)S(β)) =

n2
∑

j1,j2=n1+1

E
([

F(α)(xj1 , ωj1) − F̄(α)(xj1)
] [

F(β)(xj2 , ωj2) − F̄(β)(xj2)
])

.

Now by Markov property the terms with j2 6= j1 give 0. This proves
(b). (c) follows from (b). To prove (d) consider E(|S(1)|4), the other
components are similar. We have

E(|S(1)|4) =
∑

j1j2j3j4

E
(

[F(1)(xj1, ωj1) − F̄(1)(xj1)][F(1)(xj2 , ωj2) − F̄(1)(xj2)]×

[F(1)(xj3 , ωj3) − F̄(1)(xj3)][F(1)(xj4 , ωj4) − F̄(1)(xj4)]
)

.
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Order the indices so that j1 ≤ j2 ≤ j3 ≤ j4. As before all terms where
j3 6= j4 vanish, so we only need to consider contribution of the terms
with j4 = j3. Among those there are at most (n2 − n1)

2 terms with
j2 = j3 = j4. So we have

E(S4
(1)) =≤ Const

[

(n2 − n1)
2+

∑

n1<j1≤j2<m≤n2

E
(

[F(1)(xj1 , ωj1) − F̄(1)(xj1)][F(1)(xj2 , ωj2) − F̄(1)(xj2)][F(1)(xm, ωm) − F̄(1)(xm)]2
)

]

The second term here equals
∑

m

(E
(

[F(1)(xm, ωm) − F̄(1)(xm)]2S2
n1,m

)

≤
∑

m

(E
(

S2
n1,m

)

By part (c) the last expression is bounded by

Const

n2
∑

m=n1+1

(m− n1) ≤ Const(n2 − n1)
2. �

Lemma 1.2 implies Theorem 1(a). To get (b) we need to refine it.

Lemma 1.4. As ε→ 0 W ε(t) converges to W (t)–the process given by
(3).

Proof. By Lemma 1.2 it is enough to establish convergence of finite
dimensional distributions. We begin with one dimensional ones. So fix
0 ≤ t ≤ T. Fix δ > 0. Divide interval [0, t] into subintervals of length
∆t. Let Gm be a sequence of independent Gaussian random variables
with zero mean and unit covariance. Denote nm = m∆t/ε and let σm

be a matrix such that

σ2
m =

∫ (m+1)∆/ε

m∆/ε

D(y(s))ds.

Define Σε
m =

∑nm+1

j=nm+1 zj , and

Σ̃ε
m =

{

Σε
m if znm < ε−1/2+δ

1√
ε
σmGm otherwise

.

Then by Lemma 1.2

P

(

W ε(t) 6=
∑

m

Σ̃ε
m

)

→ 0 as ε→ 0.
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Take some η ∈ R
d. Lemma 1.3 gives E(Σ̃ε

m) = 0 and E((ηΣ̃ε
m)2) is

either ||σmη||2
ε

or

nm+1
∑

j=nm+1

< D(xj)η, η >=

nm+1
∑

j=nm+1

< D(yj)η, η > +o(∆/ε) =
||σmη||2

ε
+o(∆/ε)

depending on the value of xnm . This gives

(5) E(exp(i < η, Σ̃ε
m > /

√
ε)|Fnm) = 1 − ||σmη||2∆

2
+ ζm∆

where ζm → 0 uniformly in m as ε→ 0,∆ → 0. Iterating (5) we get

ln E(exp(i < η,W ε(t) > /
√
ε)) ∼ −1

2

∑

m

||σmη||2 + oε→0,∆→0(1) =

−1

2

∫ t

0

< D(y(s))η, η > ds+ oε→0,∆→0(1).

Since ∆ is arbitrary we can make ∆ → 0 obtaining

E(exp(i < η,W (t) >) = −1

2

∫ t

0

< D(y(s))η, η > ds.

A similar computation shows that for all t1 ≤ t2 ≤ · · · ≤ tk, η1, η2 . . . ηk

we have

E(exp(i
k
∑

l=1

< ηkW (tk) >)) = exp

(

−1

2

∫ tk

0

< D(y(s))η̃(s), η̃(s) > ds

)

,

where η̃(s) =
∑

tl>s ηl. The lemma follows. �

We now return to the equation for zn. Using again Hadamard lemma
we get

zε
n+1 − zε

n = εξn + εDF̄ (yn)zε
n + εQ(yn, zn)(zn, zn)

where Q(y, z) is a bounded quadratic form. Thus

zε
n+1 − zε

n = εξn + εDF̄ (yn)z
ε
n + ερn

where

|ρn| ≤ Const|zn|2 ≤ Constε

∣

∣

∣

∣

zn√
ε

∣

∣

∣

∣

2

.

Therefore

(6) zn = ε

n
∑

j=0

ξj + ε

n
∑

j=0

DF̄ (yj)zj + ε

n
∑

j=0

ρj
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Define Zε(t) by the condition Zε(nε) = 1√
ε
zn with linear interpolation

in between. By Lemmas 1.1 and 1.2, Zε(t) is tight. Also by Lemma
1.2

ε sup
n≤T/ε

n
∑

j=0

ρj → 0

in probability. Choose a subsequence εk → 0 such that Zε
k(t) converges

to some random process Z(t). Then (6) implies that

Z(t) = W (t) +

∫ t

0

DF̄ (y(s))Z(s)ds.

This implies (b).
To prove (c) it is enough to estimate P(wn > R

√
n). Take k =

√
n/R

then

E

(

exp

(

δ

k
[wk(1) − 1]

))

≈ 1 − δ

k
+O

(

δ2

k

)

.

This implies that there is a constant c such that

E

(

exp

(

δ

k
[wk(1) − 1]

))

≤
(

1 − c

k

)

.

By induction

E

(

exp

(

δ

k
[wkm(1) −m]

))

≤
(

1 − c

k

)m

.

Taking m = n/k we obtain

E

(

exp

(

δ

k
[wn(1) − n1/2+γ ]

))

≤ C1 exp(−C2
m

k
) = C1 exp(−C2R

2).

Similar estimates are valid for other coordinates. This proves (c). The-
orem 1 is established. �

Exercise 1. (a) Suppose that zε
n satisfies the relation

zn+1 − zn = εDF̄ (yn)zn +
√
εζn, z0 = 0

where ζn are independent Gaussians with variance D(yn). Show that as
ε→ 0 z[tε] → Z(t) satisfying (2).

(b) Use (a), (4) and formulas (39) and (40) of Appendix A to show
that if Γ(s, t) satisfies

dΓ

dt
= DF̄ (y(t))Γ, Γ(s, s) = id

then for t1 ≤ t2

E(Z(α)(t1)Zβ(t2)) =

∫ t1

0

Γ(s, t1)D(y(s))Γ(s, t1)
∗ds.
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Exercise 2. (a) Generalize Theorem 1 for the recurrence

(7) xε
n+1 − xε

n = εF (xε
n, ωn) + ε2G(xε

n, ωn, ε), x0 = a

if G satisfies the same assumaptions as F.
(b) Show that under coordinate changes (1) is transformed to (7).
(c) Let M be a compact manifold. Consider equation ẋε = εX(x, ωt),

where X(,̇ωt) is constant on [n, n + 1) and the values at different in-
tervals are independent and identically distributed. Show that it x →
X(x, ω) is uniformly bounded togather with the first three derivatives
then xε(t/ε) converges weakly to y(t) satisfying the equation ẏ = E(X(y, ω).
Show moreover that (exp−1

y(t)(x(t)))/
√
ε converges to a Gaussian process

and that for R ≥ 1

P(dist(x(t), y(t)) ≤ √
εR) ≤ C1e

−C2R2

.

Exercise 3. Consider the recurence

xε
n+1 − xε

n = εF (xε
n, ωn)

vε
n+1 − vε

n = εDF (xn, ωn)vn

so that

vn =
∂xn

∂x0

v0.

Show that the averaged equation takes form

ẋ = F̄ (x) v̇ = DF̄ (x)v.

1.3. Urn models. Consider the following process. An urn initially
contains b0 black and w0 white balls. Fix some k, m > k/2. At each
step k balls are drawn and returned to the urn. Also, if there are at
least m balls of a particular color among the draw then a new ball of
this color is added to the urn. Let bn and wn be the numbers of black
and white balls after the nth ball is added to the urn. We want to
understand what happens when n → ∞. To reduce to the setting of
Theorem 1 let consider who the number of balls change between N and
2N. Denote ε = 1/N, xn = bn+N/N, yn = wn+N/N. Then xn+1−xn = ε
with probability

P (x, y)

P (x, y) + P (y, x)
+O

(

1

N

)

where

P (x, y) =

k
∑

j=m

(

k
j

)

xjyk−j



8 INTRODUCTION TO AVERAGING.

and zero otherwise with similar expression for the change of y. This
gives the averaged equation

(8) ẋ =
P (x, y)

P (x, y) + P (y, x)
ẏ =

P (y, x)

P (x, y) + P (y, x)

Eliminating time we get

(9)
dy

dx
=
P (x, y)

P (y, x)

Depending on the parameters (9) exhibits two different behaviors
(I) For k = 1 (and so m = 1) the solutions have the form x = cy.
(II) For k ≥ 2 the solutions blow up in finite time (this can be seen by

comparison with dy/dx = yk/xk.) In fact if x(0) > y(0) then x reaches
infinity while y remains finite and if y(0) > x(0) then the opposite
happens.

This suggests the similar behavior for the urn process. The theorem
below gives a partial justification for this reasoning.

Theorem 2. (a) If k = 1 then with probability 1 bn and wn increase
to infinity and there exists the limit

lim
n→∞

wn

n
.

(b) Let k > 1. Fix c > 1/2. Then

P (bn stays finite|wN ≥ cN) → 1, N → ∞.

Similarly, for c < 1/2

P (wn stays finite|wN ≤ cN) → 1, N → ∞.

Theorem 2(b) says that in case k > 1 either bn stays finite, wn stays
finite or wn/bn → 1. We will eliminate the third possibility in Section
4.

Proof. (a) Fix 0 < c < 1 and take δ > 0 so that c− δ > 0, c + δ < 1.
Choose γ < 1/2. Theorem 1 implies that if wN/N ∈ (c− δ, c+ δ) then

P

(∣

∣

∣

w2N

2N
− wN

N

∣

∣

∣
> N−γ

)

≤ C1 exp(−C2N
1−2γ),

In other words if WN/N ≈ c then with large probability w2N2N ≈ c.
Thus

∣

∣

∣

w4N

4N
− w2N

2N

∣

∣

∣
≤ 1

2γNγ
,
∣

∣

∣

w8N

8N
− w4N

4N

∣

∣

∣
≤ 1

4γNγ
, etc.

More precisely the statement below follows by an easy induction.
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Lemma 1.5. Suppose that

∣

∣

∣

wN

N
− c
∣

∣

∣
<
δ

2
,

1

Nγ

∞
∑

k=1

1

2kγ
<
δ

2
.

Then

P

(

wj

j
∈ [c− δ, c+ δ] for all j ≥ N

)

≥ 1 − ε,

where

ε =

∞
∑

k=1

C1 exp
[

−C2(2
kN)2γ−1

]

.

This lemma implies that if 0 < c < 1 is a limit point of wN/N then
wN/N → c. Now since

∣

∣

wN+1

N+1
− wN

N

∣

∣ < 1
N

the set of limit points is either
one point or an interval. Lemma 1.5 rules out the interval case so part
(a) follows.

(b) We consider only the case c > 1/2, the opposite case is similar.
Since all solutions to (9) with x(0) > y(0) have x(t) going to infinity
in finite time while y(t) stays bounded for arbitrary d < 1 there exists
a number t0 = t0(c, d) such that if x(0) > c− δ, y(0) = 1 − x(0) then

x(t0)

x(t0) + y(t0)
> d+ δ.

Thus Theorem 1 implies that if WN > cN then wN̄ > dN̄ where
N̄ = [1 + t0]N except on the set of probability C1e

−C2N−γ
. This shows

that if c > 1/2 is a limit point of wn/n then any c < d < 1 is also a
limit point. Next, if d is sufficiently large then wn > dn implies

P (w12n ≥ 10wn, b12n ≤ 2bn) ≥ 1 − C1 exp(−C2n
γ).

Let now n0 = n nj+1 = 12nj . Then by induction

(10) P
(

wnj+1
≥ 10wnj

, bnj+1
≤ 2bnj

)

≥

1 −
∑

j

C1 exp(−C2(12jn)γ).

But if (10) holds then

wnj
≥ 10jwn0, b3nj

≤ 8jbn0

so for large m we have wm > b3m. Now if wm > b3m the the probability
that we will see at least one black ball is at most e−ξ(wn,bn)/Const where

ξ(w, b) =
∞
∑

k=0

P (b, w + k)

P (w + k, b) + P (b, w + k)
.
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Now

(11) ξ(b, w) ≤ Const
bm

wm−1
≤ Const

w

since m ≥ 2. This proves (b). �

Exercise 4. Prove property (II) of equation (9).

Exercise 5. Prove (11).

Exercise 6. (a) Generalize Theorem 2 to the situation when we add
several balls, in particular, when the number of balls added depends on
the ratio of the balls drawn.

(b) Generalize Theorem 2 to three or more colors.

The problems below refer to the case k = m = 1. Let ξ = limn→∞wn/n.

Exercise 7. ([10, 22]) Suppose we begin with w0 white and b0 black
balls. Show that

P ((w0, b0) → (w1, b1) → (w2, b2) → · · · → (wn, bn)) =
(wn − 1)!(bn − 1)!(w0 + b0 − 1)!

(wn + bn − 1)!(w0 − 1)!(b0 − 1)!

Deduce that

P (wn = A, bn = B) =
(A− 1)!(B − 1)!(w0 + b0 − 1)!(A+B − w0 − b0)!

(A+B − 1)!(w0 − 1)!(b0 − 1)!(A− w0)!(B − b0)!
.

Conclude that ξ has density

p(x) =
(w0 + b0 − 1)!

(w0 − 1)!(b0 − 1)!
xw0−1(1 − x)b0−1.

Exercise 8. Show that

P

(

∣

∣

∣

wn

n
− ξ
∣

∣

∣
>

C√
n

)

→ 0, as C → ∞.

Exercise 9. [11] (a) Suppose that at each step we add rw balls of win-
ning color and rl balls of loosing color. Show that if rl > 0 then wn

bn
→ 1.

(b) Consider the following random growth model on Z. Let a1 =
1, b1 = −1. To describe the evolution at time n start a simple random
walk ω(j) at 0 and stop it at the moment τn when it reaches either an

or bn. In the first case increase an by 1, in the second decrease bn by 1.
Show that almost surely limn→∞ an/n = 1/2.

Exercise 10. ([6]) (Rubin coupling) In this problem we take some se-

quence α(n) and add white ball with probability α(wn)
α(wn)+α(bn)

and black

ball with probability α(bn)
α(wn)+α(bn)

. Let {τj} and {σj} be independent pro-

cesses with independent increments such that τ1 = τ2 = · · · = τw0 =
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σ1 = σ2 = · · · = σb0 and afterwards both τj − τj−1 and σj − σj−1 have
exponential distribution with parameter α(j). Let ρ denote union of σ

and τ. Enumerate points in ρ by ρ1 < ρ2 < · · · < ρn. Let w̃n (b̃n) be the
number of points from τ (σ) up to the moment ρn. Show that (wn, bn)

and (w̃n, b̃n) have the same distribution. Deduce that both wn and bn
go to infinity iff

∑

n 1/α(n) = ∞.

Exercise 11. [20, 21] (Street gang shooting). Suppose that instead
of adding balls we remove a ball of the opposite color. We stop then
there is only one color left. Let ŵ and b̂ be the numbers of white and
black balls at the end (so ŵb̂ = 0). Suppose at the beginning wn = cn,
bn = (1 − c)n. Show that as n→ ∞ the distribution of

√
n

(

[

c2 − (1 − c)2
]

−
[

(ŵ/n)2 −
(

b̂/n
)2
])

approaches a limit. Deduce that in case c = 1/2 the winer has about
n3/4 balls.

Vertex reinforced random walk (VRRW) on a graph G is defined as
follows. If the walker is at vertex v which is connected to vertices
v1, v2 . . . vl then he chooses vj with probability wn(vj)/(

∑

iwn(vi)),
where wn(vi) equals 1+the number of visits to vi up to time n.

Exercise 12. For VRRW on a complete graph on r vertices show that
wn(vi)/n→ 1/r.

Hint. Show that (maxi wn(vi)−mini wn(vi))/n is decreasing. Deduce
that (1/r, . . . , 1/r) is the only possible limit point of (wn(v1)/n, . . . , wn(vr)/n).

Exercise 13. In case G = {1, 2, 3} show that there exist limits ξi =
limn→∞wn(i)/n and that ξ2 = 1/2.

Hint. Reduce to k = m = 1 urn model.
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2. Anosov Theorem.

Here we present a general result about averaging. Consider a family
of equations on some manifold M

(12) żε = Z(z, ε)

for ε in some interval [−ε0, ε0]. We assume that Z ∈ C2(M × [−ε0, ε0]).
We further suppose that for ε = 0, Z has several first integrals h1, h2 . . . hm

which are independent in the sense that

(13) rk

(

∂h

∂z

)

= m

at every point. This implies that level sets Mc = {~h = c} are smooth
submanifolds. Let φε(t) denote the flow generated by Z(·, ε). We im-
pose two additional conditions

(COMP) Mh are compact and φ0 restricted to Mh preserves a mea-
sure µh which is smooth and depends smoothly on h.

(ERG) (φ0, µh) is ergodic for almost every h.
Since h are first integrals the Hadamard Lemma allows us to write

(14) ḣ = εY (z, ε).

Observe that Y (z, 0) = L dZ
dε
h, where L denote Lie derivative. Consider

the averaged equation

(15) ˙̄h = Ȳ (h̄)

where

Ȳ (h̄) =

∫

Y (z, 0)dµh̄(z).

Fix some ball V ⊂ R
m. Let dν = dhdµh where dh is the uniform

measure on V. For z ∈ M let τε(z) be the first moment either the
solution of (15) with initial condition h̄(0) = h(z) leaves V or φε(z)
leaves h−1V.

Theorem 3. ([1, 24]) Fix T > 0. Then as ε→ 0

sup
t∈[0,min(T,τε(z))]

∣

∣hε(t/ε) − h̄(t)
∣

∣→ 0

in probability where h̄(t) denotes the solution of (15) with initial con-
dition h̄(0) = h(z).

Proof. By multiplying Z by a function α(h) where α ≡ 1 on V and
α ≡ 0 outside of a larger ball we may assume that all solutions remain
in V for all times. Observe that divν(Z(·, 0)) = 0 since Z(·, 0) preserves
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h and µh. Since h−1V is compact, it follows that there exists a constant
K1 such that

(16) |divν(Z)| ≤ K1ε.

Thus we have

Corollary 2.1. There exists a constant K2 such that for any set Ω ⊂
h−1(V ) for 0 ≤ t ≤ T/ε we have

ν(φε(t)Ω) ≤ eK2Tν(Ω)

Next, there is a constant K3 such that for all z ∈ h−1V we have

|Y (z, ε)| < K3.

It follows that all functions ĥε(s) = hε(s/ε) are Lipshitz with Lipschitz

constant K2. In particular the family {ĥε} is tight. Let h̃(s) denote a
weak limit point as ε → 0. Theorem 3 is equivalent to the statement
that h̃ satisfy

h̃(s) = h̃(0) +

∫ s

0

Ȳ (h̃(u))du.

We have

hε(s/ε) − hε(0) = ε

∫ s/ε

0

Y (zε(v), ε)dv =

ε

∫ s/ε

0

Y (zε(v), 0)dv +O(ε) =

= ε

∫ s/ε

0

Ȳ (h(zε(v)))dv +O(ε) + ε

∫ s/ε

0

[Y (zε(v), 0) − Ȳ (h(zε(v)))]dv.

Denote the last term by γε(s). We need to show that γε(s) → 0 in
probability as ε → 0. Since γε(s) is uniformly Lipschitz it suffices to
show that for any fixed s0,

(17) γε(s0) → 0 in probability.

Indeed, if (17) holds then given δ let sk = kδ
2K3

. Then

sup
s∈[0,T ]

|γε(s)| ≤
δ

2
+ sup

k
|γε(sk)| .

By (17), for small ε the second term is less than δ/2 except for the
set of vanishing probability, so sups∈[0,T ] |γε(s)| → 0 in probability as
claimed.
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Choose a function L(ε) such that L(ε) → ∞ yet eL2(ε)ε → 0 as
ε→ 0. Denote tk = L(ε)k. We have

γε(s0) = ε

s0
εL(ε)

−1
∑

k=0

∫ tk+1

tk

[

Y (zε(v), 0) − Ȳ (h(zε(v)))
]

dv +O(εL(ε)).

Fix δ > 0. We need to show that

(18) ν (|γε(s0)| > δ) → 0 as ε→ 0

Let zk,ε(t) denote the solution of

żk,ε(t) = Z(zk,ε, 0), zk,ε(tk) = zε(tk).

Let

Gε(k) =

{

z :

∣

∣

∣

∣

1

L(ε)

∫ tk+1

tk

[

Y (zk,ε(v), 0) − Ȳ (h(zε(tk)))
]

dv

∣

∣

∣

∣

≤ δ

2T

}

.

Gε(z) = {k : z ∈ Gε(k)}, Bε(k) = h−1(V )−Gε(k), Bε(z) = {k : z 6∈ Gε(k)}.
For z ∈ Gε(k) we have

ε

∫ tk+1

tk

[

Y (zε(v), 0) − Ȳ (h(zε(v)))
]

dv =

ε

∫ tk+1

tk

[Y (zε(v), 0) − Y (zk,ε(v), 0)] dv+

ε

∫ tk+1

tk

[

Y (zk,ε(v), 0) − Ȳ (h(zk,ε(v)))
]

dv+

ε

∫ tk+1

tk

[

Ȳ (h(zk,ε(v))) − Ȳ (h(zε(v)))
]

dv =

I + II + III.

Lemma 2.2. For tk ≤ t ≤ tk+1

|zk,ε(t) − zε(t)| ≤ C1εL(ε)eC2L(ε).

Proof. Let r(t) = zk,ε − zε, then by Hadamard Lemma

ṙ(t) = εα(zε, r, ε) + β(zε, r, ε)r,

for some bounded α, β. Let Γ(t) denote the solution of

Γ̇ = βΓ, Γ(0) = 1.

Observe that Γ,Γ−1 = O(eCL(ε)) for some C. Now

r = εΓ(t)

∫ t

0

α−1(s)Γ(s)ds = O(εe2CL(ε)L(ε))

as claimed. �



INTRODUCTION TO AVERAGING. 15

Lemma 2.2 implies that I = O(ε2L2(ε)eC2L(ε)), III = O(ε2L2(ε)eC2L(ε)).

By the definition of Gε(k) we have II ≤ δεL(ε)
2T

.
Now summation over k gives

|γε(s0)| ≤
δ

2
+O(s0εL(ε)eC2L(ε)) +O(εL(ε)Card(Bε(z))).

Hence to establish (18) it suffices to show that

ν

(

z : Card(Bε(z)) >
δ

4εL(ε)

)

→ 0.

By Chebyshev inequality it suffices to show that
∫

εL(ε)Card(Bε(z))dν(z) → 0.

But this integral equals
∑

k

εL(ε)ν(Bε(k)).

Observe that z ∈ Bε(k) iff φε(tk)z ∈ Bε(0), so by Corollary 2.1

ν(Bε(k)) ≤ eK2Tν(Bε(0)).

Summation over k gives
∑

k

εL(ε)ν(Bε(k)) ≤ TeK2Tν(Bε(0)).

Now

Bε(0) =

{

z :
1

L(ε)

∣

∣

∣

∣

∣

∫ L(ε)

0

[

Y (φ0(v)z, 0) − Ȳ (h(z))
]

dv

∣

∣

∣

∣

∣

>
δ

2T

}

.

By (ERG) for almost all h

µh(Bε(0)) → 0 as ε → 0

Hence ν(Bε(0)) → 0 as ε → 0 by Dominated Convergence Theorem.
This completes the proof of Theorem 3. �

Exercise 14. Consider Hamiltonian system

q̇ = p ṗ = ∇U(q).

Let E = p2

2
−U(q) be the energy of this system. Suppose that level sets

are compact and that the system is ergodic on almost every level. Let
µE be the restriction of dpdq on the level set (that is dpdq = dµEdE).
Consider a perturbation

q̇ = p ṗ = ∇U + εF (q) − εσp.
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Show that effective equation for E is

˙̄E = −σ
∫

p2dµĒ.

We call I(z) almost adiabatic invariant for system (12) if for each
δ > 0

mes(maxt∈[0,T/ε]|I(z(t)) − I(z(0))| > δ) → 0 as ε→ 0.

Exercise 15. Consider a product system

q̇1 = p1 ṗ1 = ∇U1(q1) q̇2 = p2 ṗ2 = ∇U2(q2).

Consider a perturbation with Hamiltonian

H(p1, p2, q1, q2) =
p2

1 + p2
2

2
− U1(q1) − U2(q2) − εV (q1 − q2).

Assume that for almost E1, E2 the system is ergodic on

p2
1 − U1(q1) = E1, p2

2 − U2(q2) = E2.

Prove that energies of the first and the second system are adiabatic
invariants.

Exercise 16. Derive a discrete analogue of Theorem 3. Namely con-
sider a system

xn,ε = fεxn,

such that f0 has first integrals h1, h2 . . . hm such that Mh is compact,
f0 preserves a smooth measure on Mh and (f, µh) is ergodic for almost
all h. Obtain effective equation

˙̄h =

∫

(L df
dε
h̄)dµh.

Exercise 17. Generalize Exercise 16 to the situations when fε can have
discontinuities on some compact submanifold K which is transversal to
{h = h̃, ε = ε̃} assuming that the first two derivatives of f are uniformly
bounded outside K.

Hint. Add to B orbits passing near singularities.

Exercise 18. ([26, 25]) Consider a system on segment [0,1] consisting
of two particles with massesm1 andm2 respectively separated by a heavy
piston of mass M ≫ 1. Let initial velocities of particles equal v1(0) and

v2(0) respectively and let V (0)/
√
M denote piston initial velocity. Let

ε = 1/
√
M.

(a) Show that a collision of the piston with the left particle changes
velocities as follows

V + = V − + 2m1εv
−
1 +O(ε2), |v+

1 | = |v−1 | − 2εV − +O(ε2)
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and a collision of the piston with the right particle changes velocities
as follows

V + = V − − 2m2ε|v−2 | +O(ε2), |v+
2 | = |v−2 | + 2εV − +O(ε2).

(b) Show that as ε → 0 (i.e M → ∞) the system approaches the limit
where the piston is fixed and particle bounce off elastically. Deduce
that the frequency of collisions of the piston with left (right) particle is
2x/|v1| (2(1 − x)/|v2|) .

(c) Let x denote the position of the piston. Obtain effective equation

ẋ = V, V̇ =
m1v

2
1

x
− m2v

2
2

1 − x
.

˙|v1|
|v1|

= − V̇
x

˙|v2|
|v2|

=
V̇

1 − x
.

(d) Deduce from (c) that

v2
1(s) =

v2
1(0)x2(0)

x2(s)
, v2

2(s) =
v2
2(0)(1 − x)2(0)

(1 − x)2(s)

and that the motion of x is periodic with Hamiltonian

1

2

[

V 2 − m1x
2(0)v2

1(0)

x2
− m2(1 − x)2(0)v2

2(0)

(1 − x)2

]

.

(e) Suppose there are several particles of equal mass on each side. Then
if two particles collide they exchange their velocities. Since the particles
are identical we obtain the same piston dynamics if we allow the par-
ticles to pass through each other. Let vl

1, v
l
2 . . . v

l
kl

denote velocities on
the left and vr

1, v
r
2 . . . v

r
kr

denote velocities on the right. Obtain effective
Hamiltonian

H =
1

2

[

V 2 − m1x
2(0)

x2

∑

k

(vl
k)

2 − m2(1 − x)2(0)

(1 − x)2

∑

k

(vr
k)

2

]

.

Exercise 19. Consider a system of particles and the piston inside a
planar domain D. Assume that billiards in

Dl = D
⋂

{x < a} and Dr = D
⋂

{x > a}
are ergodic. Let Vl(a), Vr(a) denote the areas of Dl(a) and Vl(a) respec-
tively and let Pl(a) = and Pr(a) be their perimeters. Let l(a) = D′

l(a)
be the length of {x = a}⋂D. Show that if the piston is at position x
then frequencies of collisions with left (right) particles are

|vl(r)
k |l(x)

πVl(r)(x)
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and the average velocity transfered to piston is εm1(2)|vl(r)
k |/4. Show

further that the average gain of kinetic energy of a light particle per
collision is

∓εKjl(x)V

2Vl(r)(x)
= ε

Kj

2

d
dt
Vl(r)(x)

Vl(r)(x)
.

Deduce that the motion of the piston has effective Hamiltonian

H =
V 2

2
+
l(x)

2

[

√

Vl(x(0))Kjl(0)

V
3/2
l (x)

−
√

Vr(x(0))Kjr(0)

V
3/2
r (x)

]

.
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3. Hyperbolic systems.

Let M be a compact manifold and f : M →M be a diffeomorphism.
We suppose that f is hyperbolic and mixing in the following sense.

(I) There exists a foliation W with smooth leaves such that f(W(x)) =
W(f(x)).

A collection P of sets each of which belong to a single leaf of W is
called an almost Markov family if there are constants r1, r2, v, C, γ such
that ∀P ∈ P

(a) diam(P ) ≤ r1;
(b) Vol(P ) ≥ v;

(c) P = Int(P ), moreover Vol{p : d(p, ∂P ) ≤ ε} ≤ Cεγ;
(d) for any u-set F there are disjoint sets Pi ∈ P such that

⋃

i Pi ⊂ F
and F\⋃i Pi ⊂ {p : d(p, ∂F ) ≤ r2};

(e)
⋃

P P = M.
Almost Markov families exist. For example, if r1and C are large and

v is small then the collection of all sets satisfying (a)–(c) is an almost
Markov family.

To define mixing we describe the measures we consider. Choose an
almost Markov family P. Fix some constants R,α. Let E1(P, R, α) be
the set of the measures given by the following expression: for A ∈ C(M)

ℓ(A) =

∫

P

A(x)eG(x)dx,

where P ∈ P,
(19) |G(x1) −G(x2)| ≤ Rd(x1, x2)

α

and ℓ(1) = 1. We will refer to the above functional as ℓ(P,G) and write
ℓ(P ) for ℓ(P, 0). Let E2(P, R, α) be the convex hall of E1(P, R, α) and

E(P, R, α) = E2(P, R, α). Usually we will drop some of the parameters
P, R, α if it does not cause a confusion. We assume the following.

(II) There exists a measure ν : ∀ℓ ∈ E ∀A ∈ Cβ

(20) |ℓ(A ◦ fn) − ν(A)| ≤ a(n)||A||Cβ

where a(n) < C
n2 . (20) implies that

σ(A) =
∞
∑

n=−∞
ν(A(x)A(fnx))

is finite.
Assumptions (I) and (II) are satisfied e.g. by Anosov diffeomor-

phisms (see Appendix C). Another example is presented below.
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Exercise 20. ([15]) (a) Let R ∈ SLd(Z) be such that Sp(R) does not
contain roots of unity. Consider f : T

d → T
d given by f(x) = Rx

mod 1. Let Γu be the sum of expanding eigenspaces of R and Γcs be
the sum of complimentary eigenspaces. Let π∗ : R

d → Γ∗ denote the
corresponding projections. Prove that ∀λ ∈ Z

d

||πu(λ)|| ≥ Const

||λ||d .

(b) Use (a) to prove that f satisfy the assumptions (I) and (II) with
W(x) = x+ Γu, a(n) = Constθn.

Hints. For (a) Let P (x) = xk +
∑

j ajx
j be the minimal polynomial

of R|Vcs. ∀Q ∃r1 . . . rk−1, and q < Qk such that | rj

q
− aj| ≤ 1

qQ
. Let

PQ(x) = xk +
∑

j
rj

q
xj , then ||PQ(R)λ|| ≥ 1

Q
. Let v = πcsλ then

PQ(R)λ = PQ(R)(λ− v) + PQ(R)(v).

Take Q ∼ Const||λ|| . . .
For (b) use Fourier decomposition.
Consider the sequence zn ∈ R

d given by

(21) zn+1 − zn = εA(zn, f
nx), z0 = a

where function A(z, x) is three times differentiable with respect to z

and the norms ||∂αA(z,·)
∂αz

||(Cβ)d , are uniformly bounded for 0 ≤ |α| ≤ 3.
Let qn be the solution of the averaged equation

qn+1 − qn = εĀ(qn), q0 = a.

where

Ā(q) =

∫

A(q, x)dν(x).

Let DA(z, x) denote the partial derivative of A with respect to z. Let

∆n = zn − qn. Denote ∆ε
t =

∆
[ t
ε ]√
ε
.

Theorem 4. ([19, 7]) ∀P, R, α ∀ℓ ∈ E(P, R, α) the following holds. If
x is distributed according to some ℓ(P.G) then as ε → 0 ∆ε

t converges
weakly to the solution of

d∆(t) = DĀ(q(t))∆dt+ dB

where B is a Gaussian process with independent increments, zero mean
and covariance matrix

(22) < B,B > (t) =

∫ t

0

σ(A(q(s), ·))ds.

The proof will consist of several steps.
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3.1. Multiple Mixing.

Lemma 3.1. Fix k. There are constants C1 and C2 ∀A1, A2 . . . Ak ∈ Cβ

∀ℓ ∈ E
∣

∣

∣

∣

∣

ℓ

(

k
∏

j=1

A(fnjx)

)

−
k
∏

j=1

ν(Aj)

∣

∣

∣

∣

∣

≤ C1

[

a

(

m

C2

)

+ θm

] k
∏

j=1

||Aj||Cβ

where m = min(nj − nj−1), n0 = 0.

Proof. We make induction on k. We can assume that ||Aj|| ≤ 1. For
k = 1 the result holds by Assumption (II).

Let us show how to pass from k to k+1. Denote N = n1+n2

2
. Consider

an almost Markov decomposition fNP = (
⋃

Pj)
⋃

Z. Choose yj ∈ Pj.
We have

∫

P

eG(x)ρP (x)
k+1
∏

j=1

A(fnjx)dx =

∑

j

cjA1(f
−(N−n1)yj)

∫

Pj

eG̃(y)
k+1
∏

j=2

A(fnj−Ny)dy +O(θm)

for some G̃ satisfying (19). The first term is
∑

j

cjA1(f
−(N−n1)yj) =

∫

P

eG(x)A1(f
n1x)dx+O(θm) = ν(A1) +O(θm)

and the second one equals

k+2
∏

j=2

ν(Aj) +O

(

a

(

m

C2(k)

)

+ θm

)

by induction. �

3.2. Moment estimates. Let Aj ∈ Cβ be a sequence of functions

such that ||Aj||Cβ ≤ K, ν(Aj) = 0. Let Sn =
∑n−1

j=0 Aj(f
jx).

Lemma 3.2.

(a)|ℓ(Sn) ≤ Const;

(b)ℓ(S2
n) ≤ Constn;

(c) ℓ(S4
n) ≤ Constn2,

where the constants in (a)–(c) depend only on K but not on sequence
Aj.
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(d) Let A(t, x) be a function defined on [0,T] ×M such that for all
t ∈ [0,T] A(t, ·) ∈ Cβ , ||A(t, ·)||Cβ ≤ K and

∫

A(t, x)dµ(x) = 0. Let

(23) Sε(t) =

[ t
ε
]

∑

j=0

A(εj, f jx)

then as ε→ 0

εℓ(Sε(t)) →
∫ t

0

σ(A(s, ·))ds,
where

σ(A) =
∞
∑

j=−∞
ν(A(A ◦ f j));

(e) The family {√εSε(t)} is tight.

Proof.

(a) |ℓ(Sn)| = |
n−1
∑

j=0

ℓ(Aj(f
jx))| ≤ Const

∑

j

a(j) ≤ Const.

(b) ℓ(S2
n) =

∑

j,k

ℓ(Aj(f
jx)Ak(f

kx)) ≤ Const
∑

j,k

a

( |j − k|
C

)

.

Now for fixed m there are less than 2n pairs (j, k) with |j−k| = m. So

ℓ(S2
n) ≤ Constn

∑

m

a
(m

C

)

≤ Const.

(e) Fix some large M. We have

ℓ(Sε(t)
2) =

n−1
∑

j,k=0

ℓ(A(εj, f jx)A(εk, fkx) =

∑

|j−k|<M

ℓ(A(εj, f jx)A(εk, fkx)+

∑

|j−k|≥M

ℓ(A(εj, f jx)A(εk, fkx) = I + II.

By the argument of (b) |εIIε| ≤ Const
∑

m>M a(m) → 0 as M → ∞.
On the other hand for fixed M the following holds. Let εj → s, then
∑

|k−j|<M

ℓ(A(εj, f jx)A(εk, fkx)) →
∑

|q|<M

ν(A(s, x)A(s, f qx)) = σ(A(s, ·))+oM→∞(1).

Thus

εℓ(S2
ε (t)) →

∫ t

0

σ(A(s, ·))ds+ o(1).
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Letting M → ∞ we obtain (d).

(c) ℓ(S4
n) =

∑

j1,j2,j3,j4

ℓ((Aj1(f
j1x)Aj2(f

j2x)Aj3(f
j3x)Aj4(f

j4x)).

First, let us estimate the terms where not all indices jp are different.
The sum over terms with at most two different indices is bounded by
Const×(the number of terms), hence by Constn2. Also

J =
∑

ℓ(Aj1(f
j1x)Aj2(f

j2x)A2
j3

(f j3x)) ≤ Const
∑

a

(

min jp − jp−1

C

)

.

For fixed m the number of terms with min(nj − nj−1) = m equals
Constn2. Thus

J ≤ Constn2
∑

m

a(m).

Now up to the terms of order n2

ℓ(S4
n) = 12

∑

j3

j3
∑

j1,j2=1

n
∑

j4=j3

ℓ(Aj1(f
j1x)Aj2(f

j2x)Aj3(f
j3x)Aj4(f

j4x))+O(n2)

12
∑

j3

n
∑

j4=j3

ℓ(S2
j3Aj3(f

j3x)Aj4(f
j4x)) +O(n2).

Proposition 3.3. ∀l ∀j3

ℓ

(

n
∑

j4=j3

S2
j3
Aj3(f

j3x)Aj4(f
j4x)

)

≤ Constj3.

Proof. Again it suffices to verify this for l ∈ E1, say ℓ = ℓ(P,G). Con-
sider an almost Markov decomposition f j3P = (

⋃

q Pq)
⋃

Z. Choose
yq ∈ Pq then

∫

P

eG(x)S2
n3

(x)Aj3(fj3x)Aj4(fn4x)dx =

O(θj3) +
∑

q

cqS
2
n3

(yq)
n
∑

j4=j3

∫

Pq

eG̃(y)Aj3(y)Aj4(f
j4−j3y)dy+

∑

q

cq

n
∑

j4=j3

∫

Pq

eG̃(y)ρPq(y)[S
2
n3

(f−j3y) − S2
n3

(yq)]Aj3(y)Aj4(f
j4−j3y)dy =

I + II +O(θj3).
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By Theorem 3.1 I ≤ Const
∑

q cqS
2
j3

(yq). Now Osc
f−j3Pq

S2
j3
≤ Constj3, so

∑

q

cqS
2
j3(yq) ≤ Constj3 + ℓ(S2

j3) ≤ Constj3.

II =
∑

q

cq

n
∑

j4=j3

∫

P

eG̃(y)[Sj3(f
−j3y) − Sj3(yq)][Sj3(f

−j3y) + Sj3(yq)]×

Aj3(y)Aj4(f
j4−j3y)dy =

∑

q

cq

j3−1
∑

k=0

n
∑

j4=j3

∫

P

{

eG̃(y)[Sj3(f
−j3y) − Sj3(yq)][Ak(f

k−j3y) + Ak(f
kyq)]

}

×

Aj3(y)Aj4(f
j4−j3y)dy

The part in brackets is uniformly bounded and uniformly Holder con-
tinuous. Thus by Theorem 3.1 the sum over j4 is uniformly bounded
for any q, k. Hence

II ≤ Const
∑

q

cq
∑

k

1 = Constj3
∑

q

cq ≤ Constj3.

�

Now

ℓ(S4
n) ≤ Const

∑

j<n

j +O(n2) = O(n2).

(e) follows from (c) and (37). This concludes the proof of Lemma
3.2. �

3.3. Convergence to the Gaussian process.

Lemma 3.4. Let Sε(t) be defined as in (23), then as ε → 0 the process√
εSε(t) converges weakly to a Gaussian random process S(t) with zero

mean and covariance matrix

< S(t),S(t) >=

∫ t

0

σ(A(s, ·))ds.

Proof. By Lemma 3.2(e) {Sε(t)} is a tight family so we need only to
verify convergence of finite dimensional distributions. Let us start with
one dimensional distributions. Denote n = 1

ε
. Define

Ŝk =

kn
3
5 −n

1
10

∑

j=(k−1)n
3
5

A(εj, f jx), S̄k =

kn
3
5 −1
∑

j=kn
3
5 −n

1
10

A(εj, f jx),
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S∗(t) =

»

t

n
3
5

–

−1

∑

k=0

Ŝk, S∗∗(t) =

»

t

n
3
5

–

−1

∑

k=0

S̄k.

Then by Lemma 3.2 S∗∗(t) → 0 in L2(l) and, in particular S∗∗(t) → 0

in probability. Let ψk(ξ) = ℓ(ei
√

εŜkξ).

Proposition 3.5.

ψk(ξ) = 1 − ε
2
5σ(A(kε

2
5 , ·))(1 + o(1)).

Proof. We have

ψk(ξ) = El

(

1 + i
√
εŜkξ −

εŜ2
k

2
ξ2 − iε

3
2
Ŝ3

k

6
ξ3 +O

(

ε2hS2
kξ

4
)

)

.

Using Lemma 3.2 we get

ψk(ξ) = 1 − ε
2
5σ(A(s, ·))(1 + o(1)) +O(ε

1
2 + ε

3
5 + ε

4
5 ),

where the main term comes from ε
Ŝ2

k

2
ξ2. This proves the proposition.

�

Let φk(ξ) = ℓ(ei
√

εS∗

kξ).

Proposition 3.6.

(24) lnφk+1(ξ) = lnφk(ξ) − ε
2
5σ
(

A(kε
2
5 , ·)
) ξ2

2
+ o

(

ε
2
5

)

.

Proof. It suffices to verify this for ℓ ∈ E1.
(I) Case k = 0 constitutes Proposition 3.5.

(II) k > 0. Decompose fkn
3
5P = (

⋃

j Pj)
⋃

Z. Let q = kn
3
5 . Choose

yj ∈ Pj . Then
ℓ
(

exp(i
√
εS∗

k+1ξ)
)

=
∑

j

cj exp(i
√
εS∗

k(f
−qyj)ξ)

∫

Pj

ei
√

εS∗

1 (y)ξeG̃(y)dy +O(θn
1
10 ).

By Proposition 3.5
∫

Pj

ei
√

εS∗

1 (y)ξeG̃(y)dy = (1 − ε
2
5σ(A(kε

2
5 , ·))(1 + o(1)).

Hence

φk+1(ξ) =
∑

j

cj exp(i
√
εS∗

k(f
−qyj))(1 − ε

2
5σ(A(kε

2
5 , ·))(1 + o(1))) =

φk(ξ)(1 − ε
2
5σ(A(kε

2
5 , ·))(1 + o(1))) +O(θ−n

1
10 ).

Taking logarithms of both sides we obtain the statement required. �
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Now summing (24) for k = 0 . . . [tn
2
5 ] we get

ln ℓ(ei
√

εS∗(t)ξ) ∼ −ξ
2

2

∫ t

0

σ(A(s, ·))ds.

Since
√
ε[Sε(t)−S∗

ε (t)] → 0 in probability we see that one dimensional
distributions of

√
εSε(t) converge to those of S(t). To consider the gen-

eral case let t1 . . . tr, ξ1 . . . ξr be some numbers. Denote ηj =
∑j

m=1 ξm.
We have

∑

j

ξjSε(tj) =
∑

j

ηj[Sε(tj) − Sε(tj−1)].

By the same argument as in the proof of Proposition 24 we obtain

ln ℓ

(

exp[i
√
ε
∑

j

ξjSε(tj)]

)

∼ −1

2

∑

j

η2
j

∫ tj

tj−1

σ(A(s, ·))ds.

This implies convergence of multidimensional distributions and so proves
Theorem 3.4. �

3.4. End of the proof. We have

∆n+1 − ∆n = ε
[

A(zn, f
nx) − Ā(qn)

]

=

ε
[

A(qn, f
nx) − Ā(qn)

]

+ ε
[

A(zn, f
nx) − Ā(qn, f

nx)
]

.

Using Hadamard Lemma we rewrite the second term as

A(zn, f
nx) − Ā(qn, f

nx) = [DA(qn, f
nx) + ζ(qn, f

nx,∆n)]∆n

where ζ is a smooth function of its arguments, ζ(q, x, 0) = 0. Denote

Qn = DĀ(qn) + ζ̄(qn,∆n),

βn = [DA(qn, f
nx) + ζ(qn, f

nx,∆n) −Qn] ∆n,

γn = A(qn, f
nx) − Ā(qn).

Then our equation can be rewritten as

∆n+1 − ∆n = ε [Qn∆n + βn + γn] .

Define

Θε
t =

√
ε

t/ε
∑

j=1

βj , Γε
t =

√
ε

t/ε
∑

j=1

γj .

Proposition 3.7. (a) As ε → 0, Γε
t converges to B–the Gaussian

process defined by (22);
(b) As ε→ 0, Θε

t → 0.
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Proof. (a) is a special case of Lemma 3.4.

To prove (b) denote ΘN =
∑N

j=n βn, L = ε−1/4. Then

ΘN =





N/L
∑

m=0

(m+1)L−1
∑

n=mL

[DA(qn, f
nx) + ζ(qn, f

nx,∆mL) −Qn] ∆mL



+O(εLN)

=





N/L
∑

m=0

ηm∆mL



 +O(εLN).

Thus

ΘN ≤ Const

[

L+ max
0≤n≤N

|∆n|
∑

m

|ηm|
]

.

Arguing as in the proof of Lemma 3.2 we obtain

Eℓ(|ηm|) ≤ Const
√
L

so E(
∑

m |ηm|) ≤ ConstN/
√
L. On the other hand part (a) suffices to

conclude via Lemma 1.1 that given δ > 0 there exists K > 0 such that
ℓ(sup0≤n≤N |∆n| > K

√
ε) < δ. (b) follows. �

Now the proof of Theorem 4 is concluded as the proof of Theorem
1.

Exercise 21. Prove part (c) of Theorem 1 in present setting.

3.5. Fully coupled dynamics. Now we want to extend the results of
the previous subsection to the system

(25) xn+1 = f(xn, zn)

(26) zn+1 − zn = εA(zn, f
nx), z0 = a

where for each z the map x → fz(x) := f(x, z) is Anosov. So in case
fz ≡ f we get the results of the previous subsection. The results of the
previous subsection depended on the mixing of Anosov systems given
by Corollary C.2. Now since points with different z coordinate have
different x images we can not work with one f any longer and have to
consider map Fε : M × R

d → M × R
d given by

Fε(x, z) = (fz(x), z + εA(z, x)).

Our first goal is to define standard pairs for F. Observe that F (x, z) :=
F0(x, z) = (fz(x), z). This map is partially hyperbolic. Namely we have
the splitting

T (M × R
d) = Eu ⊕ Es ⊕ Ec
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where Eu(x, z) and Es(x, z) are Anosov subspaces for (x, z) and Ec =
(0,Rd). Thus for small ε Fε is also partially hyperbolic and it preserves
cones

(27) Ku = {vu + vs + vc : ||vs|| ≤ δ||v0||, ||vc|| ≤ ||v0||}.
Define standard pairs as in Appendix C with cone family given by (27).
Let E be the set of measures corresponding to the standard pairs, E1

be the convex hall of E and E2 be the closure of E1. Let

Ā =

∫

A(z, x)dνz
SRB(x),

where νz
SRB(x) is the SRB measure for fz. Fix some z∗ and let q(t) be

the solution of dq
dt

= Ā(q), q(0) = z∗ and ∆ε
t =

zε
t/ε

−q(t)
√

ε
. Let

σαβ(z) =
∞
∑

n=−∞

∫

(Aα(x, z) − Āα)(Aβ(fn
z x, z) − Āβ)dνz

SRB(x).

Theorem 5. ([2, 9]) If x is distributed according to some measure from
E2 and |z−z∗| ≤ Constε. As ε → 0 ∆ε

t converges weakly to the solution
of

Delta(t) =

∫ t

0

DĀ(q(s))∆(s)ds+B(t)

where B is a Gaussian process with independent increments, zero mean
and covariance matrix

(28) < B,B > (t) =

∫ t

0

σ(q(s))ds.

We now state an extension of Corollary C.2 needed to prove Theorem
5.

Corollary 3.8. If B(z, x) is such that for each z
∫

B(z, x)dνz
SRB(x) = 0

Then for any standard pair ℓ

(29) |Eℓ(B ◦ F n
ε )| ≤ Const (θn + ε) ||A||C2.

Corollary 3.8 is proven in the next subsections. Here we explain why
this corollary implies the theorem. The point is that our proof of The-
orem 4 was based on moment estimates of Lemma 3.2 and the fact that
standard pairs form a Markov family. Now the almost Markov prop-
erty still holds for arbitrary partially hyperbolic systems, in particulr
for Fε. On the other hand in the proof of Lemma 3.2 we bound error

terms by
∑1/ε

n=1 a(n) and we used that this sum is uniformly bounded
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by
∑∞

n=1 a(n). Now we have instead
∑1/ε

n=1 (θn + ε) which is also uni-
formly bounded. The rest of the proof of Theorem 5 proceeds as the
proof of Theorem 4.

3.6. Proof of Corollary 3.8. Here we explain key ideas of the proof of
Corollary 3.8. Details can be found in [8, 9]. We first present the proof
for the uncoupled case then fz ≡ f. If (D, ρ) is a standard pair let D̄ =
πM(D). Then D = {(x, z̄ + εQ(x)) x ∈ D̄} where (x̄, z̄) is some point
in D. Then F n

ε (x, z) = (fnx, z̄ + εQ(x) +
∑n−1

k=0 A(z̄, fkx) + O(ε2n2)).
Now consider two cases.

(I) n ≤ C| ln ε|. Then B(F n
ε (x, z))

= B(fnx, z̄)+εDzB(fnx, z̄)Q(x)+ε
n−1
∑

k=0

DzB(fnx, z̄)A(fkx, z̄)+O(ε2n2).

To check (29) we need to bound three integrals. By Corollary C.2
∫

D̄

B(fnx)ρ(x)dx = O(θn)

since νSRB(B) = 0.
∫

D̄

DzB(fnx, z)Q(x)ρ(x) =

∫

DzB(x, z)dνSRB

∫

D̄

Q(x)ρ(x)dx+O(θn) = O(θn)

since
∫

DzBdνSRB = Dz

∫

BdνSRB = 0.

Also Lemma 3.1 imply that
∫

D̄

DzB(fnx, z̄)A(z̄, fkx)dνSRBρ(x)dx = O(θn−k).

Hence
∑

k . . . converges uniformly and the main contribution comes
from the terms where m := n− k is of order 1. Now for fixed m
∫

D̄

DzB(fnx, z̄)A(z̄, fn−mx)dνSRBρ(x)dx =

∫

DzB(x, z̄)A(z̄, f−mx)dx+O(θn).

Thus the LHS of (29) is asymptotic to

ε
∞
∑

m=1

∫

DzB(x, z̄)A(z̄, f−mx)dνSRBx

with error term O(ε2| ln ε|2 + θn).
Now in case (II) n > C| ln ε| we need to show that the RHS of (29) is

O(ε) so we let n1 = n−C| ln ε|/2 use the almost Markov decomposition

Eℓ(H(F n1
ε x)) =

∑

j

cjℓj(H) +O(θn1||H||C0).
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Applying part (I) to each ℓj we get (29) in the uncoupled case.
The proof in the coupled case follows the same strategy (shadowing

of the Fε-orbits by F -orbits) but it there are additional difficulties
which we now describe. The point is that now it is no longer true that
for n ∼ | ln ε| F n

ε q is close to F nq. Indeed the x-distance between Fεq
and Fq is O(ε) and even if there were no extra perturbations at the
following iterations still exponential expansion of Anosov diffeos would
imply that the distance between F n−1(Fq) and F n−1(Fεq) grows as
Constn. However it is still true that F n

ε D is close to F nD. To be precise
for each q ∈ D we find pn ∈ D such that F n

ε pn = expF nq(Zn) where
Zn ∈ Ec ⊕ Es. Then an inductive argument shows that

Zn+1 = πn+1(DF (Zn + εY ))

where

Y =
dF

dε
|ε=0 ◦ F−1 := (X,A)

and πn is the projection to Ec ⊕ Es along T (F nD). Now for large n
T (F nD) is very close to Eu so we have

(30) Zn ∼ ε(V (F nq),
n−1
∑

k=0

A(F nq)

where V =
∑∞

m=1 df
m
z (Xs). The second component in (30) is the same

as before but the first contributes another term
∫

∂VBdν
z
SRB.

However there is another term which gets out of control. Namely we
want to estimate

∫

D

B(F n
ε pn)ρ(pn)dpn

rather than
∫

D

B(F n
ε pn)ρ(q)dq.

Now replacing ρ(q) by ρ(pn) causes little difficulty since if we consider q
as a function of pn than we see that the map pn → ρ(q(pn)) is uniformly
Holder continuous and our mixing result only use the Holder norm of
ρ. Next we have F n+1pn+1 = expF n+1pn

Rn where

Rn ∼ −(1 − πn+1)(εY ).

We would like to use the fact that

dpj+1

dpj
= 1 − εdiv(1 − πn+1Y ) +O(ε2| ln ε|)
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and so

dpn = dq
∏

j

dpj+1

dpj

= dq

[

(1 − (
∑

j

εdiv(1 − πj+1Y )) +O(ε2| ln2 ε|)
]

which would allow to reduce the contribution of dq
dpn

to a correlation sum
as above. However Es and hence πn+1 is not smooth so the divergence
term can blow up. So we modify our strategy as follows. Let Eas be
a smooth distribution near Es. We search for pn such that F n

ε pn =
expF nq(Z̄n) where Z̄n ∈ Ec ⊕ Eas. Then we get

Zn+1 = π̄n+1(DF (Z̄n + εY ))

where π̄n is the projection to Ec ⊕ Eas along T (F nV ). Thus

Zn ∼ εV̄ + ε
∑

k

(0, A(F kq))

where V̄ =
∑

m ΓmXas, Γm = π̄dF π̄dF . . . π̄dF and π̄ is the projection
to Ec ⊕ Eas along Eu. On the other hand we can now show that in a
weak sense

dpn+1

dπn
∼ −εdiv

[

(1 − π̄)V̄ +Xu

]

.

This allows to show that for n ∼ C| ln ε| the RHS of (29) is asymptotic
to

ε

[

∑

m

DzB(q)A(F−mq)dνz
SRB(q) +

∫

(∂V̄B)(q)dνz
SRB(q)−

∑

m

divu((1 − π̄)V̄ +Xu)(F
−mq)B(q)dνz

SRB(q)

]

.

This completes the proof of (29) and so Theorem 5 is proven.
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4. Fixed points.

4.1. Ornstein-Uhlembeck process. If W (t) is BM(σ) and A is a
constant matrix the Ornstein-Uhlembeck process is the solution of the
following equation

Z(t) − Z(0) =

∫ t

0

AZ(s)ds+W (t).

We shall denote this process by OU(A, σ). By Exercise 1 OU(A, σ) is
Gaussian with zero mean and varaince

∫ t

0

e(t−s)Aσ(e(t−s)A)∗ds.

To describe its asymptotic properties we distinguish three cases.
(I) Sp(A) has negative real part. As t → ∞ Z(t) converges weakly

to

(31) N
(

0,

∫ ∞

0

etAσ(etA)∗ds

)

.

(II) Sp(A) has positive real part. Let Y (t) = e−tAZ(t), then as
t→ ∞ Y (t) converges weakly to

N
(

0,

∫ ∞

0

e−tAσ(e−tA)∗ds

)

.

(III) A has some eigenvalues with positive real part. Split R
d =

V1 ⊕ V2 where V1 corresponds to positive and V2 to non-positive parts
of the spectrum. Let A1 = A|Vi

. If r is a smallest real part of a positive
eigenvalue we can write

Z(t) = ert
[

et(A1−r)Y1(t) +O(e−rt)
]

where Y1(t) converges weakly to

N
(

0,

∫ ∞

0

e−tA1σ|V1(e
−tA1)∗ds

)

.

For the rest of this section we shall deal with the setting of Section
1 where x0 = 0 and 0 is a fixed point of F̄ . Let

A = DF̄ (0), σα,β = E(Fα(0, ω)Fβ(0, ω)).

We restate Theorem 1 in this setting.

Proposition 4.1. As t→ ∞ xε
[t/ε] converges weakly to OU(A, σ).
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Exercise 22. Consider a particle in a small time random field in the
presence of friction.

d2x

dt2
= εF (t, ω) − k

dx

dt
.

Suppose that |F | < Const, F is constant on [n, n+1), the values of F at
different intervals (with integer ends) are independent and identically
distributed and

E(F ) = 0, E(F 2) = σ.

Show that as ε→ 0
√
εxε(t/ε) converges to the integral of OU(−k, σ).

4.2. Hyperbolic fixed point. In this subsection we suppose that 0
is hyperbolic fixed point for F̄ .

Theorem 6. ([18]) Let U be a small neighbourhood of 0. Then there
exists C > 0 such that for all σ > 0 for all δ > 0 there is ε0 such that
for ε ≤ ε0 we have

P(xn exits U before time Cε| ln ε| and the point of exit is within
distance σ from W u(0)) ≥ 1 − δ.

Proof. We can choose coordinates (p, q) ∈ R
u × R

s such that W u(x) is
given by q = 0 and W s(0) is given by p = 0. (This coordinate change
changes (1) to (7) but this will not distrupt our argument).

We write xn = (pn, qn). The analysis of Subsection 4.1 implies that
for each R there exists T0 such that

P(|pn| > R
√
ε) ≥ 1 − δ/10.

Now for this T0 there is R̄ such that

P(|qn| ≤ R̄
√
ε) ≥ 1 − δ/10.

Next, if U is small enough then there exists λ > 0 such that the aver-
aged system has the following property

if (p̄(0), q̄(0)) ∈ U then

|p̄(1)| ≥ (1 + λ)|p̄(0)| |q(1)| ≤ (1 + λ)−1|q̄(0)|.
It follows that for the actual system there are constants C̃1, C̃2, σ0

P(|p1/
√

ε| ≤ (1 +
λ

2
)|p0|) ≤ C̃1 exp(−tC2(|p0|/

√
ε)2),

P(|q1/
√

ε| ≥ (1 +
λ

2
)−1|q0| + ε1/2−σ0) ≤ C̃1 exp(−tC2ε

−2σ0).

Let nk = T0+k
ε
. Denote

A0 = {|pT0/ε| > R
√
ε, |qT0/ε| < R̄

√
ε}
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Ak = {(pj, qj) has exited U by the time nk or |pnk+1
| > (1 + λ

2
)|pnk

|,
|qnk+1

| < (1 + λ
2
)|qnk

| + ε1/2−σ0}. for k ≥ 1. Then by induction

P

(

k
⋂

j=1

|A0

)

≤ 1 −
k
∑

j=1

C̃1 exp(−C̃2(1 +
λ

2
)j) + k exp(−ε−2σ0).

Now if all Aj take place for j = 0, 1, 2 . . .m := (C| ln ε|/2) and C is
large enough then the the first alternative of Am must prevail. �

Exercise 23. Let W u(0) be one dimensional, so that W u(0) − {0}
consists of two halves which we call W u

1 and W u
2 . Show that

lim
ε→0

P (The exit point is near W u
1 ) =

1

2
.

We now revisit the urn model of Subsection 1.3 in case k ≥ 2. We
use the notation of Subsection 1.3. Let ρn = xn

yn
. Denote

a =
d

dρ
|ρ=1

(

P (ρ, 1) − ρP (1, ρ)

P (ρ, 1) + P (1, ρ)

)

.

Exercise 24. (a) Show that a > 0.

(b) Show that (ρε
[t/ε]−1)/

√
ε→ R(t) where R(t) =

∫ t

0
aR(s)ds+W (t)

where

EW (t) = 0, EW 2(t) =

∫ t

0

2e2a(t−s)ds

(1 + 2s)2
.

(c) Show that for large t

(1 + 2t)

eat
R(t) → N

(

0,
2

a

)

.

(d) Show that 1 is not a limit point of ρn.

Exercise 25. Let N be a compact normally hyperbolic manifold for F̄ .
Let U be a small neighbourhood of N. Prove that there exists C > 0
such that for all σ > 0 for all δ > 0 there is ε0 such that for ε ≤ ε0 we
have

P(xn exits U before time Cε| ln ε| and the point of exit is within
distance σ from W u(N)) ≥ 1 − δ.

Exercise 26. Let x̄(t) be a hyperbolic trajectory for F̄ . Let Nδ is the
first time dist(xN , x̄(Nε)) ≥ δ. Show that if δ is small enough then
there is C > 0 such that for all σ > 0

P(Nδ > C| ln ε| or dist(xNδ
, x̄(Nδε)) ≥ σ) → 0 as ε → 0.
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4.3. Attracting fixed point. In this section we suppose that 0 is an
attracting fixed point for F̄ . Proposition 4.1 and (31) imply that if
T (ε)ε tends to infinity not too fast then xT (ε)/

√
ε→ N (0, σ̂), where

σ̂ =

∫ ∞

0

etAσ(etA)∗dt,

A = DF̄ (0), σαβ = E(Fα(0, ω)Fβ(0, ω)). Below we give a precise esti-
mate on a possible growth of T (ε).

Theorem 7. ([12]) There is δ > 0 such that if εT (ε) → ∞, T (ε)/eδ/ε →
0 then xT (ε)/

√
ε→ N (0, σ̂).

Proof. Let C be a large constant. By taking a subsequance we can
assume that for small ε either we always have T (ε) ≥ C| ln ε|/ε or for
small ε either we always have T (ε) < C| ln ε|/ε. Consider the first case
first. Divide the interval [0, T (ε)] into subintervals of length C/ε. Let
x(j) = xCj/ε. Let Φ be a time C map of the vectorfield F̄ . Then by
Theorem 1

x(j+1) = Φ(x(j)) + ξj

where ξj/
√
ε is asymptotically Gaussian and

P(|ξj| > ε1/2−δ) ≤ C1e
−C2ε−2δ

.

Hence
P(max

j
|ξj| > ε1/2−δ) ≤ C1| ln ε|e−C2ε−2δ

.

Now if maxj |ξj| ≤ ε1/2−δ then also maxj |x(j)| ≤ Constε1/2−δ and so
Φ(x(j) = Bx(j) +
betaj where B = eCA and |βj | ≤ Constε1−2δ. Thus

x(n) =
∑

j

Bjξn−j +O(ε1−δ).

and the result follows.
In the second case we apply the above reasoning to the last orbit

segment of length C| ln ε|/ε. Let m = C| ln ε|. We get

x(n) =

m−1
∑

j=0

Bjξn−j +Bmx(n−m) +O(ε1−δ)

and the the result follows as before provided that we know that P(|x(n−m)| <
ε1/2−δ) is close to 1. Thus the theorem follows from the next esti-
mate. �

Lemma 4.2. There exist C̄1, C̄2, C̄3, C̄4 such that

P(|x(j)| > R
√
ε) ≤ C̄1e

−C̄2R2

+ C̄3je
−C̄4/ε.
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Proof. Let U be a neighbourhood of 0 such that if x ∈ U then |Φ(x)| ≤
|x|/2. Thus there exists c > 0 such that x(k) ∈ U if maxj≤k |ξj| ≤ c. Let
yj be the process defines similar to x(j) except that if yj exist U we set

yj = 0. Then P(yj 6= xj) ≤ C̄3je
−C̄4/ε so it is enouth to show that

P(|yj| > R
√
ε) ≤ C̄1e

−C̄2/εR2

.

But this can be easily proven by induction using the estimate

P(|yj+1| > R
√
ε) ≤ P

(

|yj| >
3R

√
ε

2

)

+ P

(

|ξj| >
R
√
ε

4

)

.

�

Exercise 27. Consider a product of random marices

(32) Mn+1 = (1 + εQn)Mn

where Qn are independent and of bounded support. Let A = E(Q).
Suppose that A has simple real spectrum. Let λ be the leading eigenvalue
and e be a leading eigenvector.

(a) Let un = Mnu for a fixed vector u and vn = un/||un||. Show
that if n ≫ | ln ε|/ε then vn is close to ±e with probability close to 1.
Deduce that if

Λε = lim
n→∞

ln ||Mn||
n

is the Lyapunov exponent of (32) then Λε

ε
→ λ.

(b) Show that moreover vn∓e√
ε

converges to Gaussian random vector

with zero mean. Deduce that there exists the limit

lim
ε→0

Λε − ελ

ε2
.

Hint. Consider the flow on the unit sphere corresponding to vn.
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5. Diffusive regime.

5.1. The result. In this section we consider recurrence (1) in case
F̄ ≡ 0. We shall use the following statement.

Theorem 8. ([27]) Let σ, b satisfy the conditions of Proposition B.1.
Then for each x0 there exists unique process X(t) such that X(0) = x0

and for all functions φ ∈ BC2(Rd) we have

φ(X(t)) − φ(X(0)) −
∫ t

0

(Lφ)(X(s))ds

is a martingale. That is for any s1 ≤ s2 ≤ sk for any ψj ∈ BC0(Rd)
for any sk ≤ t1 ≤ t2 we have
(33)

E

(

[

φ(X(t2)) − φ(X(t1)) −
∫ t

0

(Lφ)(X(s))ds

]

∏

j

ψj(X(sj))

)

= 0.

We call the processes satisfying (33) diffusion processes with diffusion
matrix σ and drift b or simply the diffusion with characteristics (b, σ).

We postpone the proof of Theorem 8 till subsection 5.3 and first
derive the following corollary.

Consider the recurrence

(34) xε
n+1 − xε

n = εF (xε
n, ωn) + ε2G(xn, ωn) + ε3H(xn, ωn, ε), x0 = a

where {F (·, ωn), G(·, ω)} are independent identically distributed func-
tions that F,G,H take values in a ball of fixed radius (independent of
x) and that for each k1, k2 . . . kd, m1, m2 . . . md the map

x→ E

(

d
∏

l=1

F kl

(l)(x, ω)

d
∏

l=1

Gml

(l) (x, ω)

)

is smooth and has two bounded derivatives. Assume that for all x
Ex(F (x, ω)) = 0 and

σαβ(x)(x) = E
((

F(α)(x, ω) − F̄(α)(x)
) (

F(β)(x, ω) − F̄(β)(x)
))

.

bα(x) = Ex(Gα) satisfy the condition of Proposition B.1.

Theorem 9. ([17]) Define Xε
t by setting Xε

n/ε = xε
n/ε and interpolating

linearly in between. Then as ε0 Xε
t converges to X(t) the diffusion

process with characteristics (b, σ).
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5.2. Averaging. The proof of Theorem 9 relies on the following a
priori estimate.

Lemma 5.1. There exists a constant C such that

E |Xn2 −Xn1 |4 ≤ Constε4(n2 − n1)
2.

Consequently {xε
t} is tight.

Exercise 28. Prove Lemma 5.1 by the argument of Lemma 1.3.

Proof of Theorem 9. Let φ be a smooth bounded function. We have

φ(xn+1) − φ(xn) = εDφ(F ) + ε2

[

Dφ(G) +
1

2
Dφ(F, F )

]

+O(ε3).

Using that E(·) = E(E(·|Fn)) we get

Ex(φ(xn+1) − φ(xn)) = ε2
Ex ((Lφ) (xn)) +O(ε3).

Summing over and passing to a weak limit we obtain

E(φ(X(t)) − φ(X(0)) =

∫ t

0

(Lφ)(Xs)ds.

Likewise by the Markov property

Ex

([

φ(xn2) − φ(xn1) − ε2

(

n2−1
∑

n=n1

Ex ((Lφ) (xn))

)]

∏

j

ψj(x[sjε−2])

)

= O(ε)

which implies (33). �

5.3. Solvability of the martingale problem.

Proof. Existence follows by Theorem 9. To get uniqueness we begin by
analyzing the relation

(35) E (φ(X(t)) − φ(X(0))) = E

(
∫ t

0

(Lφ)(X(s))ds

)

.

Approximating smooth bounded functions of (t, x) by sums of prod-
ucts φ1(x)φ2(t) we see that for any function u(t, x) with two bounded
x-derivatives and one bounded t derivative we have

(36) E(u(t, X(t)) − u(0, X(0))) = E

(
∫ t

0

(∂t + Lu) (X(s))ds

)

.

Now let u satisfy

∂tu+ Lu = 0, u(t, x) = φ(x)

then the last equation becomes u(0, x) = Ex(φ(X(t))). In other words
(36) completely describes the one dimensional distributions of X(t).
Likewise (33) shows that for any s1, s2 . . . sk the distribution of Xt2
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conditioned on X(s1), X(s2) . . .X(sk), X(t1) is the same as the distri-
bution of X(t2 − t1) starting from X(t1). In other words our process is
Markov and (36) describes its transition density. �

5.4. Extensions. The assumptions of Proposition B.1 are often too
restrictive.

Exercise 29. Prove the uniqueness of the limit in Theorem 9 without
the assumption (41).

Hint. By continuity < D(x)v, v >≥ c||v||2 in any compact domain
D. Modify F outside a large ball to get (41) globally. Use Lemma 5.1
to show that if the ball is large enough then the new process differs
little from the old one.

Exercise 30. Prove Theorem 9 with boundness assumption on G re-
placed by

||G||C2(B(0,R)) ≤ ConstR, ExG(x, ω) = Ax.

Hint. Get a priori bounds on ln ||xn||2.
Exercise 31. Let x be a diffusion process on R

1 with characteristics
(a(x), σ2(x)). Let φ : R

1 → R
1 be a diffeomorphism with inverse ψ.

Show that under the appropriate assumptions on φ and its derivatives
yt = φ(xt) is a diffusion process with characteristics

(φ′a +
1

2
φ′′a2, (φ′σ)2) ◦ ψ.

Exercise 32. (a) Show that OU(A, σ) is a diffusion process with char-
acteristics (Ax, σ).

(b) Use (a) and Theorem 9 to give an alternative proof of Proposition
4.1 (without using Theorem 1).
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Appendix A. Random processes.

A.1. Weak convergence. Here we give some background about ran-
dom processes. More information can be found in [3]. By a continuous
random process X we mean a measure P

X on C([0, T ],Rd) for some
T, d. We say that a family {Xε(t)} converges to X(t) if P

Xε
converge

to P
X . We say that a family {Xε(t)} is tight if given η > 0 there is a

compact subset Kη ⊂ C([0, T ],Rd) such that for all ε P
Xε

(K) > 1− η.
Given a random process X and t1, t2 . . . tm let µX

t1,t2...tm denote the mea-
sure

µX
t1,t2...tm(Ω) = P

X((X(t1), X(t2) . . .X(tm)) ∈ Ω).

We call these measures finite dimensional distributions of X. Then
{Xε(t)} converge to X(t) if {Xε(t)} is tight and the finite dimensional
distribution converge. Finally if Xε(0) are uniformly bounded then in
order to check that the tightness it suffices to show that there exists a
constant C such that for all ε and for all 0 ≤ t1 ≤ t2 ≤ T we have

(37) P
(

[X(t2) −X(t1)]
4) ≤ C(t2 − t1)

2.

A.2. Gaussian processes. A random vector in R
d is called Gaussian

with mean µ and variance σ if

(38) E(exp(is < X, v >)) = exp

(

is < µ, v > −s
2 < σv, v >

2

)

.

We shall write in this case X ∼ N (µ, σ).
(38) imply the following.
(1) If X1 and X2 are independent, Xi ∼ N (µi, σi) then

(39) X1 +X2 ∼ N (µ1 + µ2, σ1 + σ2).

(2) If X ∼ N (µ, σ) and A is a deterministic matrix then

(40) AX ∼ N (Aµ,AσA∗)

A Brownian Motion is a Gaussian process started at 0 with zero
mean, independent increments and the variance

E(Zα(t)Zβ(t)) = tσαβ .

We shall denote such Brownian Motion BM(σ).
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Appendix B. Parabolic equations.

Let BCk(Rd) denote the space of functions R
d → R such that the

function and its first k derivatives are bounded and uniformly contin-
uous.

We use the following result (see [23]).

Proposition B.1. Consider the following operator on BC2(Rd).

(Lφ)(x) =
∑

αβ

σαβ(x)(∂α∂βφ)(x) +
∑

α

bα(x)(∂αφ)(x)

where σ and b are bounded and uniformly Holder continuous. Assume
also that σ is positive selfadjoint and

(41) < σ(x)v, v >≥ c||v||2.
Then for any bounded uniformly Holder continuous function φ(x) the
Cauchy problem

∂tu+ Lu = 0, u(t, x) = φ(x)

is well posed on [0, t].
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Appendix C. Anosov diffeomorphisms.

A diffeomorphism f : M → M is called Anosov if there exists an
f -invariant splitting TM = Eu ⊕ Es and constants C > 0, θ < 1 such
that

∀v ∈ Es ||dfn(v)|| ≤ Cθn||v||,
∀v ∈ Eu ||df−n(v)|| ≤ Cθn||v||,

We shall use the properties of Anosov diffeomorphisms summarized
below. See e.g. [5, 14].

Proposition C.1. (a) E∗ are uniquely integrable. Thus for any x there
is a smooth submanifold W ∗(x) such that TW ∗(x) = E∗. Moreover

if x2 ∈W s(x1) then d(fnx1, f
nx2) ≤ Cθn

if x2 ∈ W u(x1) then d(f−nx1, f
−nx2) ≤ Cθn.

W ∗ are smooth but the foliations W s are not. However W s are
Holder and absolutely continuous. In particular the enjoy properties
(b) and (c) below.

(b) Let V1, V2 be transversal to Es and ps : V1 → V2 be the projection
along W s leaves then

d(psx1, psx2) ≤ Cdα(x1, x2).

(c) The Jacobian J(ps) is uniformly bounded away from 0 and ∞.
Moreover if d(x, psx) ≤ δ and d(TV1(x), TV2(psx)) ≤ δ then

|J(ps) − 1| ≤ Cδα.

(d) Let Ku = vu + vs : ||vs|| ≤ δ||vu|| then df(Ku(x)) ⊂ Ku(fx).

Call ℓ = (D, ρ) a standard pair if D is a submanifold, dim(D) =
dim(Eu), TD ∈ Ku, diam(D) < R,

(42) mes(∂εD) ≤ Cεγ,
∫

D
ρdx = 1 and | ln ρ(x1)−ln ρ(x2)| ≤ Cd(x1, x2).Denote Eℓ =

∫

D
A(x)ρ(x)dx.

We assume that f is topologically mixing.
The main result of this section is the following.

Theorem 10. If ℓ1 and ℓ2 are standard pairs then

|Eℓ1(A ◦ fn) − Eℓ2(A ◦ fn)| ≤ Constθn||A||Cα.

Corollary C.2. There exists an (invariant) measure ν such that for
any standard pair ℓ

|Eℓ(A ◦ fn) − ν(A)| ≤ Constθn||A||Cα.
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Proof. Call a probability measure µ admissible if it has a decomposition

µ(Ω) =

∫

Λ

Eℓα(Ω)dζ(α)

where ℓα satisfy all of the conditions of the standard pairs except that
(42) is replaced by µ(∂εD) ≤ Cεγ, for ε ≤ ε0. We claim that Theorem
10 implies that for any admissible µ1, µ2

(43) |µ1(A ◦ fn) − µ2(A ◦ fn)| ≤ Constθn||A||Cα.

Let us prove (43).
Observe that, the set admissible measures is invariant. Indeed

Eℓ(A ◦ f) =

∫

fD

A(y)ρ̃(y)dy

where ρ̃(y) = ρ(f−1y) det(df |TD)(f−1y), so

|ln ρ̃(y1) − ln ρ̃(y2)|

≤
∣

∣ln ρ(f−1y1) − ln ρ(f−2y2)
∣

∣+
∣

∣ln det(df |TD)(f−1y1) − ln det(df |TD)(f−1y2)
∣

∣

preserving the density estimate. Also ∂ε(fD) ⊂ f(∂θε(D)) so boundary
regularity improves. However we necessary have diameter bound. To
get it we must cut fD into N pieces N = N(f, R) which worsens our
bound by ConstNε. So if µ̃ = fµ then

µ̃(∂εDα < ε) ≤ Cθγεγ+C̄Nε = εγ
(

Cθγ + C̄Nε1−γ
)

≤ εγ
(

Cθγ + C̄Nε1−γ
0

)

and the last factor is less than C if ε0 is small enough.
Moreover the above argument actually implies that fnµ = µ̄ + ¯̄µ

where µ̄ is admissible with all lα standard and ¯̄µ(1) ≤ Cθ̃n. Fix an
arbitrary standard pair ℓ0. Then if µ1, µ2 are admissible then fn/2µj =
µ̄1 + ¯̄µj and

∣

∣µ̄j(A ◦ fn/2 − µ̄2(A ◦ fn/2)
∣

∣ ≤ Cθn/2||A||Cα

verifying (43). By invariance for any admissible µ the sequence {µ(A ◦
fn)} is Cauchy with exponentially small difference. This gives Corol-
lary C.2. �

Also since any smooth foliation with leaves in Ku can be cut into
standard pieces Corollary C.2 implies

Corollary C.3.
∣

∣

∣

∣

∫

M

A(fnx)B(x)dx− ν(A)

∫

M

B(x)dx

∣

∣

∣

∣

≤ Constθn.
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Proof of Theorem 10. We use coupling approach (see [28, 4]). We want
to divide fnD1 and fnD2 into pieces which are close to each other
and compare the integrals over nearby pieces using Proposition C.1.
However since distortion is nonuniform some pieces of fnDj are heavier
than others, so it makes sense to couple each heavy piece of D1 to
several light pieces of D2. In fact it is more convenient to spit each
point into infinitely many pieces. To this end we introduce an auxiliary
object. Let Yj = Dj × [0, 1]. Equip it with the measure mj given by
dmj = ρj(x)dxdt. The technical core of the coupling argument is the
following.

Lemma C.4. There exists a measure preserving map τ : Y1 → Y2 and
a function R : Y1 → N such that

(a) If τ(x, t) = (y, s) then ∀n > R(x, t)

d(fnx, fny) ≤ Constθn−R.

(b) m1(R > n) ≤ Cθn.

Write fn(x, t) = (fnx, t). Lemma C.4 implies Theorem 10 since
∫

D1

A(fnx)ρ1(x)dx−
∫

D2

A(fnx)ρ2(x)dx

=

∫∫

Y1

A(fnx)m1(x, t)dx−
∫∫

Y2

A(fnx)dm2(x, t)dx

=

∫∫

Y1

[A(fnx) −A(fnτx)] dm1(x, t) = I + II

where I denotes the integral over {R ≤ n/2} and II denotes the integral
over {R > n/2}. Then I = O(θnα/2 by (a) and II = O(θn) by (b). �

Proof of Lemma C.4. We need to construct τ and R as above. Let Y be
the set of rectangles corresponding to the standard pairs. We describe
the algorithm to couple Y1, Y2 ∈ Y . It works recursively. During the
first run we define the coupling map between subsets P∞

j ⊂ Yj. For
points where τ is not defined we define recovery time S(ω) such that
P n

j = {ω ∈ Yj : S(ω) = n} will be of the form
⋃

k f
−nYjkn, Yjkn ∈ Y ,

m1(
⋃

k Y1kn) = m2(
⋃

k Y2kn). We then use our algorithm recursively
to couple

⋃

k Y1kn to
⋃

k Y2kn. More precisely we can further subdivide
Yjkn so that the new subdivision (which we still call {Yjkn}) satisfies
m1(Y1kn) = m2(Y2kn). Let Yjkn = Djkn×Ijkn. Let rjkn be the orientation
preserving affine map between Ijkn and [0, 1] and set Ȳjkn = Djkn ×
[0, 1]. We equip Ȳjnk with the measure dm̄jkn = ρ̄jkndxdt where ρ̄jkn =
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|Ijkn|ρjkn. Denote ∆jkn(x, t) = (fnx, rjknt). Let taujkn and Rjkn be the
coupling map and coupling time for the pair (Y1kn, Y2kn). Set

τ =

{

τfirst run on P∞
1

∆−1
2nkτ1kn∆1kn on f−n(Y1kn)

,

R =

{

0 on P∞
1

n + τ1kn ◦ ∆1kn on f−n(Y1kn)
.

We now describe the first run of our algorithm. Observe that for any
there is a constant ε1 such that for any (D, ρ) forming a standard pair
there is x ∈ D such that D ⊃ B(x, ε1). Now by the topological mixing
assumption there are n0, r such that for any D1, D2 there is x1 ∈ D1

such that for all z ∈ B(fn0x1, r) the intersection W s
δ (z)

⋂

fn0D2 6= ∅.
We let

c1 =

∫

f−n0B(x1,r)

ρ1dx, c2 =

∫

f−n0psB(x1,r)

ρ2dx,

(t̄1, t̄2) =

{

(1, c1/c2) if c2 > c1

(c2/c1, 1) if c1 ≥ c2
.

We define Qn0
1 = f−n0B(x1, r) × [0, t1], Q

n0
2 = f−n0psB(x1, r) and set

S̃ = n0 on P̃ n0
j = Yj − Qn0

j . We now proceed to define P̃ n
j inductively

for n > n0. Let Qn−1
j = Yj −

⋃

j P̃
n
j . We assume by induction that

fn−1Qn−1
j =

⋃

k Zjk(n−1) where Zjk(n−1) = Djk(n−1) × [0, tjk(n−1)] and
m1(Z1k(n−1)) = m2(Z2k(n−1), D2k(n−1) = psD1k(n−1). Divide f(Djk(n−1)

into standard pieces f(D1kn− 1) =
⋂

l D1kln and let D2kln = ps(D1kln).
In general m1(D1kln) 6= m2(D2kln), so we cut off the top of the larger

rectangle. Call the trimmed rectangles Z̃jkln. Add f−n(Zjkln− Z̃jkln) to

P̃ n
j . Let P∞

j =
⋂

nQ
n
j , let P n

j = P̃ n−N
j . Then P n

j consists of rectangles
over standard pairs by the argument of Corollary C.2. To complete the
proof we need to show four things.

• (i) τ is defined almost everywhere;
• (ii) τ is measure preserving;
• (iii) τ satisfies condition (a) of Lemma C.4;
• (iv) τ satisfies condition (b) of Lemma C.4.

To prove (i) it is enough to demonstrate that τ |P∞

1
is measure pre-

serving. But P∞
1 =

⋂

nQ
n
1 . Let An be the algebra generated by Zjkn.

Then An ⊂ An+1 An restricted to P∞
1 increases to the Borel sigma-

algebra on P∞
1 . But m1(Z1kln) = m2(Z2kln). So (i) follows from mar-

tingale convergence Theorem. Likewise it suffices to establish (iii) on
P∞

1 but where it is obvious since if τ(x, t) = (y, s) and (x, t) ∈ P∞
1
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then fn0x ∈ W s
δ (fn0y). It remains to establish (iv) which implies (i).

To this end we claim that

(44) m1(s > n) ≤ Cθn.

This follows from the estimate

(45)

∣

∣

∣

∣

m1(Z1kln)

m2(Z2kln)
− 1

∣

∣

∣

∣

≤ Cθn

which we now prove. Observe that mj |Zjk(n−1)
= cjk(n−1)ρjk(n−1) where

ρjk(n−1)(y1)

ρjk(n−1)(y2)
=

(

r
∏

m=1

det(df |Tfn−m−1Vj)(f
−my1)

det(df |Tfn−m−1Vj)(f−my2)

)

(1 +O(θr)).

Let pn be the projection along the stable leaves between fnD1 and
fnD2. Then by Proposition C.1(c) |J(pn−1) − 1| ≤ Cθn. The last two
inequalities and the fact that m1(Z1k(n−1)) = m2(Z2k(n−1)) imply that
c1/c2 = 1 + O(θn). Combining this with J(pn) = 1 + O(θn) we obtain
(45).

(44) provides a bound on m1(s > n) uniform over all pairs (Y1, Y2).
Increasing s and slightly decreasing P∞

1 if necessary we can assume
that m1(s = n) = qn where qn is independent of Y1, Y2.

Next if τ is not defined after m runs let sm(ω) be the sum of recovery
times for first m runs. Let pm(n) = m1(s = n). Then

pm(n) =
∑

l

qlpm−1(n− l).

For the generating functions

Pm(z) =
∑

n

pm(n)zn, Q(z) =
∑

n

qnz
n

we get Pm(z) = Pm−1(z)Q(z). Thus Pm(z) = (Q(z))m. Let

rn = m1(ω : ∃m : sm(ω) = n), Rn(z) =
∑

rnz
n.

Then R(z) = Q(z)
1−Q(z)

converges in some disc {|z| > 1/θ̃}. Thus |rn| ≤
C(θ̃ + ε)n. and the result follows. �
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