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Abstract. We prove Livsiĉ type results for rapidly mixing com-
pact group extensions of Anosov diffeomorphisms.

1. Introduction.

Recently several new phenomena in dynamics were discovered by
looking at small perturbations of compact group extensions of hyper-
bolic systems [8, 14]. In view of this it is desirable to develop a general
theory of perturbations of such systems. The first step towards this
goal is to understand infinitesimal perturbations that is to study ho-
mological equations over such systems. In this note we study regularity
of solutions to cocycle equations. Regularity theory plays an important
role in rigidity theory. Two of the most studied cases are translations
of T

d and Anosov diffeomorphisms (see [7, 11, 15] for the analysis of
some other systems). The systems considered in our paper exhibit a
mixture of hyperbolic and elliptic behaviors.

Let M be a compact C∞ Riemannian manifold and f : M → M be
an Anosov diffeomorphism. Let G be a compact connected Lie group,
H a Lie subgroup of G, Y = G/H and τ ∈ C∞(M,G). Let N = M×Y.
Define F : N → N by F (x, y) = (fx, τ(x)y). We say that a function A
on N is a coboundary if

(1) A = B − B ◦ F.
If B is bounded, Hölder, smooth etc. we say that A is a bounded,
Hölder, smooth etc. coboundary. Let φ ∈ Cα(M), µφ be the Gibbs
state with potential φ and dνφ = dµφdy.

In this note we prove the following. Fix z0 ∈ N.

Theorem 1. Let F be rapidly mixing. Let A ∈ C∞(N) be a coboundary
in L2(νφ) for some Hölderfunction φ. Then A is C∞ coboundary. In
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particular, if A is a bounded coboundary then it is a C∞ coboundary.
Moreover there exists k0 such that if A belongs to Ck(N) then B belongs
to Ck−k0(N). If B satisfies a normalization condition

B(z0) = 0

then

(2) ||B||k−k0 ≤ Const||A||k.

We refer the reader to the next section for the definition of rapid
mixing. Recall ([4]) that it holds for generic extension.

Observe that Theorem 1 implies in particular that the set of cobound-
aries is closed in Ck for k > k0.

We also present versions of this theorem for extensions of subshifts
of finite type.

Our results are also true for relative coboundaries. Let A0(x) =
∫

A(x, y)dy. We say that A is a relative coboundary if

(3) A = A0 +B − B ◦ F.

Theorem 2. The results of Theorem 1 are valid also for relative cobound-
aries.

2. Preliminaries.

2.1. Subshifts of finite type. Here we present some results about
subshifts of finite type and their compact extensions. The proofs can
be found in [13], Chapters 3 and 8. For a geometric interpretation of
the results about the extensions see e.g. [4], Section 2. Let a be a finite
alphabet, A be Card(a)×Card(a)–matrix whose entries are zeroes and
ones. Let Σ = ΣA be associated (two-sided) subshift of finite type,
that is Σ = {{ωi}+∞

i=−∞ such that ωi ∈ a and Aωi,ωi+1
= 1}. Let σ be a

shift σ(ω)i = ωi+1. Given θ < 1 we consider the metric dθ on Σ given
by dθ(ω

′, ω′′) = θj where j = max(k : ω′
i = ω′′

i for |i| < k). Let Cθ(Σ)
denote the set of dθ-Lipschitz functions. Given φ ∈ Cθ(Σ) we denote
by µφ the Gibbs measure with potential φ, that is

hµφ
+ µφ(φ) = sup

µ
(hµ + µ(φ))

where the supremum is taken over all σ invariant probability measures.
We will use the fact that homologous functions have the same Gibbs
measures. Let G be a compact connected Lie group and τ ∈ Cθ(Σ, G).

Let Ñ = Σ×Y. Define F̃ : Ñ → Ñ by F (ω, y) = (σω, τ(x)y). Consider
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a measure νφ given by dνφ = dµφdg. Let Ck,θ(Ñ) = Cθ(Σ, C
k(G)). We

say that F̃ is rapidly mixing if ∀φ ∀N ∃k such that ∀A,B ∈ Ck,θ
∣

∣

∣
νφ(A(ω, y)B(F̃ n(ω, y)))− νφ(A)νφ(B)

∣

∣

∣
≤ Const||A||k,θ||B||k,θn−N .

It is shown in ([4], Theorem 4.3) that rapid mixing is generic among
compact group extensions of subshifts of finite type.

Let Σ+ be associated one-sided subshift which is defined similarly to
Σ but omega is now an one-sided sequence ω = {ωi}∞i=0. Cθ(Σ

+), Gibbs
states, rapid mixing etc. are defined for one-sided shifts similarly to
two-sided shifts. Let F̃ : Ñ → Ñ be a skew extension defined by
τ ∈ Cθ(Σ, G), φ ∈ Cθ(Σ) be a potential and A ∈ Ck,θ be an observable.
Then there are τ ∗ ∈ C√

θ(Σ, G), M ∈ C√
θ(Σ, G), φ∗ ∈ Cθ(Σ) ψ ∈

C√
θ(Σ), A∗ ∈ Ck,

√
θ(Σ

+), K ∈ Ck,
√
θ(Σ) such that

τ ∗ = (M ◦ σ)τM−1, φ∗ = φ+ ψ − (ψ ◦ σ), A∗ = A +K −K ◦ F̃ .
Moreover φ∗ can be chosen so that

(4) ∀ω
∑

σ$=ω

eφ
∗($) = 1

Then skew products defined by τ and τ ∗ are conjugated, φ and φ∗

have the same Gibbs measure and A is a coboundary iffA∗ is a cobound-
ary.

Let Ñ+ = Σ+ × Y and F̃ be a skew extension defined by some
τ ∈ Cθ(Σ

+, G). Let ∆ be a G–invariant Laplacian on G and let

Hλ = {ϕ : ∆ϕ = λϕ}.
We endow Hλ with L2–norm. Denote Cλ,θ(Σ

+) = Cθ(Σ
+, Hλ). Let φ

be any Hölderfunction on Σ+ such that

(5) ∀ω
∑

σ$=ω

eφ($) = 1

and let µφ be the Gibbs measure for φ. Consider the transfer operator

(6) (L(h))(ω, g) =
∑

σ$=ω

eφ($)h($, τ−1($)g).

Then L preserves Cλ,θ(Σ
+). Let Lλ denote the restriction of L to

Cλ,θ(Σ
+).

Proposition 1. ([4], Proposition 4.4) If F̃ is rapidly mixing then ∃C, s
such that

(7) ||Lnλ|| ≤ Cλs
(

1 − 1

Cλs

)n

.
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2.2. Anosov diffeomorphisms. Recall that a diffeomorphism F :
M →M is called Anosov if there is an f–invariant splitting

TM = Es ⊕ Eu

and constants C, ρ < 1 such that

∀v ∈ Es ||dfnv|| ≤ Cρn||v||, ∀v ∈ Eu ||df−nv|| ≤ Cρn||v||.
The distributions Es and Eu are uniquely integrable, they are tangent
to foliation W s and W u respectively. Since W s and W u are transverse,
if x, y ∈ M are close to each other the intersection W u

loc(x)
⋂

W s
loc(y)

consists of one point which we denote by [x, y]. A set Π is called par-
allelogram if for all x, y ∈ Π one has [x, y] ∈ Π. A partition Π =
{Π1,Π2, . . .Πn} is called Markov if for all x ∈ Int(Πi)

fW s
Π(x) ∈ W s

Π(fx), f−1W u
Π(x) ∈ W u

Π(f−1x)

where W ∗
Π(z) = W ∗

loc(z)
⋂

Πj if z ∈ Πj. Given a Markov partition Π

one can consider a subshift of finite type Σ with a = {1, 2 . . . n} and
Aij = 1 iff f(IntPi)

⋂

Pj = 0. The map ζ : Σ →M given by

ζ(ω) =
⋂

j

f−jΠωj

defines a semicongugacy between σ and f. If τ is a function from M to
G let τ̄ = τζ. Then ζ × id is a semicongugacy between

F (x, y) = (fx, τ(x)y) and F̃ (ω, y) = (σω, τ̄(ω)y).

We shall use the fact that the skew extension F is partially hyperbolic.
That is, there is an F invariant splitting

TN = Es
F ⊕ Ec

F ⊕ Eu
F

and constants C, ρ < 1 such that

∀v ∈ Es
F ||dF nv|| ≤ Cρn||v||, ∀v ∈ Eu

F ||dF−nv|| ≤ Cρn||v||
and Ec

F is the tangent space to the fibers. Gibbs states for f are defined
similarly it was done for σ. An important special case is so called SRB
measure which is the Gibbs measure with potential

φSRB = − ln det(df |Eu).

The importance of SRB measure comes from the fact that if Φ ∈ C(M)
then

1

n

n−1
∑

j=0

Φ(f jx) → µSRB(Φ), n→ +∞

for Lebesgue almost all x.
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∀α∃θ such that if φ ∈ Cα(M) then φ̄ = φ ◦ ζ ∈ Cθ(Σ). Now µφ is a
Gibbs state for f iff ∀Ω ⊂ Σ

µφ̄(Ω) = µφ(ζ(Ω)).

We say that F is rapidly mixing if ∀φ ∀N ∃k such that ∀A,B ∈ Ck(M)

|νφ(A(x, y)B(F n(x, y))) − νφ(A)νφ(B)| ≤ Const||A||k||B||kn−N .

Then F is rapidly mixing iff F̃ is rapidly mixing.

3. Symbolic systems.

3.1. One-sided shifts. In this subsection let F̃ : Ñ+ → Ñ+ be
a rapidly mixing extension of one sided subshift. Let Cr,θ(Σ

+) =
Cθ(Σ

+, Cr(Y )). We prove the following result.

Lemma 1. Let A ∈ C∞,θ(Σ
+) be an L2(νφ) coboundary for some

φ ∈ Cθ(Σ
+), A = B − B ◦ F̃ , where B ∈ L2(νφ). Then B has a

version in C∞,θ(Σ
+). Moreover ∃k0 such that if A ∈ Ck,θ(Σ

+), then
B ∈ Ck−k0,θ(Σ+) and

||B||k−k0,θ ≤ Const(k)||A||k,θ.
Proof. By the discussion of subsection 2.1 we can assume that φ satisfies
(5). Let A = A0 +

∑

λ6=0Aλ, where A0(ω) =
∫

A(ω, g)dg, Aλ ∈ Hλ. Let

B =
∑

λBλ. Since F commutes with projections to Hλ,

(8) Aλ = Bλ − Bλ ◦ F̃ .
In particular, A0 = B0 − B0 ◦ σ and, by [13], B ∈ Cθ(Σ

+). Hence we
can assume without loss of generality that A0 ≡ 0. Applying Lλ to (8)
we get

LλAλ = (Lλ − 1)Bλ.

Thus Bλ = −(1 − Lλ)−1LλBλ. Now there exists p = p(G) such that

(9) ||Aλ||λ ≤
Const

λk/2−p
||A||k,θ.

By Proposition 1 there exists s such that

(10) ||(1 − Lλ)−1|| ≤ Constλs.

Hence

(11) ||Bλ||λ ≤ Constλ2s||Aλ||λ ≤
Const

λk/2−(2s+p)
‖A‖k,θ

Now

(12) ||Bλ||k−k0,θ ≤ Constλp̄+
k−k0

2 ||Bλ||λ.
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Let B =
∑

λBλ. Then

||B||k−k0,θ ≤
∑

λ

||Bλ||k−k0,θ ≤ Const
∑

λ

λp+p̄+2s−(k0/2)||A||k,θ

and this series converges if k0 is large enough. This completes the
proof. �

3.2. Two-sided shifts. Let F̃ : Ñ → Ñ be an extension of two sided
subshift of finite type.

Lemma 2. Let A = B −B ◦ F̃ . If A ∈ C∞,θ(Σ), then B ∈ C∞,θ1/4(Σ).
Moreover ∃k0 such that if A ∈ Ck,θ(Σ), then B ∈ Ck−k0,θ1/4(Σ) and

||B||k−k0,θ1/4 ≤ Const(k)||A||k,θ.
Proof. Let τ ∗ = (M ◦ σ)τM−1. Then the change of variables y∗ = My

conjugates F̃ and F ∗(ω, y∗) = (σω, τ ∗(ω)y∗). Thus A is F̃–coboundary
iff A∗(ω, y∗) = A(ω,M−1y∗) is F ∗–coboundary. Write A∗ = A∗∗+K∗−
K∗ ◦ F ∗ where A∗∗ ∈ Ck,θ1/4(Σ+). Then A∗ is F ∗-coboundary iff A∗∗

is. But by Lemma 1 A∗∗ = B∗∗ −B∗∗ ◦ F where B∗∗ ∈ Ck−k0,θ1/4(Σ+).
Thus

A = (B +K) − (B + k) ◦ F̃
where B(ω, y) = B∗∗(ω, y), K(ω, y) = K∗(ω,My). and the statement
follows. �

Corollary 1. If ω is a periodic orbit of σ, say σnω = ω, then
∣

∣

∣

∣

∣

n−1
∑

j=0

Aλ(F̃
j(ω, y))

∣

∣

∣

∣

∣

≤ Cλs||Aλ||θ,k0d(τn(ω)y, y).

Proof.
∣

∣

∣

∣

∣

n−1
∑

j=0

Aλ(F̃
j(ω, y))

∣

∣

∣

∣

∣

≤ |Bλ(ω, τn(ω)y) −Bλ(ω, y)| ≤
√
λd(τn(ω)y, y)||Bλ||

and the result follows by (11). �

4. Anosov diffeomorphisms.

4.1. Höldercontinuity. Now we start a proof of Theorem 1. In this
subsection we show that B has a Hölderversion. Let Π be a Markov
partition of M and let Σ be the associated subshift of a finite type. Let
ζ : Σ →M be the semiconjugacy

ζ ◦ σ = f ◦ ζ.
Let τ̄ and F̃ be as in subsection 2.2. Define Ā = A◦ζ. Let Ā = B̄−B̄◦F̃ ,
B̄ =

∑

λ B̄λ. Let Bλ = B̄λ◦ζ−1, B =
∑

λBλ. Since ζ−1 is discontinuous
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we can not deduce immediately thatBλ are Hölder. Rather we obtain is
a consequence of periodic leaves estimates of Corollary 1. Let p = (x, y)
have a dense orbit. We have

Bλ(F
np) = Bλ(p) −

n−1
∑

j=0

Aλ(F
jp).

Lemma 3. Bλ|Orb(x,y) is uniformly Höldercontinuous with Hölderconstant
C||Aλ||λs.
Proof. Let m < n and

d(F np, Fmp) ≤ ε.

Denote k = n − m, z = fmx, q = Fmp. By Anosov Closing Lemma
∃x̃ ∈M such that f kx̃ = x̃ and

d(f jz, f jy) ≤ Cd(f kz, z)γρmax(j,k−j)

for some γ > 0 and ρ < 1. Let u = (x̃, y) then

∣

∣Bλ(f
kq) − Bλ(q)

∣

∣ =

∣

∣

∣

∣

∣

k−1
∑

j=0

Aλ(F
jq)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

k−1
∑

j=0

Aλ(F
ju)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

k−1
∑

j=0

[

Aλ(F
jq) − Aλ((F

ju)
]

∣

∣

∣

∣

∣

.

Now by Corollary 1 the first part is

O
(

||Aλ||λs4dα(p, F kp)
)

and the second part is

O
(

||Aλ||
√
λdγ(p, F kp)

)

since Aλ is Lipschitz with constant
√
λ||Aλ||. �

Since Orb(p) is dense we can extend Bλ to Hölderfunctions on N.

Lemma 4. Under the conditions of Theorem 1 the restriction of B to
each fiber is smooth. Moreover ∃k0 such that

||B||Cα′(M,Ck−k0 (G)) ≤ Const(k)||A||Cα(M,Ck(G)).

Proof. We first show that B has a Hölderversion. By Lemma 3 each Bλ

has an extension from Orb(x, g) to N which is Hölderwith Höldernorm
at most Const||Aλ||λs. By continuity of Aλ this extension satisfies Aλ =
Bλ − Bλ ◦ F. Now

||Aλ|| ≤
Const

λ(k/2)−p ||A||Ck(N).

Let B =
∑

λBλ then

||B||Cα(N) ≤
∑

λ

||Bλ||Cα(N) ≤ Const

(

∑

λ

λp+s−k/2

)

||A||Ck(N)
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and if k is large enough this series converges. In other words there
exists k1 such that

BCα(N) ≤ Const||A||Ck1N .

Applying this to ∆mA we get

||B||Cα(M,H2m(G)) ≤ Const||∆mB||Cα(N) ≤ Const||∆mA||Ck1 (N) ≤

Const||A||Ck1+2m(N)

and the result follows by Sobolev embedding theorem. �

4.2. Smoothness. We now establish the smoothness ofB in the trans-
verse directions.

Lemma 5. Restrictions of B to the leaves of W s
F ,W

u
F are smooth.

Proof. It is enough to consider W s
F . We have A(p) = B(p) − B(Fp).

Thus B(p) = A(p) +B(Fp). Hence if p ∈ W s(p0) then

B(p) − B(p0) =

∞
∑

j=0

[

A(F pj) − A(F jp0)
]

.

Since F j are contractions on W S
F it is clear that this series can be

differentiated term by term as many times as we want (see [3] ) . �

We now make use of the following fact ([10]).

Proposition 2 (Journe Lemma). Let F1 and F2 be two continuous
transverse foliations with smooth leaves. Let B be a continuous function
whose restrictions on leaves of F1 and F2 are smooth. Then B is
smooth. Moreover there exists k0 such that if restrictions of B to the
leaves are Ck then B is Ck−k0.

This proposition implies in view of Lemmas 4 and 5 that B is smooth
on each leave of W sc and since it is also smooth on each leave of W u

we conclude that B is smooth. This complete the proof of Theorem 1.

Remark. Weaker versions of Journe Lemma proven in [3, 9] would
also suffice for the proof.

4.3. Relative coboundaries. Proof of Theorem 2. Apply Theorem
1 to ∆A. �
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4.4. A counter-example. Let G = T
2,

F (x, t1, t2) = (fx, t1 + α1r(x), t2 + α2r(x)).

Suppose that α1/α2 is irrational and that for allN there existm1,N , m2,N ∈
Z such that

|α1m1,N + α2m2,N | ≤ m−N
2,n .

By reindexing we can assume that m2,N > N2. Let ΦN(x, t1, t2) =
exp(2πi(m1,N t1 +m2,N t2)). Then

Φ ◦ F = exp(2πi(m1,Nα1 +m2,Nα2)r(x))ΦN .

Let A =
∑

N ((ΦN − Φ ◦ F )/N 2). Then A ∈ C∞(N), A = B − B ◦ F
where B =

∑

N ΦN ∈ C0(N) − C1(N). By considering suitable linear
combinations of ΦN it is easy to see that F is not rapidly mixing. This
shows that arbitrary extensions need not satisfy Theorem 1.

4.5. Obstructions. We now provide some criteria for function being
a coboundary. Most of these criteria come from other papers, however
their applicability is a consequence of the fact that different notions of
coboundaries coincide in our situation. Sometimes it is easier to verify
that A is a relative coboundary. It is also perfectly satisfactory since
it is well known when A0 is an f -coboundary.

(i) Define

Dφ(A) = νφ(A
2) − ν2

φ(A) + 2

∞
∑

j=1

[

νφ(A(A ◦ F̃ j))ν2
φ(A)

]

.

Proposition 3. ([6]) A is a cohomologous to a constant ⇔ ∃φ such
that Dφ(A) = 0 ⇔ ∀ψ Dφ(A) = 0.

Proof. Without loss of generality we can assume that νφ(A) = 0. Then
Dφ(A) = 0 ⇔ A is L2(νφ)-coboundary (Spectral theorem)
⇔ A is Höldercoboundary (Theorem 1)
⇒ ∀ψ A is L2(νψ)-coboundary. �

(ii) Let P = {p0, p1 . . . pn} be a chain such that pk+1 ∈ W s(pk)
⋃

W u(pk).
We say that P is closed if p0 = pn. Define

r(P ) =
∑

k

P (pk, pk+1)

where

r(pk, pk+1) =

{

∑∞
j=0 [A(F jpk+1) − A(F jpk)] if pk+1 ∈ W spk

∑−1
j=−∞ [A(F jpk) − A(F jpk+1)] if pk+1 ∈ W spk

The following statement is Corollary 3.1 from [11].
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Proposition 4. If F has accessibility property then A is cohomologous
to a constant if and only if for any closed chain P, r(P ) = 0.

(iii) The next result is clear from the proof of Theorem 1.

Proposition 5. A is a relative coboundary A ⇔ ∀N ∈ N ∆NA is a
coboundary.

(iv) Let G = T. Let ν be the SRB measure for F. Consider a one
parameter family

Fε(x, z) = (fx, z + τ(x) + εA(x, z) + ε2α(ε, x, z).

Let νε be any u-Gibbs measure for Fε, that is, the projection of νε to
M is µSRB .

Proposition 6. A is a relative coboundary if and only if

λc(νε) = o(ε2).

Proof. We use the following asymptotics ([5])

νε(H) = ν(H) + εω(H) + o(ε)

where

ω(H) =

∞
∑

j=1

ν

(

A ◦ F−j dH

dz

)

.

We want to apply this to Hε = ln dFε

dz
. We have

dFε
dz

= 1 + ε
dA

dz
+ ε2dα(0, x, z)

dz
+ o(ε2).

So

ln
dFε
dz

= ε
dA

dz
+ ε2

[

dα(0, x, z)

dz
− 1

2

(

dA

dz

)2
]

+ o(ε2).

Hence

νε

(

ln
dFε
dz

)

=

εν

(

dA

dz

)

+ε2

[

ν(
dα(0, x, z)

dz
) − 1

2
ν

(

(

dA

dz

)2
)

+

∞
∑

j=1

ν

(

A ◦ F−j d
2A

dz2

)

]

+o(ε2).

Now since dν = dµSRBdg it follows that

ν

(

dA

dz

)

= ν

(

dα(0, x, z)

dz

)

= 0 and

ν

(

A ◦ f−j d
2A

dz2

)

= −ν
((

dA

dz

)

◦ F−j dA

dz

)

.



LIVSIĈ THEORY FOR COMPACT GROUP EXTENSIONS 11

Hence

νε(ln
dFε
dz

) ∼ −ε2

[

1

2
ν

(

(

dA

dz

)2
)

−
∞
∑

j=1

ν

((

dA

dz

)

◦ F−j dA

dz

)

]

That is

(13) νε(ln
dFε
dz

) ∼ −ε
2DSRB(dA

dz
)

2
.

Therefore
λc(νε) = o(ε2)

if and only if DSRB(dA
dz

) = 0. By Proposition 3 dA
dz

is a coboundary that
is A satisfies (3). �

Appendix A. Non-mixing case.

Observe that Anosov times rotation could satisfy the conclusions of
Theorem 1 even though it is not mixing. In this appendix we give
an extension of Theorem 1 to a non-mixing case. In order to explain
our result let us recall some background. Given τ, let N̄ = M × G
and consider the principal extension F̄ : N̄ → N̄ given by F̄ (x, g) =
(f(x), τ(x)g). Recall the definition of Brin groups [1, 2]. Given a par-
tially hyperbolic diffeomorphism we call a sequence P = {p1, p2 . . . pn}
a e-chain (respectively t-chain) if pj+1 ∈ W u(pj)

⋃

W s(pj) (respectively
pj+1 ∈ W u(pj)

⋃

W s(pj)
⋃

Orb(pj). Fix a reference point x ∈M. Given
any chain P ⊂ M with xn = x1 = x and any g1 ∈ G there is unique
chain P̄ ⊂ N̄ starting at (x, g1) and covering P. P̄ is not closed, rather
gn = g(P )g1. Let Γt(x) (Γe(x)) denote the set of all g(P ) for all closed
t-chains (respectively e-chains) starting at x.

Proposition 7. (Brin) ([1, 2]) (a) Γ∗(x) are groups. Γ∗ of different
points are conjugated, Γt is a normal subgroup of Γe, Γe/Γt is cyclic.
In particular Γ̄e/Γ̄t is abelian.

(b) (F, νφ) is ergodic⇔ Γ̄e acts transitively on Y.
(F, νφ) is mixing⇔ Γ̄t acts transitively on Y.

A quantitative version of this result was obtained in [4]. Call a set
S ⊂ G Diophantine on Y if there are constants K, σ such that for any
function h on Y with ∆h = λh then there is s ∈ S such that

||h− h ◦ s|| ≤ K

λσ
||h||L2.

Let Γt(x,R) (Γe(x,R)) denote the set of g(P ) for all chains P =
(x1, x2 . . . xn) with x1 = xn = x, n ≤ R, dW ∗(xj, xj+1) ≤ R (if
xj+1 = fmxj we require that |m| ≤ R).
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Proposition 8. ([4] (a) S is Diophantine on Y iff S is Diophantine
on Y/[G,G] and Y/Center(G).

(b) S is Diophantine on Y/Center(G) ⇔ there are no S-invariant
functions⇔ S contains a finite Diophantine subset.

(c) F is rapidly mixing ⇔ Γt(R) is Diophantine for large R.

It is proven in [1] that there is an open and dense subset of pairs
(f, τ) such that Γt(R) = G for large R. The goal of this appendix is to
prove the following statement.

Theorem 3. Suppose that F is ergodic. If Γe(R) is Diophantine for
large R then any solution to (1) satisfies the tame estimates (2).

Remark. I believe that the above condition is also necessary for (2)
but the approach of subsection 4.4 (cf. also [4], subsection 4.3) shows
only that if Γe(R) is not Diophantine for large R and A = B − B ◦ F
then the norm of ∂αyB can not be bounded by norms of ∂βyA. It does

not rule out the possibility that it can be bounded by norms of ∂β1

y ∂
β2

x A,
even though this seems unlikely.

Proof. Observe that the only place where we have used rapid mixing
(i.e. Diophantineness of Γt(R)) was (10). Hence we need to show that
(10) holds under a weaker condition that Γe(R) is Diophantine. To this
end we estimate (1 − Lλ)−1 using the series

(1 − Lλ)−1 =
1

2

(

1 − 1 + Lλ
2

)−1

=
1

2

∞
∑

j=0

(

1 + Lλ
2

)j

.

Thus instead of Proposition 1 we need to show that there exist C, s
such that

(14)

∥

∥

∥

∥

(

1 + Lλ
2

)n∥
∥

∥

∥

≤ Cλs
(

1 − 1

Cλs

)n

The proof of (14) is similar to the proof of (7) which is Proposition
4.4 of [4]. Let us describe the modifications needed. Repeating the
arguments on page 184 of [4] we find that if (14) fails then for each
C1, β4 there exist λ,H such that ||H||C0 ≤ 1, L(H) ≤ Constλ and
||(1+Lλ

2
)m(λ)H|| ≥ 1 − |λ|−β4 where m(λ) = C1 lnλ and L(H) denotes

the Lipschitz norm H : Σ+ → L2(Y ). As in [4] this implies that ∀ω̃, ω̂
||πλ(τm(ω̃))H(ω̃) − πλ(τm(ω̂))H(ω̂)|| ≤ λ−β5

where β5 → ∞ as β4 → ∞. However in the present setting we also
have that for all ω

(15) ||πλ(τ(ω))H(ω)−H(σω)|| ≤ λ−β5
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Indeed the expression for [( 1+Lλ

2
)mH](σω) contains among various terms

(1/2)m[H(σω) + eφ(ω)πλ(τ(ω))H(ω)].

These two vectors should be almost collinear in the sense of [4], page
185 proving (15).

(15) implies that in our setting Lemma 4.7 of [4] holds for e-chains
and not only for t-chains as in [4]. Continuing as in [4], page 186 we
show that if (14) fails then this contradicts to Diophantiness of Γe.
Thus (14) holds. Thus Theorem 1 holds under the assumption that
Γe(R) is Diophantine as claimed. �
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