
LIMIT THEOREMS FOR HYPERBOLIC SYSTEMS.

DMITRY DOLGOPYAT

1. Introduction

One of the major discoveries of the 20th century mathematics is
the possibility of random behavior of deterministic systems. There is
a hierarchy of chaotic properties for a dynamical systems but one of
the strongest is when the smooth observables satisfy the same limit
theorems as independent (or Markov related) random variables. In
my lectures I will discuss how to prove limit theorems for hyperbolic
systems with sufficiently strong mixing properties. In many application
an appropriate notion of mixing for systems without smooth invariant
measure is the following

(1)

∫
B(x)A(fnx)dx ≈

∫
B(x)dx

∫
AdµSRB

where µSRB is the measure defined the condition above. It is called
Sinai-Ruelle-Bowen (SRB) measure. Here A and B are observable from
suitable function spaces. For our technique it is convenient to assume
that (1) holds when A ∈ Cr(M) and B is smooth in the unstable
direction.

One of the most powerful methods for proving limit theorems for
random proceses is martingale problem method developed by Stroock-
Varadhan and others (see [41]). In my lectures I will present this
method and discuss ideas need to adapt it to the dynamics setting
as well as mention several open problems.

2. Central Limit Theorem

2.1. iid random variables. In order to explain how the method work
we start with simplest possible settings. Let Xn be independent iden-
tically distributed random variables which are uniformly bounded. (Of
course the assumption that Xn are bounded is unnecessary. We im-
pose it in order to simplify the exposition.) We assume that E(X) =

0, E(X2) = σ2. Denote SN =
∑N

n=1 Xn. The classical Central Limit

Theorem says that SN√
N

converges weakly to the normal random vari-

able with zero mean and variance σ2. Our idea for proving this result
1



2 DMITRY DOLGOPYAT

is the following. We know the distribution of S0 so we want to see how
the distribution changes when we change N. To this end let M → ∞
so that M/N → t. Then

SM√
N

=

√
M√
N

SM√
M

≈
√

t
SM√
M

.

The second factor here is normal with zero mean and variance tσ2.
Since multiplying normal random variable by a number has an effect
of multiplying its variance by the square of this number the classical
Central Limit Theorem can be restated as follows.

Theorem 1. As N →∞ SNt√
N

converges weakly to the normal random

variable with zero mean and variance tσ2.

Thus we wish to show that for large N our random variables behave
like the random variables with density p(t, x) whose Fourier transform
satisfies

p̂(t, ξ) = exp

(
−tσ2ξ2

2

)
.

Hence

∂tp̂ = (iξ)2σ2

2
p̂ and so ∂tp =

σ2

2
∂2

xp.

Recall that any weak solution of the heat equation is also strong solu-
tion so we need show that if v(t, x) is a smooth function of compact
support in x then

(2)

∫
v(T, x)p(T, x)dx− v(0, 0) =

∫∫
p(t, x)

[
∂tv +

σ2

2
∂2

xv

]
dxdt.

In case v(t, x) = u(x) is independent of t the last equation reduces to

(3)

∫
u(x)p(T, x)dx− u(0) =

∫∫
p(t, x)(Lu)(x)dxdt.

Conversely if (3) holds for each T and if St is any limit point of SNt√
N

then

∂tE(u(St)) = E((Lu)(St))

where L = σ2

2
∂2

x. which implies (2) for functions of the form v(t, x) =
k(t)u(x) and hence for the dense family

∑
j kj(t)uj(x). Thus p satisfies

the heat equation as claimed. Thus we have to establish (3). For
discrete system in amounts to showing that

E
(

u

(
SM√

N

))
− u(0)− 1

N

N−1∑
n=0

E
(

(Lu)

(
Sn√
N

))
= o(1).
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where M ∼ tN. Consider the Taylor expansion
(4)

u

(
Sn+1√

N

)
−u

(
Sn√
N

)
= (∂xu)

(
Sn√
N

)
Xn√
N

+
1

2

(
∂2

xu
)( Sn√

N

)
X2

n

N
+O(N−3/2).

Keeping the above example in mind we can summarize martingale
problem approach as follows.

In order to describe the distribution of St we need to compute the
averages E(u(St)) for a large class of test functions u. However rather
than trying to compute the above averages directly we would like to
split the problem in two two parts. First we find an equation which
this average should satisfy. Secondly we show that this equation has
unique solution. Only the first part involves the study of the system
in question. The second part deals with a PDE question.

For the first step we need to compute the generator

(Lu)(x) = lim
N→∞

lim
h→0

E(u(SN
t )|SN

0 = x)− u(x)

h
.

For the second step we need to establish the uniqueness for the equation

∂tu = Lu.

Once this is done we conclude that for a large class of test functions
we have

E(v(T,St))− E(v(0),S0) =

∫ T

0

E(∂tv + Lv)(t,St)dt.

Choosing here v satisfying the final value problem

(5) ∂tv + Lv = 0, v(T,S) = u(S)

we can achieve our goal of finding E(u(ST )).

2.2. Partially hyperbolic systems. Now let us discuss how to ex-
tend this approach to the dynamics setting. namely we consider the
case where

Sn =
n−1∑
j=0

A(f jx)

where f is an Anosov diffeo, A is smooth and
∫

AdµSRB = 0. Con-
cerning x we assume that it is distributed on D with a smooth density
ρ where D is a du-dimensional submanifold transversal to the stable
direction. The difference with the previous example is that A(fnx)
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and Sn are no longer independent so a more careful analysis of (4) is
needed. Take LN = N0.01 and let n̄ = n− LN . We have

E
((

∂2
xu
)(Sn(x)√

N

)
A(fnx)

)
= E

((
∂2

xu
)(Sn̄(x)√

N

)
A(fnx)

)
+O

(
LN√
N

)
= E

((
∂2

xu
)(Sn̄(f−n̄y)√

N

)
A2(fLN y)

)
+O

(
LN√
N

)
.

The first factor is smooth in the unstable direction so

E
((

∂2
xu
)(Sn̄(f−n̄y)√

N

)
A2(fLN y)

)
= E

((
∂2

xu
)(Sn̄(f−n̄y)√

N

))
µSRB

(
A2
)
+O

(
θLN

)
= E

((
∂2

xu
)(Sn(x)√

N

))
µSRB

(
A2
)

+O
(

LN√
N

)
.

This takes care about the second derivative. However the first deriv-
ative term is more difficult since it comes with smaller prefactor 1√

N
.

We have

E
(

(∂xu)

(
Sn√
N

)
A(fnx)

)
= E

(
(∂xu)(

Sn̄√
N

)A(fnx)

)
+E

((
∂2

xu
)( Sn̄√

N

)
A(fnx))

n−1∑
k=n̄

A(fkx)√
N

)
+O

(
L2

N

N

)
.

As before

E
(

(∂xu)(
Sn̄√
N

)A(fnx)

)
= O

(
θLN

)
.

To address the second term fix a large M0, let m = n− k and consider
two cases

(I) m > M0. Then we let y = fkx

E
((

∂2
xu
)( Sn̄√

N

)
A(fkx))A(fnx)

)
= E

((
∂2

xu
)(Sn̄(f−ky)√

N

)
A(y))A(fmy)

)
= E

((
∂2

xu
)( Sn̄√

N

)
A(fkx))

)
µSRB(A) +O(θm) = O(θm).

(II) m ≤ M0. Denote Bm(y) = A(y)A(fmy). Then we have

E
((

∂2
xu
)( Sn̄√

N

)
A(fkx))A(fnx)

)
= E

((
∂2

xu
)(Sn̄(f−rny√

N

)
Bm(fky))

)
= E

((
∂2

xu
)( Sn̄√

N

))
µSRB

(
Bm(fky))

)
.

Summation over m gives

E
(

u

(
SM√

N

))
−u(0) =

1

N

M−1∑
n=0

σ2
M0

2
E
((

∂2
xu
)( SM√

N

))
+O

(
θM0
)
+o(1)
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where

σ2
M0

= µSRB(A2)+2

M0∑
m=1

µSRB(A(x)A(fmx)) =

M0∑
m=−M0

µSRB(A(x)A(fmx)).

Letting M0 → ∞ we obtain that SN√
N

is asymptotically normal with

zero mean and variance given by the Green-Kubo formula

σ2 =
∞∑

m=−∞

µSRB(A(x)A(fmx)).

We see that the Anosov property was not important in the proof. In
fact the natural setting for the above results is the following

(1) There is an invariant cone family df(K) ⊂ K and for each v ∈ K
we have

||df(v)|| ≥ Λ||v||, Λ > 1.

(2) f is mixing in the following sense. Let D be a submanifold of
the same dimension as the axis of the cone and such that

(6) Vol(D) > v0, Vol(∂εD) ≤ Cεα

Let ρ be a Holder probability density on D then

(7)

∫
D

ρ(x)A(fnx) ≤ C

n1+δ
||A||Cr

Concerning the initial distribution of x we assume that it is taken
according to the measure

(8) mu(A) =

∫
dνα

∫
Dα

A(x)ρα(x)dx

where ν is some factor measure. Roughly speaking µ is absolutely
continuous with respect to the unstable foliation.

Theorem 2. ([24]) Under the above assumption the CLT holds for
Holder functions.

Examples of systems satisfying the above assumptions include (generic
elements of the) following

(1) Anosov diffeomorphisms [9];
(2) time one maps of Anosov flows [21, 36, 27];
(3) partially hyperbolic translations on homogeneous spaces [34];
(4) compact group extensions of Anosov diffeomorphisms [22];
(5) partially hyperbolic toral automorphisms [32];
(6) mostly contracting systems [23, 11, 12].
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Problem 1. Can the CLT (and other results of these lectures) be
extended to hyperbolic Zk-actions?

See [31] for the the definition and examples of hyperbolic Zk-actions.

2.3. Systems with singularities. The approach of the previous sec-
tion can be extended to the systems with singularities. The results
here are not as complete as for the partially hyperbolic setting so we
discussing some ideas without making an attempt at completeness.

For the systems with singularities (7) is not sufficient. Indeed it
claims the mixing for large pieces of unstable manifolds but we need
another condition which tells that small pieces of unstable manifold
grow under the dynamics. If D is smooth we can decompose

f n̄D =
⋃
α

Dα

where Dα are admissible for (7). (To see this one can introduce local
coordinates so that D are given by graphs zs = φ(zu), pick a set of
points {pβ} in Rdu and let

Dα = {x ∈ D : d(z(x), pα ≤ d(z(x), pβ∀β}.)

However if f has singularities Dα can be arbitrary short failing (6). So
(7) has to be supplemented by a Growth Lemma. Let µ be as in (8).
Let

Z(µ) =

∫
Z(Dα)dµ(α) where Z(D) = sup

ε>0

P(r(x) < ε)

ε

and r(x) = d(x, ∂D). We say that a system satisfies Growth Lemma if
there is C > 0, θ < 1 such that

Z(fµ) ≤ θZ(µ) + C.

If (7) and the Growth Lemma hold then the CLT is satisfied for initial
measures in the form (8) with Z(µ) < ∞.

In order to check the Growth Lemma one typically has to verify a
suitable complexity bound. For example suppose that f : M → M,
dim(M) = 2 M =

⋃
Mj f is smooth on each Mj and cone hyperbolic

and ||df || is bounded. We also assume that there are numbers δ0, K
such that if diamD ≤ δ0 then D is cut by the discontinuity domain
into at most K pieces where K < Λ (the minimal expansion). Then
the Growth Lemma holds. To see this we assume first that a more
restrictive bound K + 1 < λ. Let µ satisfy (8). Consider two cases
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(I) We have diam(Dα) < δ0 for all α. Noticing that Zα = 2
length(Dα)

we obtain

Pα(r(fx) < ε) ≤ Pα(r(x) <
ε

Λ
) + Pα(x is

ε

Λ
− close to a singularity)

≤ Zαε + KZαε,

so in this case Z(fµ) < θZ(µ).
(II) (8) contains both short (≤ δ0) and long manifolds. Split µ =

pµ1 + (1 − p)µ2 where µ1 contains short and µ2 long pieces. Then
Z(fµ1) < θZ(µ2) while the same consideration as in part (I) give
Z(fµ2) < C. Thus

Z(fµ) = pZ(fµ1) + (1− p)Z(µ2) ≤ pθZ(µ1) + (1− p)C ≤ θZ(µ) + C.

Next if we replace f → fn then K → Kn so if K < λ then K(fn)+1 <
Λ(fn) for some n.

In fact one can farther relax the complexity bound as follows. Sup-
pose that if diam(D) < δ0 and if it is intersects the domains M1, M2 . . . MK

then the corresponding expansion rates Λj satisfy∑
j

1

Λj

< 1.

This condition is in fact satisfied for Sinai billiards–billiards in T2−⋃m
j=1 Sj where Sj are disjoint strictly convex scatterers. For Sinai bil-

liards the singularities are caused by grazing collisions (tangencies) and
the expansion rates satisfy

Λ1 > 1, Λ2 = ∞
so the Growth Lemma holds and the CLT follows ([10]). We refer
the reader to [18] for a detailed exposition of the theory of hyperbolic
billiards.

Problem 2. Extend the approach of this section to the multidimen-
sional systems with singularities.

So far only partial results are available [5].
As an application of the CLT consider Lorentz gas–a billiard on the

plane with periodic array of strictly convex scatters removed. A billiard
map is Z2-cover of a Sinai billiard on T2. The CLT theorem for bounded
piecewise smooth observable is obtained in [14]. Let qn be position of
the particle after n collisions. Then

qn − q0 =
n−1∑
j=0

∆j
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where ∆j is the free flight vector. Observe that ∆ can be naturally
regarded as a function of the Sinai billiard. Therefore the above results
apply and we get

Corollary 3. ([10]) Suppose that the horizon is finite, that is the free

flight vector is uniformly bounded. Then q(t)√
t

converges to the normal

distribution.

The theory presented above works for discrete time systems while
Corollary 3 is stated for continuous time. However the passage from
discrete to continuous time is quite standard (see e.g. [37]).

2.4. CLT with non-standard normalization. The assumption of
the finite horizon in Corollary 3 is needed to ensure that mixing esti-
mates of [45, 14] apply to ∆. This assumption is not merely technical
however–the usual CLT fails for infinite horizon Lorentz gas. In fact
the following result conjectured in [6] is proven in [42].

Theorem 4. For infinite Lorentz gas q(t)√
t ln t

converges to a normal dis-

tribution.

Below we present an idea of the proof following [17]. The reason why
the standard CLT fails is that

µ(|∆| > H) ∼ c

H3

and so µ(|∆|2) = ∞ (in fact, it diverges logarithmically.

Lemma 1. ([17]) If n 6= 0 then∣∣∣µ(∆(α)
0 ∆

(β)
0

)∣∣∣ ≤ Cθ|n|

where ∆
(α)
n denote the components of ∆n ∈ R2.

This result is a consequence of the following statement. Let Ωm de-
note the event that the particle crosses m fundamental domains before
the next collision.

Lemma 2. (a) E(|∆n||Ωm) ≤ C(θnm + 1).
(b) If n is fixed and m →∞ then E(|∆n||Ωm) ≤ Cm3/4.

Lemma 2 implies Lemma 1 by considering low and high values of
m separately and using mixing bounds of [14] for low values of m and
Lemma 2 for high values of m.

In order to prove Lemma 2 one verify by direct computations that if
D is a curve inside Ωm then

(a) Z(D) ≤ Cm2;
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(b) Z(fD) ≤ Cm3/4.
Combining (b) with Growth Lemma we see that

Z(fnD) ≤ C(θnm3/4 + 1).

Now (a) gives

PD(∆n = k) ≤ C(m3/4θn + 1)

k2

proving both parts of Lemma 2.
Now we can proof Theorem 4 as follows. Split qN = q′N + q′′N + q′′′N

where q′′′N contains the sum of long flights (|∆′′′
n | ≥

√
N ln100 N), q′′N

contains the sum of moderate flights (
√

N ln100 N ≤ |∆′′
n| ≥

√
N

ln100 N
)

and q′N contains the sum of short flights (|∆′
n| ≤

√
N

ln100 N
). Now

P(q′′′N 6= 0) ≤ CNP(|∆| >
√

N ln100 N) ≤ C ln−200 N.

Moderate flights do occur but they tend to cancel each other. Indeed

E(|q′′n|2) =
∑
n1n2

E(〈∆′′
n1

, ∆′′
n2
〉) ≤ CN ln ln N

so
q′′N√

N ln N
can be disregarded. Finally q′N can handled by the methods

of the previous section giving CLT.
We observe that the full strength of Lemma 2(b) is not needed for

the argument above to work. Namely it can be weakened to the re-
quirement that the following limit exists

rn = lim
m→∞

E(∆n|Ωm)

m
.

In our case rn = 0 for n 6= 0 but it is not the case for the billiard
in the Bunimovich stadium. However our method can be adapted to
prove the following result of Balint-Gouezel. They applied this criterion
to a Bunimovich stadium bounded by two semicircles of radius 1 and
two line segments Γ1 and Γ2 of length L > 0 each: given a Hölder
continuous observable A ∈ Cα(M), denote by

I(A) =
1

2L

∫
Γ1∪Γ2

A(s,n) ds

its average value on the set of normal vectors n attached to Γ1 and
Γ2. (A slower decay of correlations for the stadium, compared to other
Bunimovich billiards, is caused by trajectories bouncing between two
flat sides of D and I(A) represents the contribution of such trajecto-
ries.)
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Theorem 5. [4] The following results hold for Bunimovich stadia:

(a) If I(A) 6= 0 then Sn/
√

n ln n → N (0, σ2(A)), where

σ2(A) =
4 + 3 ln 3

4− 3 ln 3
× [I(A)]2L2

4(π + L)
.

(b) If I(A) = 0, then there is σ2
0 > 0 such that Sn/

√
n → N (0, σ2

0).

The results presented above could be proven by several methods. Our
method is perhaps the most direct and this allows an easier control of
parameter dependence. For example consider infinite horizon Lorentz
gas in the presence of small constant field and Gaussian thermostat.
Namely, we assume that the motion between collisions is given by

q̈ = ε

(
E − 〈q̇, E〉

|q̇|2
q̇

)
.

Then for ε 6= 0 the horizon becomes finite so the usual CLT applies.
On the other hand for ε = 0 we have anomalous diffusion with an
extra logarithmic factor. One can ask how the transition between two
regimes occurs.

Theorem 6. [17] As t →∞, ε → 0

q(t)− Jεt√
t ln min(t, ε−1)

converges to a normal distribution. Here Jε = µε
SRB(q̇) is the average

current of the thermostated system.

3. Law of Large Numbers and the first order averaging.

The Law of Large Numbers (Ergodic Theorem) is another basic limit
law. Ergodic Theorem states that if Xn is an ergodic sequence and Sn =∑n−1

j=0 then SN

N
→ E(X). According to the philosophy of Section 2 we

can restate this result as SNt

N
→ tE(X). The generator for St = S0 + ct

is c∂S. The approach of Section 2 can be used to prove the following
result

Theorem 7. [24, 7] Suppose that f is a partially hyperbolic system
having unique measure µ which is absolutely continuous with respect to
the unstable foliation. Then for any A ∈ C(M) and any admissible
initial measure ν∑N−1

j=0 A(f jx)

N
→ µ(A) ν-almost everywhere.
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The proof relies on the fact that the uniqueness of µ implies that

(9)

∫
D

ρ(x)

∑N−1
j=0 A(f jx)

N
dx → µ(A)

since otherwise we could use the Krylov-Bogolyubov construction to
obtain another invariant measure.

Theorem 7 can be extended to handle slow-fast systems

(10) xn+1 = fS,ε(xn), Sn+1 = Sn + εA(xn, Sn, ε).

Theorem 8. Suppose that for each S the map x → fS,0(x) satisfies the
conditions of Theorem 7 and let muS be the corresponding invariant
measure. Then St/ε → St satisfying

dS

dt
= Ā(S) where Ā(S) =

∫
A(x,S, 0)dµS.

Thus the generator of the limiting process is Ā(S)∂S.
For the proof take N � 1 and observe that

E(u(SN(k+1))) = E(u(SNk)) + ε

N(k+1)−1∑
m=Nk

∂Su(SNk)E(A(fmx)) + HOT.

After the change of variables y = fNkx (9) can be used to handle the
second term. We refer to [33, 26] for details.

Theorem 8 can be used to obtain the information about the pertur-
bations of f × id.

Theorem 9. [26] Suppose that in (10) fS,0 = f is an Anosov dif-
feo independent of S. Suppose further that the averaged vector field is
Morse-Smale. Let γj be the periodic points for the averaged vectorfield
and Tj be their periods. Suppose that

(11)

∫ Tj

0

σ2(St)dt 6= 0

where

σ2(S) =
∞∑

m=−∞

[A(x,S)− Ā][A(fmx,S)− Ā]dµSRB(x).

Then for small ε the map (xn, Sn) → (xn+1, Sn+1) is mostly contract-
ing.

By Theorem 8 Sn spends most of the time near one of the periodic
points of the averaged system. To prove Theorem 9 one has to show
that in fact it spends most of the time near a sink. Intuitively it is
unlikely that Sn stays a long time near an unstable orbit but to prove
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it rigorously one has go beyond the first order averaging analyzing the
fluctuations about the averaged equation.

4. Diffusion processes and the second order averaging.

4.1. CLT for small perturbations. We begin with the following
example. Suppose that fε is a smooth family of Anosov diffeos, µε

is the SRB measure for fε and A is a smooth observable such that
µ0(A) = 0.

We need the following result

Theorem 10 (Linear response). [29, 38] The map ε → µε(A) is C∞.

In particular in our case we have µε(A) = εω(A)+o(ε). Let N = tε−2.

By the CLT of the last section
SN,ε−µεN√

N
behaves as a normal random

variable with variance σ2(A). A little algebra shows that this result can
be restated as follows

Corollary 11. εSN,ε converges to a normal random variable with mean
ω(A)t and variance σ2(A)t.

It turns out that this result is valid in a much more general setting.
In particular we will not need to know much about the dynamics of
fε for ε 6= 0. Concerning f0 we assume that it is an Anosov element
inan abelian Anosov action. That is f0 is partially hyperbolic and
its central direction is spanned by an action of the group at which
commutes with f0. We say that f0 is rapidly mixing if the RHS of
(7) is less than n−k provided that A ∈ Cr(k).

Theorem 12 (Local Linear Response-I). [25] Let N ≥ ε−0.001. Then∫
D

ρ(x)A(fN
ε )dx = µ0(A) + εω(A) + o(ε).

One can check this estimate is sufficient for the argument of the
previous section to work. Thus we get

Corollary 13. [25] The result of Corollary 11 remains valid if f0 is
rapidly mixing Anosov element in an abelian Anosov action.

Observe that no assumptions are imposed on the perturbation fε.
Hence the limiting random variable has density with Fourier trans-

form

p̂(t, ξ) = exp

(
−iξtω(A)− t2ξ2σ2(A)

2

)
.

so that its generator is ω∂x + σ2

2
∂2

x.
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We say that St is a diffusion process if its small scale increments are
approximately normal

St+h − St ≈ a(St)h + σ(St)
√

hN .

In other words the generator is

L = a(S)∂S +
σ2(S)

2
∂2
S.

4.2. Example. Skew products near identity. Consider the system

Sn+1 − Sn = εA(fnx, Sn) + ε2B(fnx, Sn).

Then

u(Sn+1)− u(Sn) = (∂xu)(Sn)
(
εA + ε2B

)
+ (∂2

xu)(Sn)
ε2

2
A2 +O(ε3).

As before

(∂xuB) → (∂xu)µSRB(B),

(12) (∂2
xuA2) → (∂xu)µSRB(A2).

On the other hand (∂xu)(Sn)A(fnx, Sn) =

(∂xu)(Sn̄)A(fnx, Sn̄)+ε(∂2
xu)(Sn̄)

n−1∑
k=n̄

A(fkx, Sn̄)A(fnx, Sn̄)+ε∂SA(fnx, S̄n)
n−1∑
k=n̄

A(fkx, Sn̄).

As before the first term is negligible while second together with (12)
adds up to

1

2

∞∑
m=−∞

µSRB(A(x, S)A(fmx, S)).

The third term is new but it can be analyzed similarly to others giving
rise to

∞∑
m=1

µSRB(A(x, S)∂SA(fmx, S)).

Therefore we obtain the following result

Theorem 14. [24] As ε → 0 Stε−2 converges to the diffusion process
with generator

(Lu)(S) =

[
µSRB(B) +

∞∑
m=1

µSRB(A(x, S)∂SA(fmx, S))

]
∂Su

+
1

2

[
∞∑

m=−∞

µSRB(A(x, S)A(fmx, S))

]
∂2

Su.
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4.3. Fully coupled averaging. We wish to extend Theorem 14 to
allow feedback between fast and slow variables. Consider the system

(13) xn+1 = fS,ε(xn) Sn+1 = Sn + εA(xn, Sn, ε).

Assume that for each S the map x → fS,0x is an Anosov element
in an abelian Anosov action enjoying stretched exponential decay of
correlations.

Theorem 15. [26] Any limit process of the family St = Stε−2 is a
diffusion process with generator

Lu = a∂Su +
σ2

2
∂2

Su

where as before

σαβ(S) =
∞∑

m=0

µSRB(A(x, S)A(fmx, S))

while a is given by a more complicated expression

a(S) = µSRB

(
∂A

∂ε

)
+
∑
m>0

µSRB(A(x, S)∂SA(fmx, S))+ω

(
A,

∂f

∂ε

)
+

∞∑
n=0

ω (A, Yn)

where Yn = ∂f
∂S

(x, S)A(f−nx, S).

Observe that this theorem does not claim to give a complete de-
scription of the limiting system. We only claim that E(u(ST )) can
be found using (5) but without extra assumptions we do not know if
this equation is well-posed. Below we list some special cases where the
well-posedness can be verified.

(1) For each S, e the function x → σ2(S) is strictly positively definite.
In this case well-posedness follows from [40]. The assumption is not
very restrictive. Indeed if for some e σ2(A)e = 0 then denoting B = Ae
we get that

σ2(B) =
∞∑

m=−∞

µSRB(B(x)B(fmx)) = 0.

Then

µSRB

( N∑
n=0

B(fnx)

)2
 = Nσ2(B) +O(

∑
m

|m|µSRB(B(x)B(fmx))

is bounded. Therefore the sequence ΦN =
∑N

m=0 B(fnx) is weakly
compact in L2(µSRB and so it has a limiting point Φ. As B(fN+1x) con-
verges to 0 weakly due to mixing we have Φ(x)−Φ(fx) = B(x). Thus
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B is measurable coboundary. Then [44] implies that B is a smooth
coboundary. Then [30] allows to conclude that positivity of σ2 fails on
a codimension infinity subspace of functions.

(2) x → fS is Anosov. In this case the smoothness of a can be es-
tablished by the transfer operator method [28] and then well-posedness
follows from [41].

The proof of Theorem 15 is similar to the proof of Corollary 13 but
Theorem 12 has to be modified. Let F denote the map

Fε(x, S) = (fS,ε(x), Sn + εA(x, S, ε).

Observe that F0 is partially hyperbolic and hence so is Fε for small ε.
Let D be a disc satisfying (6) which is approximately horizontal in the
sense that

||πSv|| ≤ C||πxv||∀v ∈ TD

and let ρ be a probability density on such that ||ρ||Cα ≤ K.

Theorem 16 (Local Linear Response-II). (a) Let N̄ = ε0.001. Pick
some z∗ = (x∗, S∗) ∈ D

(14)

∫
D

ρ(z)A(F N̄
ε , ε)dz = εa(S∗) + o(ε).

(b) Consequently for all N ≥ N̄∫
D

ρ(z)A(F n
ε , ε)dx = ε

∫
D

ρ(z)a(SN−N̄)dz + o(ε).

Problem 3. Obtain diffusion limit theorem for the case where the fast
motion is an Anosov flow.

Currently Theorem 15 is proven under stretched exponential mixing
assumptions which are not known for Anosov flow (with the exception
of the contact flows, see [36, 43]). The assumption of strong mixing is
used in particular to establish the convergence of the series appearing
in the formula for the drift a. However in the case of Anosov flows one
can hope to utilize the fact that central direction is particularly simple
to overcome this difficulty.

4.4. On the proof of Linear Response. Since the Linear Response
Theorem plays the central role in this section we discuss the idea be-
hinds its proof. We consider two special cases where one can under-
stand how the SRB measure depends on parameters.

(a) fε are contractions of Rd. In this case the SRB measures are δ-
measures concentrated at the fixed points xε of Fε. By Implicit Function
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Theorem

(15)
dx

dε
= (1− df)−1∂f

∂ε
.

This formula can be understood as follows. Pick y0 ∈ Rd and consider
the recurrence yn,ε = fε(yn−1,ε). We have

dyn

dε
= dfε

dyn

dε
+

∂f

∂ε
(yn−1,ε) =

n−1∑
j=0

df j
ε

∂f

∂ε
(yn−1−j,ε).

If n � j then yn−j,ε is close to xε proving (15). Thus while µε are
mutually singular, the map ε → µε(A) is smooth and

(16) µε(A) = DA
dx

dε
=

∞∑
j=0

∂dfj
ε

∂f
∂ε

(xε)
A.

(b) µ0 has smooth density and µε(A) = limn→∞ µ0(A◦fn
ε ) where the

convergence is sufficiently fast. This is the case, for example, if fε are
expanding maps. Then

µε(A)− µ0(A) =
∞∑

n=0

[
µ0(A(fn+1

ε x))− µ0(A(fn
ε x))

]
.

To understand the individual term in this sum make a change of vari-
ables in the first term y = fεx. Observe that since f0 preserves µ0 we
have

dµ0(y)

dµ0(x)
= 1 + εdiv df

dε
+O(ε2).

Therefore

µ0(A(fn+1
ε x))− µ0(A(fn

ε x)) =

∫
A(fn

ε y)

[
dµ0(x)

dµ0(y)
− 1

]
dµ0(y)

= −ε

∫
A(fn

ε y)div df
dε

dµ0(y) +O(ε2).

So if the convergence of the series is fast enough we get Kawasaki
formula

(17)
dµε(A)

dε
|ε=0 = −ε

∞∑
n=0

∫
A(fn

0 y)div df
dε

dµ0(y).

The proof of the Linear Response Theorem in general case combines
the ideas from two cases considered above. Namely, in the center-
stable direction we use standard perturbation theory similarly to case
(a) above which is manageable because dfn|Ecs does not grow too fast.
In order to handle the perturbation in the unstable direction we use a
change of variables similar to case (b). The formula for ω the derivative
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contains two terms. One term is similar to (16) the other is similar to
(17).

Problem 4. Investigate the validity of Linear Response Theorem for
other classes of partially hyperbolic systems. For example, does Linear
Response Formula hold for robustly hyperbolic examples of [1, 8]?

Problem 5. What are error term in Linear Response Formula? In
particular, find conditions for validity of higher order expansions of
µε(A). See [39] for more discussion of this topic.

4.5. Systems with singularities. At present little is known about
the applicability of the above results to systems with singularities. The
reason is that the Local Linear Response Formula is not know is not
known for systems with singularities. In fact, examples of [2] show that
even global Linear Response Formula may fail!

Problem 6. Investigate the validity of Linear Response Formula for
systems with singularities. In particular does it hold for one-to-one
maps?

For dispersing billiards [19] prove Linear Response Formula using
one-to-one property as well as the fact that µ0 is absolutely continuous.
They rely on Kawasaki argument.

Problem 7. Is local Linear Response Formula valid for the perturba-
tions of billiards?

Because of this problem diffusion limit theorem is only known under
special circumstances.

(1) [16] considers a particle moving in a finite horizon Lorentz array
with small field. That is the motion between collisions is given by

(18) q̈ = εE.

This system is a slow-fast system with the slow variable being the
kinetic energy and the fast variable being the pair (q, ω) where ω =
v
|v| is the particle’s direction. Observe that the evolution of the fast

variable is O(ε2) perturbation of the Gaussian thermostat (by the very
definition of the thermostat!). Therefore one can use the strong mixing
properties of the thermostat dynamics (coupling!) to deduce Local
Linear Response Formula from the global one. Using this fact [16]
obtain diffusion approximation for (18).

(2) [15] considers a system of two particles moving in a finite horizon
Sinai billiard. Particles collide with the scatterers and with each other
elastically. The first particle is a heavy disk of mass M � 1 and radius
R ∼ 1. The second particle called is a dimensionless point of unit mass.
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Thus if V and v are particles velocities then the interparticle collision
rule gives

V + = V − +
2

M
v⊥.

Suppose now that initially the first particle is at rest. Then its velocity
after n collisions equals

Vn =
n∑

j=1

v⊥j .

Since the average value of v⊥ is zero we expect that

Vn ∼
√

n

M
and Qn ∼

n3/2

M
.

[15] shows that (QtM2/3 , M2/3VtM2/3 converges to the diffusion process
with generator

(Lφ)(Q, V ) =
2∑

i=1

Vi∂Qi
φ +

1

2

2∑
ij=1

σ2
ij∂Vi

∂Vj
φ.

Observe that this system is not of the form considered before because
the first order averaged system is

Q̇ = V, V̇ = 0

(that is if the energies of the particles are comparable than the heavy
particle moves without noticing the light one) rather than

Q̇ = 0, V̇ = 0.

We are only interested in what happens near the fixed points of the av-
eraged system. At a fixed the linearized system is nilpotent. Because of
this the time needed to get a non-trivial evolution is much shorter than
ε−2 required section 4.3. Namely, since the maximal possible velocity
of the heavy particle is O(M−1/2) due to the energy preservation the

natural slow variable is V̂ =
√

MV and so the natural scale separation
parameter is ε = M−1/2 so we are dealing with times of order ε−4/3.
For this reason the full strength of the Linear Response Formula is not
needed, one only needs to show that the RHS of (14) is o(ε1/3).

Problem 8. Extend Theorem 15 to dispersing billiards.

4.6. Einstein relation. In this section we discuss how the symmetries
of the slow-fast system (13) are reflected in the limiting process. To
simplify the exposition we suppose in this section that there is unique
process with generator L.
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Theorem 17. Assume that Fε admits the following symmetry

Fcε = G−1
c FεGc where

Gc(x, S) = (G(x, S, c), gc(S)).

Then St and gc(Sc2t) have the same distribution.

Proof. Consider our system for parameter cε and the initial distribu-
tion having a smooth density on S = S̄. This is an admissible initial
distribution so Theorem 15 tells that Scε

t(cε)−2 converges to St (started

from S̄). On the other hand

Scε
t(cε)−2 = g−1

c Sε
(tc−2)ε−2 ,

so it converges to g−1
c Stc−2 (with S0 = gcS̄). The result follows. �

Theorem 18. [26] Assume that Fε preserves an admissible measure
µε. Let νε be the projection of this measure to the S-component. If
νε → ν as ε → 0 then ν is invariant measure for the process St.

Proof.

ν(u(St)) = lim
ε→0

νε(u(St)) = lim
ε→0

νε(u(Sε
tε−2)) = lim

ε→0
µε(u(Sε

tε−2))

= lim
ε→0

µε(u(Sε
0)) = lim

ε→0
νε(u(Sε

0)) = ν(u(S0)).

�

If ν has density ρ then the invariance condition means that 〈ρ,Lu〉 =
0 for all u so that L∗ρ = 0. That is, we have

(19) ∂S

(
a +

σ2

2
∂S

)
ρ = 0

If ρ is known (19) gives a relation between a and σ2.
As an illustration of above results consider (18). The time change

s = t√
c

reduces

d2q

dt2
= cεE to

d2q

ds2
= εE

and the kinetic energy is rescaled by Ks = Kt

c
. By Theorem 17 the

limiting process should be invariant under

K → cK, t → c3/2t

(an extra factor of c−1/2 in the last formula is due to the time change).
On the other hand our system is Hamiltonian so it preserves the

Liouville measure and so we can apply Theorem 18 with dν = dK. It
turns out that the scaling invariance property together with the given
invariant measure determine the limiting process up to choosing the
time unit. Namely the scaling symmetry allows to relate the drift at
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diffusion at any point to drift and diffusion at K = 1. Choosing time
units fixes the value of the diffusion at 1 and (19) allows to determine
the drift at 1. So the limiting process for (18) has generator

σ2

[
1

2
√

2K
∂K +

√
2K∂2

K

]
.

5. Poisson Limit Theorem.

The third basic limit theorem in probability theory is Poisson Limit
Theorem. It says that if SN =

∑N
n=0 Xn,N where for each N Xn,N are

independent identically distributed taking values 0 with probability
1− pN and 1 with probability pN and pNN → λ then SN converges to
a Poisson distribution with intensity λ, that is,

P(SN = l) = e−λ λl

l!
.

Thus one can expect Poisson Limit Theorem to hold if only few terms
are different from 0 and each term makes a contribution of order 1. For
example let f : M → M be Anosov diffeo preserving a smooth measure
µ. Take a point x0 then one can expect that Str−d → P(ct) where

(20) SN = Card(n ≤ N − 1 : fn(x) ∈ B(x0, r)) =
N−1∑
n=0

IB(x0,r)(f
nx)

and B(x0, r) ∼ crd. To see if (20) holds recall that the Poisson process
with intensity c has generator

(Lu)(S) = c[u(S + 1)− u(S)].

Let N̄ = δr−d We have

E(u(SN̄)) = u(0)P(SN̄ = 0) + u(1)P(SN̄ = 1) +O(P(SN̄ > 1)).

Since∑
n

P(IB(x0,r)(f
nx)) = δr−dµ(B(x0), r)(1 + o(1)) = cδ(1 + o(1))

we need to show in particular that

(21) P(SN̄ > 1)) = o(δ).

However (21) fails if x0 is fixed (or periodic point) of f. Indeed if it was
valid (for all r) then we would have

Card(n ≤ N̄ : fnx ∈ B(x0, r/L)) ∼ cδ

Ld

however if fnx ∈ B(x0, r/L) and L is larger than the maximal expan-
sion of f then fn+1x ∈ B(x0, r).
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Theorem 19. [24] Suppose that f is a partially hyperbolic diffeo pre-
serving a smooth measure µ such that∣∣∣∣∫

D

ρ(x)A(fnx)dx− µ(A)

∣∣∣∣ ≤ C

np
||A||C1(M), p = p(d).

Let x0 be non-periodic point then

Card(n ≤ tr−d : fn ∈ B(x0, r)) → P(ct).

If x0 is aperiodic we can establish (21) as follows. We need to prove

(22) P(∃n ≤ N̄ : fnx ∈ B(x0, r)|x ∈ B(x0, r)) = o(1).

To show this we distinguish five cases:
(I) n ≤ M0 there M0 → 0 as r → 0 very slowly. Then

P(∃n ≤ N̄ : fnx ∈ B(x0, r)|x ∈ B(x0, r)) = 0

since x0 is aperiodic.
(II) M0 ≤ n ≤ δ| ln r|. Then fnB(x0, r) ∩ B(x0, r) has at most one

component and since fnB(x0, r) has length at least Λn in the unstable
direction we have

P(∃n ≤ N̄ : fnx ∈ B(x0, r)|x ∈ B(x0, r)) ≤
C

Λdun
.

(III) δ| ln r| ≤ n ≤ K ln r. Then we can divide fnB(x0, r) into com-
ponents each of which has unstable length r1−κ for some κ > 0 and
since only the set of diameter 2r0 can belong to B(x0, r) we get

P(∃n ≤ N̄ : fnx ∈ B(x0, r)|x ∈ B(x0, r)) ≤ Crκdu .

(IV) K| ln r| ≤ n ≤
(

1
r

)1/p+δ
. Then we can divide fnB(x0, r) into

components each of which has unstable length O(1) for some κ > 0
and since only the set of diameter 2r0 can belong to B(x0, r) we get

P(∃n ≤ N̄ : fnx ∈ B(x0, r)|x ∈ B(x0, r)) ≤ Crdu .

(V) n ≥
(

1
r

)1/p+δ
. Then

P(∃n ≤ N̄ : fnx ∈ B(x0, r)|x ∈ B(x0, r)) = µ(B(x0, r))(1 + o(1))

due to mixing.
Summing all the cases we obtain (22) and hence (21).
(21) shows that

E(u(Sn+N̄)− u(Sn)|Sn = 0) = cδ[u(1)− u(0)].

A similar argument shows that

E(u(Sn+N̄)− u(Sn)|Sn = k) = cδ[u(k + 1)− u(k)]

proving Theorem 19.
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Problem 9. Is Theorem 19 valid without the assumption that µ is
smooth?

The foregoing discussion illustrates that in order to prove that

Card(n ≤ t

µ(Br)
: fnx ∈ Br) → P(t)

for some family of sets Bε such that µ(Br) → 0 as r → 0 two ingredients
are needed.

(I) Mixing (used to estimate µ(Br ∩ fnBr) for small n).
(II) Geometric analysis (used to estimate µ(Br ∩ fnBr) for large n).
For example let V be a compact manifold of negative curvature.

Theorem 20.

P
(
A geodesic γ(t) visits B(q0, r) l times for t ≤ Tr−(d−1)

)
→ e−c(q0)T (c(q0)T )l

l!
.

To prove this theorem we let κ to be much smaller than the injectivity
radius of V, let f be time κ map of the geodesic flow and

Br = {(q, v) : γq,v([0, κ])
⋂

B(q0, r) 6= ∅}.

In this case mixing comes from [36, 43] while µ(Br ∩ fnBr) is small
for for small n since this set corresponds to orbits which are near a
geodesic passing q0 twice.

Finally let us describe an application of Theorem 19.

Corollary 21. Let mN(x) = minn≤N d(fnx, x0). Under the conditions
of Theorem 19

P(N1/dmN(x) ≥ z) → exp(−czd).

Proof.

P(N1/dmN(x) ≥ z) = Card
(
n ≤ N : fnx ∈ B

(
x0,

z

N1/d

)
= 0
)

∼ exp(−µ
(
B
(
x0,

z

N1/d

))
N) = exp(−czd).

�

References

[1] Alves J., Bonatti C. & Viana M. SRB measures for partially hyperbolic sys-
tems whose central direction is mostly expanding, Inv. Math. 140 (2000) 351–
398.

[2] Baladi V. On the susceptibility function of piecewise expanding interval maps,
Comm. Math. Phys. 275 (2007) 839–859.

[3] Baladi V. & Gouezel S. Banach spaces for piecewise cone hyperbolic maps,
preprint.



LIMIT THEOREMS FOR HYPERBOLIC SYSTEMS. 23

[4] Balint P. & Gouezel S. Limit theorems in the stadium billiard, Comm. Math.
Phys. 263 (2006) 461–512.

[5] Balint P. & Toth I. P. Exponential decay of correlations in multi-dimensional
dispersing billiards, Ann. Henri Poincare 9 (2008) 1309–1369.

[6] Bleher P. Statistical properties of two-dimensional periodic Lorentz gas with
infinite horizon, J. Statist. Phys. 66 (1992), 315–373.

[7] Bonnatti C., Diaz, L. & Viana M. Dynamics beyond uniform hyperbolicity. A
global geometric and probabilistic perspective, Encyclopaedia Math. Sci. 102
(2005) Springer, Berlin.

[8] Bonnatti C.& Viana M. SRB measures for partially hyperbolic systems:
mostly contracting case, Israel J. Math 115 (2000) 157–193.

[9] Bowen R. Equilibrium states and ergodic theory of Anosov diffeomorphisms,
Lect. Notes in Math. 470 (1975) Springer New York.

[10] Bunimovich L. A., Sinai Ya. G., and Chernov N. I. Statistical properties of
two-dimensional hyperbolic billiards, Russ. Math. Surv. 46 (1991), 47–106.

[11] Castro A. A. Backward inducing and exponential decay of correlations for
partially hyperbolic attractors, Israel J. Math. 130 (2002) 29–75.

[12] Castro A. A. Fast mixing for attractors with a mostly contracting central
direction, Erg. Th. & Dyn. Sys. 24 (2004) 17–44.

[13] Chernov N. Statistical properties of piecewise smooth hyperbolic systems in
high dimensions, Discrete Cont. Dynam. Sys. 5 (1999) 425–448.

[14] Chernov N. Decay of correlations and dispersing billiards, J. Stat. Phys. 94
(1999), 513–556.

[15] Chernov N., Dolgopyat D. Brownian Brownian Motion-1, Memoirs AMS 198
no 927 (2009).

[16] Chernov N., Dolgopyat D. Galton board: limit theorems and recurrence, Jour-
nal AMS 22 (2009) 821-858.

[17] Chernov N., Dolgopyat D. Anomalous current in periodic Lorentz gases with
infinite horizon, Russian Math. Surveys 64 no 4 (2009).

[18] Chernov N. and Markarian R., Chaotic Billiards, Mathematical Surveys and
Monographs, 127, AMS, Providence, RI, 2006.

[19] Chernov N. I., Eyink G. L., Lebowitz J. L. and Sinai Ya. G., Steady-state
electrical conduction in the periodic Lorentz gas, Comm. Math. Phys. 154
(1993), 569–601.

[20] Demers M. F. & Liverani C. Stability of statistical properties in two-
dimensional piecewise hyperbolic maps, Trans. Amer. Math. Soc. 360 (2008)
4777–4814.

[21] Dolgopyat D. On decay of correlations in Anosov flows, Ann. Math. 147
(1998) 357-390.

[22] Dolgopyat D. On mixing properties of compact group extensions of hyperbolic
systems, Israel J. Math. 130 (2002) 157–205.

[23] Dolgopyat D. On dynamics of mostly contracting diffeomorphisms, Comm.
Math. Phys. 213 (2000) 181–201.

[24] Dolgopyat D. Limit theorems for partially hyperbolic systems, Trans. Amer.
Math. Soc. 356 (2004) 1637–1689.

[25] Dolgopyat D. On differentiability of SRB states for partially hyperbolic sys-
tems, Invent. Math. 155 (2004) 389–449.



24 DMITRY DOLGOPYAT

[26] Dolgopyat D. Averaging and Invariant measures, Moscow Math. J. 5 (2005)
537–576.

[27] Field M., Melbourne I. & Torok A. Stability of mixing and rapid mixing for
hyperbolic flows, Ann. Math. 166 (2007), 269-291.

[28] S.Gouezel, C. Liverani Banach spaces adapted to Anosov systems, Erg. Th.
Dyn. Sys. 26 (2006) 189–217.

[29] Katok A., Knieper G., Pollicott M. & Weiss H. Differentiability and analyt-
icity of topological entropy for Anosov and geodesic flows, Invent. Math. 98
(1989) 581–597.

[30] Katok A. & Kononenko A. Cocycles’ stability for partially hyperbolic systems,
Math. Res. Lett. 3 (1996) 191–210.

[31] Katok A.& Spatzier R. J. Invariant measures for higher-rank hyperbolic
abelian actions, Erg. Th. Dynam. Sys. 16 (1996) 751–778.

[32] Katznelson Y. Ergodic automorphisms of Tn are Bernoulli, Israel J. Math.
10 (1971) 186-195.

[33] Kifer Yu. Averaging principle for fully coupled dynamical systems and large
deviations, Erg. Th. Dyn. Sys. 24 (2004) 847–871.

[34] Kleinbock D. Y. & Margulis G. A. Bounded orbits of nonquasiunipotent flows
on homogeneous spaces, Amer. Math. Soc. Transl. 171 (1996) 141-172.

[35] Liverani C. Central limit theorem for deterministic systems, Pitman Res.
Notes Math. 362 (1996) 56–75.

[36] Liverani C. On contact Anosov flows, Ann. of Math. 159 (2004), 1275–1312.
[37] Melbourne I. & Torok A. Statistical limit theorems for suspension flows, Israel

J. Math. 144 (2004) 191–209.
[38] Ruelle D. Differentiation of SRB states, Comm. Math. Phys. 187 (1997) 227–

241 and 234 (2003) 185–190.
[39] Ruelle D. Nonequilibrium statistical mechanics near equilibrium: computing

higher-order terms, Nonlinearity 11 (1998) 5–18.
[40] Stroock D. W. Lectures on stochastic analysis: diffusion theory, London

Math. Soc. Student Texts, 6 (1987) Cambridge University Press, Cambridge.
[41] Stroock D. W. & Varadhan S. R. S. Multidimensional diffusion processes,

Classics in Mathematics, Springer-Verlag, Berlin, 2006.
[42] Szasz D. & Varju T. Limit Laws and Recurrence for the Planar Lorentz Pro-

cess with Infinite Horizon, J. Statist. Phys. 129 (2007), 59–80.
[43] Tsujii M. Quasi-compactness of transfer operators for contact Anosov flows,

preprint (arXiv:0806.0732)
[44] Wilkinson A. The cohomological equation for partially hyperbolic diffeomor-

phisms, preprint.
[45] Young L.–S. Statistical properties of dynamical systems with some hyperbol-

icity, Ann. Math. 147 (1998) 585–650.


