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Abstract
We consider the motion of a particle in a random isotropic force field. Assuming
that the force field arises from a Poisson field in Rd , d � 4, and the
initial velocity of the particle is sufficiently large, we describe the asymptotic
behaviour of the particle.

Mathematics Subject Classification: 60K37

1. Introduction

Let F be a random force field on Rd defined on a probability space (�′, F ′, P′). The motion
of a particle is described by the equation

Ẍ(t) = F(X(t)), (1)

where X(t) denotes the position of the particle at time t . Let V (t) = Ẋ(t) be the velocity of
the particle at time t . As initial conditions we take X(0) = 0 and V (0) = v0, where v0 is
a non-random vector. The force field is assumed to be stationary and isotropic. The precise
form of the force field will be discussed below.

We shall be interested in the asymptotic behaviour of X(t) and V (t) as t → ∞. The
process V (t) can be written in the integral form as

V (t) = v0 +
∫ t

0
F(X(s)) ds. (2)

Formal arguments, based on the near-independence of contributions to the integral on the right-
hand side of (2) from non-intersecting sub-intervals, suggest that V (t) behaves as a diffusion
process, if time is re-scaled appropriately. In fact, we shall prove that there is an event �′

v0
in

the underlying probability space �′, such that P′(�′\�′
v0

) → 0 as |v0| → ∞, and V (c3t)/c

converges, as t → ∞, to a diffusion process on �′
v0

(the probability measure on �′
v0

is defined
by conditioning P′ on the event �′

v0
). In particular, the kinetic energy of the particle will be
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shown to tend to infinity as t → ∞. The precise formulation of these results will be provided
in section 3.

We cannot, however, expect that V (c3t)/c converges to the diffusion process for almost
all realizations of the force field, if v0 is fixed. Indeed, depending on the assumptions imposed
on F , the trajectory may remain in a bounded region of space and the velocity may remain
bounded with positive probability.

It must be noted that we must exclude the caseF = ∇H , whereH is a stationary field, since
in this case (X(t), V (t)) is a Hamiltonian flow with the Hamiltonian H(k, x) = |k|2/2−H(x),
and |V (t)|2/2 − H(X(t)) is constant on the solutions of (1).

Earlier papers primarily studied the behaviour of X(t) and V (t) on long-time intervals,
whose length, however, depended on |v0|, where the initial velocity v0 was treated as a large
parameter. We shall assume that v0 is fixed and t tends to infinity. The trade-off is that we
need to exclude an event of small but positive measure from the underlying probability space.

Let us mention some of the earlier results concerning the long-time behaviour of X(t) and
V (t). In [5], Kesten and Papanicolaou considered the equation

ẍ(t) = εF (x(t)) (3)

with the initial data x(0) = 0 and v(0) = ṽ. Certain mixing assumptions were imposed on the
force field F . It was shown that if d � 3, the process v(t/ε2) converges weakly to a diffusion
process v(t) with the initial data v(0) = ṽ. The generator of the limiting process can be written
out explicitly. The process ε2x(t/ε2) converges weakly to x(t) = ∫ t

0 v(s) ds.
Note that equations (1) and (3) are related via the change of variables

X(t) = x(t/
√

ε), v0 = ṽ/
√

ε. (4)

Therefore, the convergence result for v(t/ε2) can be formulated in terms of V (t) as follows:
the process V (|v0|3t)/|v0| converges to a diffusion process when v0 tends to infinity in such a
way that v0/|v0| = ṽ remains fixed. Similarly, X(|v0|3t)/|v0|4 converges weakly to a limiting
process.

In [4], Durr et al extended the convergence results to the two-dimensional case. The
field F was assumed to be a gradient of H(x) = ∑

i h(x − pi), where h is a smooth function
with compact support and the points pi form a Poisson field on the plane. An additional
difficulty in the two-dimensional case is that, unlike the case with d � 3, typical trajectories
of (1) will self-intersect. In [7], Komorowski and Ryzhik proved the two-dimensional result
in the case when H is sufficiently mixing, but is not necessarily generated by a Poisson field.

In [6], Komorowski and Ryzhik considered the process (1) on a longer time scale.
Namely, they demonstrated that X(|v0|3+8αt)/|v0|4(1+α) converges to a Brownian motion for
all sufficiently small α > 0. It was assumed that F = ∇H , where H is sufficiently mixing.

Unlike the above papers, we shall consider the asymptotic behaviour of V (t) when v0

is fixed and t → ∞. First, however, assume that v0 → ∞, v0/|v0| = ṽ, and let V (t) be
the limiting process for V (|v0|3t)/|v0| as v0 → ∞. (It satisfies the stochastic differential
equation (7).) As has been noted by Dolgopyat and De La Llave in [2], the process V (t) is
self-similar, that is for c > 0 the process V (c3t)/c satisfies the same stochastic differential
equation with initial condition V (0)/c. Therefore, for c fixed, V (c3|v0|3t)/(c|v0|) tends to
the diffusion process (7) starting at ṽ/c. If, instead, we assume that v0 is large but fixed, and
take the limit as c → ∞, we formally obtain that V (c3t)/c tends to the diffusion process
(7) starting at the origin. We note that the diffusion processes satisfying the self-similarity
property described above are well understood (see, e.g. [9, section XI]). In particular, the fact
that this process is non-recurrent for d > 3 plays a crucial role in our analysis.
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2. The force field

Let SR,m be the space of smooth functions f : Rd → Rd which are supported inside the ball
of radius R centred at the origin and satisfy ||f ||C2(Rd ) � m. Let µ be a probability measure
on SR,m. We assume that µ is symmetric in the sense that if ψ : SR,m → SR,m is a mapping
that maps a function f into −f , then

µ(U) = µ(ψ(U)) (5)

for any measurable set U ⊆ SR,m. We also assume that µ is isotropic, that is, the vectors
(O−1f (Ox1), . . . , O

−1f (Oxn)) and (f (x1), . . . , f (xn)) have the same distribution for each
orthogonal matrix O and points x1, . . . , xn ∈ Rd . Suppose that on a probability space
(�′, F ′, P′) we have a sequence of functions fi : �′ → SR,m which are independent and
identically distributed with distribution µ. We shall consider random vector fields F of the form

F(x) =
∞∑
i=1

fi(x − ri), (6)

where ri form a Poisson point field with unit intensity on Rd . We assume that the Poisson
field is independent of the sequence fi . Note that the force field F defined by (6) is stationary,
isotropic and has zero mean. We shall denote the j th coordinate of the vector F by F j .

3. Formulation of the main result

Let Wt be a standard d-dimensional Brownian motion. Consider the d-dimensional process
V (t) which satisfies the diffusion equation

dV (t) = 1√
|V (t)|

(
λ dWt + (σ −λ)

V (t)

|V 2
(t)|

(V (t), dWt)

)
+

((d − 2)σ 2 − (d − 1)λ2)V (t)

2|V (t)|3 dt,

(7)

where

σ 2 =
∫ ∞

−∞
E(F 1(0)F 1(e1t)) dt, λ2 =

∫ ∞

−∞
E(F 2(0)F 2(e1t)) dt, (8)

and e1 is the first coordinate vector. It is clear that the integrals defining σ 2 and λ2 are non-
negative. We shall require that∫ ∞

−∞
E(F 1(0)F 1(e1t)) dt > 0. (9)

Thus, the case when F = ∇H , where H is a stationary random field, is excluded from
consideration. The generator of the process V (t) is

L = 1

2

d∑
i,j=1

∂

∂vi

aij (v)
∂

∂vj

,

where

aij (v) =
∫ ∞

−∞
E(F i(0)F j (vt)) dt.

By examining the stochastic differential equation satisfied by |V (t)|2/2 (see formula (10)), it
follows that the origin is an inaccessible point for the process V (t) if d � 3 (see [9, section XI]).



190 D Dolgopyat and L Koralov

Therefore the solution of (7) with initial condition V (0) �= 0 exists for all t . By the solution
with the initial condition V (0) = 0 we shall mean the limit in distribution, as V (0) → 0, of
solutions with initial condition V (0). We shall prove the following theorem.

Theorem 3.1. Let F be a vector field in Rd , d � 4, given by (6), which satisfies (9). For each
sufficiently large v0 there is a set �′

v0
such that lim|v0|→∞ P′(�′

v0
) = 1 and if �′

v0
is viewed

as a probability space with the measure obtained by conditioning P ′ on the event �′
v0

, i.e.
P′

v0
(A) = P′(A)/P′(�′

v0
), then

(a) the processes X(t) and V (t) tend to infinity almost surely,
(b) the processes V (c3t)/c on �′

v0
converge in distribution, as c → ∞, to the solution of (7)

with the initial condition V (0) = 0.

Let E(t) = |V (t)|2/2 be the kinetic energy of the particle at time t , and E(t) = |V (t)|2/2,
where V (t) is the solution of (7) with initial condition V (0) = 0. By the Ito formula, E(t) is
the solution of

dE(t) = σ(2E(t))1/4 dBt +
σ 2(d − 1)

2
√

2E(t)
dt (10)

with the initial condition E(0) = 0, where Bt is a standard one-dimensional Brownian
motion. Let

X(t) =
∫ t

0
V (s) ds. (11)

We observe that the fact that our force is Poisson and rotation invariant (rather than a
general strongly mixing force) is primarily used in section 6.2. An alternative approach would
be to estimate the rate of convergence in the averaging theorem (our lemma 5.6) using the
techniques of [3] or [6] but this would make the proof much more complicated. Therefore in
this paper we consider the simplest possible force distribution leaving the extension to more
general force fields as an open question.

Remark. Up to a change of time by a constant factor, E
3/4

(t), and consequently |V (t)|3/2,
are Bessel processes with dimension 2d/3. Therefore if d > 3, then from the properties of the
Bessel processes (see chapter 3.3.C of [8]) it follows that ln |V (t)| is a diffusion process with
a positive drift, and therefore

P(|V (t)| reaches 2|v0| before |v0|/2) > 1
2 . (12)

Moreover, limt→∞ |V (t)| = ∞ almost surely for d > 3. We shall also see that
limt→∞ |V (t)| = ∞ with high probability with respect to the measure P′ if the initial velocity
is large (see lemma 6.2). These properties will allow us to conclude that with high probability
the trajectories of X(t) and X(t) do not ‘come close’ to self-intersecting if the initial velocity
is large (see lemma 6.5). This avoidance of near self-intersections is essential to the proof of
theorem 3.1.

Theorem 3.1 immediately implies the following.

Corollary 3.2. Let F be a vector field in Rd , d � 4, given by (6), which satisfies (9). For each
sufficiently large v0 there is a set �′

v0
such that lim|v0|→∞ P′(�′

v0
) = 1 and if �′

v0
is viewed as

a probability space with the measure obtained by conditioning P ′ on the event �′
v0

, then

(a) the processes E(c3t)/c2 on �′
v0

converge in distribution, as c → ∞, to the solution

of (10) with the initial condition E(0) = 0. The processes X(c3t)/c4 on �′
v0

converge in

distribution, as c → ∞, to the process X(t) defined by (11).
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(b) There exists a constant c̄ such that E(t)/c̄t2/3 converges in distribution to a random
variable with density

p(x) = 3

2�(d/3)
x

d
2 −1 exp(−x

3
2 ).

If d = 2 or 3 then the situation is more delicate since V is recurrent. it seems that the
methods of this paper can be modified to show that P(|Ẏ (t)| → ∞) = 0 (in the more difficult
case d = 2 where the trajectories of X(t) self-intersect the methods of [4, 7] should be used).
We also believe that theorem 3.1(b) remains valid for d = 2, 3 (the theorem is false if d = 1
since in that case all orbits are periodic). However, we do not have a proof of this since the
cases of large V and small V need to be considered separately and new ideas are necessary to
handle the latter case.

4. Auxiliary processes

4.1. Time discretization

Let X(t) be the solution of (1) with initial conditions X(0) = 0, V (0) = v0. We assume that
the field F and, consequently, the process X(t) are defined on a probability space (�′, F ′, P′).
Assume, momentarily, that the trajectories of X(t) always ‘keep exploring’ new regions of Rd

in the sense that for each t � 0 the tail of the trajectory X(s), s � t + 1, is separated from the
initial part of the trajectory X(s), s � t , by a distance larger than 2R. Then, for large t ,
the interval [0, t] can be split into sub-intervals, such that the contribution to the integral on
the right-hand side of (2) from different sub-intervals is almost independent. This fact will be
helpful when proving that V (c3t)/c converges to a diffusion process.

We shall demonstrate that with high probability the trajectories of the process X(t) indeed
have the desired property if the initial velocity is large. To this end, we shall construct an
auxiliary process Y (t) on a probability space (�, F, P). The process Y (t) is defined as the
solution of

Ÿ (t) = F̃ (t, Y (t)), Y (0) = 0, Ẏ (0) = v0, (13)

where F̃ (t, x) can be obtained from F(x) by ‘switching on’ new independent versions of
F(x) at stopping times τn, as described below. Since the force field F̃ on the right-hand
side of (13) is time-dependent, the increments Ẏ (τn) − Ẏ (τn−1) and Ẏ (τk) − Ẏ (τk−1) will
be almost independent if |n − k| is large. This way, we don’t need to be concerned about
possible self-intersections of the process Y (t) when studying the long-time behaviour of the
process Ẏ (t). Moreover, the introduction of the stopping times τn will allow us to use a kind
of Markov property: the distribution of Y (τn + ·) − Y (τn) will depend on the events prior to
τn only through Ẏ (τn) (see section 4.2).

On the other hand, we shall prove that the processes X(t) and Y (t) will have the
same distribution if certain events with small probabilities are excluded from their respective
probability spaces. More precisely, there are events �′

v0
⊆ �′ and �v0 ⊆ � such that the

processes X(t, ω′)χ�′
v0
(ω′) and Y (t, ω)χ�v0

(ω) have the same distributions. The probabilities
of �′

v0
and �v0 tend to one when |v0| → ∞.

Below we give a rigorous definition of the field F̃ (t, x). Roughly speaking, we follow the
trajectory X(t) till time τ1 such that there are no points ri , i � 1, in the 2R-neighbourhood
of X(τ1). Then we replace the force field F by an independent version, also generated by
Poisson points with unit intensity on Rd\B2R(X(τ1)), but zero intensity on B2R(X(τ1)), where
B2R(X(τ1)) is the ball of radius 2R centred at the X(τ1). We can then treat X(τ1) as the new
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initial point and define the following stopping times by induction. More precisely, let i, n � 1,
and f n

i be independent identically distributed functions with distribution µ. Let F0 = F .
Define the sequence of random fields F1, F2, . . . as follows:

Fn(x) =
∞∑
i=1

f n
i (x − rn

i ),

where, for each n � 1, rn
i form a Poisson point field with unit intensity on Rd\B2R(0) and zero

intensity on B2R(0), and B2R(0) is the ball of radius 2R centred at the origin. The Poisson
fields r0, r1, r2, . . . are assumed to be independent of each other and of f n

i (here r0 = r). We
can assume that the random fields Fn are defined on a probability space (�, F, P), which is an
extension of the original probability space (�′, F ′, P′). Let τ0 = 0, F̃0 = F0, Y0 = 0, and v0

be the initial condition for the process X(t). Assuming that τn−1, F̃n−1, Yn−1, and vn−1 have
been defined for some n � 1, we inductively define τn, F̃n, Yn and vn. Let y(t) be the solution
of the equation

ÿ(t) = F̃n−1(y(t)), t � τn−1

with the initial conditions y(τn−1) = Yn−1, ẏ(τn−1) = vn−1. Let l = 4R + 1. Let τn be the first
time after τn−1 + l|vn−1|−1 when there are no points rn−1

i , i � 1, within the 2R-neighbourhood
of y(t) − Yn−1, that is,

τn = inf

{
t � τn−1 + l|vn−1|−1 : inf

i�1
|y(t) − Yn−1 − rn−1

i | � 2R

}
.

If τn = ∞, then Yi , vi and F̃i(x) are undefined for i � n. Otherwise, define Yn = y(τn),
vn = ẏ(τn) and F̃n(x) = Fn(x − Yn).

Now we can set F̃ (t, x) = F̃n−1(x) for τn−1 � t < τn. Then the solution Y (t) of (13)
satisfies Y (τn) = Yn and Ẏ (τn) = vn. The relation of Y (t) to the original process X(t) is
explained by the following lemma.

Lemma 4.1. Let Y (t) be the solution of (13) on the probability space (�, F, P). For each
sufficiently large v0 there are events �′

v0
⊆ �′ and �v0 ⊆ � with the following properties:

(a) lim|v0|→∞ P′(�′
v0

) = lim|v0|→∞ P(�v0) = 1.
(b) The processes X(t) and Y (t) have the same distribution if restricted to the spaces �′

v0
and

�v0 , respectively.
(c) The processes Ẏ (t) and Y (t) tend to infinity almost surely on �v0 .
(d) If �v0 is viewed as a probability space with the measure obtained by conditioning P on

the event �v0 , then the processes Ẏ (c3t)/c on �v0 converge in distribution, as c → ∞, to
the solution of (7) with the initial condition V (0) = 0.

It is clear that theorem 3.1 follows from lemma 4.1. We shall study some of the properties
of Y (t) in section 5 and prove parts (a), (b) and (c) of lemma 4.1 in section 6. We then prove
part (d) of lemma 4.1 in section 7.

4.2. Another auxiliary process

Note that the distribution of vector field F0 is slightly different from the distribution of the
fields Fn, n � 1. Namely, F0 is based on a Poisson field on Rd , while Fn, n � 1, are based on
Poisson fields on Rd\B2R(0).

Consider the vector field F , which is defined in the same way as F̃ , except that now we
assume F0 to be defined by a Poisson field with unit intensity on Rd\B2R(0) and zero intensity
on B2R(0). The process Z(t) is defined as the solution of

Z̈(t) = F(t, Z(t)), Z(0) = 0, Ż(0) = w0,
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where w0 is a random vector independent of F . The reason to consider Z(t) is the following
Markov property.

Let Gn be the σ -algebra generated by F̃i , i � n − 1. For each n � 1, A ∈ B(Rd), and
B ∈ B(C([0, ∞))) we have:

P(Y (τn + ·) − Y (τn) ∈ B|Gn)χ{Ẏ (τn)∈A} = P(Z(·) ∈ B)χ{w0∈A} in distribution, (14)

where the initial velocity vector w0 for the process Z(t) is assumed to be distributed as Ẏ (τn).
If a random variable τ is such that τ(ω) ∈ {τ1(ω), τ2(ω), . . .} for each ω, and the set

{τ � τn} is Gn-measurable for each n, then from (14) it follows that

P(Y (τ + ·) − Y (τ) ∈ B|G)χ{Ẏ (τ )∈A} = P(Z(·) ∈ B)χ{w0∈A} in distribution, (15)

where G = {A ∈ F : A ∩ {τ � τn} ∈ Gn for each n}.

5. Preliminaries

In this section we recall some results about diffusion approximation for the process Ẏ (t) and
provide bounds on probabilities of some unlikely events.

5.1. Behaviour of Y (t) and Ẏ (t) on the time interval [τn, τn+1]

In this subsection we shall prove that with high probability the velocity vector does not
change significantly between the times τn and τn+1 if |vn| is large. Therefore Y (t) can be
well approximated by a straight line on this time interval.

Let zn(t) = Yn + (t − τn)vn, that is, zn(t) is the solution of

z̈n(t) = 0, zn(τn) = Yn, żn(τn) = vn.

Let ηn, n � 1 be the first time after τn−1 + l|vn−1|−1 when there are no points rn−1
i , i � 1,

within the 2R-neighbourhood of zn−1(t) − Yn−1, that is,

ηn = inf
{
t � τn−1 + l|vn−1|−1 : inf

i�1
|zn−1(t) − Yn−1 − rn−1

i | � 2R
}
.

Let

ξn(t) =
∫ t

τn

F̃n(zn(s)) ds, ζn(t) =
∫ t

τn

ξn(s) ds, t � τn.

Let us first examine the behaviour of Y (t) on the interval [0, τ1].

Lemma 5.1. For each N and δ > 0 we have

P(τ1 > |v0|−1+δ) � |v0|−N, (16)

P

(
sup

0�t�τ1

|Ẏ (t) − v0| > |v0|−1+δ

)
� |v0|−N, (17)

P

(
sup

0�t�τ1

|Ẏ (t) − v0 − ξ0(t)| > |v0|−3+δ

)
� |v0|−N, (18)

P

(∣∣∣∣ξ0(τ1) −
∫ η1

0
F0(z0(s)) ds

∣∣∣∣ > |v0|−1+δ

)
� |v0|−N, (19)

for all sufficiently large |v0|.
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Proof. Let y(t), t � 0, be the solution of the equation

ÿ(t) = F0(y(t)), y(0) = 0, ẏ(0) = v0. (20)

Note that Y (t) satisfies this equation on the interval [0, τ1).
We shall say that an event (which depends on v0) happens with high probability if for each

N the probability of the complement does not exceed |v0|−N for all sufficiently large |v0|. Let
us show that for each δ > 0

||F0||C2(B|v0 |(0)) � δ ln |v0| (21)

with high probability. Recall the definition of F0 = F from section 2, and note that
||F0||C2(B|v0 |(0)) may be larger than δ ln |v0| only if there is a point x ∈ B|v0|(0) such that
the ball of radius R centred at x contains at least [δ ln |v0|]/m points out of ri , i � 1. The
probability of this event is easily seen to decay faster than any power of |v0| since δ, m and R

are constants and ri , i � 1, form a Poisson field with unit intensity.
Take −1 < α < 0, which will be specified later, and let T0 = |v0|α . Let us show that for

each δ > 0

sup
0�t�T0

|ξ0(t)| � |v0|(α−1)/2+δ (22)

with high probability. Indeed, let

ξ
k = ξ0

(
3(k + 1)R

|v0|
)

− ξ0

(
3kR

|v0|
)

, k � 0,

where R was defined in section 2. Note that {ξ 2k}k�0 and {ξ 2k+1}k�0 are sequences of
independent identically distributed random variables since the force field is uncorrelated at
distances larger than 2R. Their tails decay faster than exponentially since F is based on a
Poisson random field. Therefore, the moderate deviation bounds (see, for example, theorem 9.4
of [1]) imply that

sup
m�|v0|α+1/3R

(∣∣∣∣∣
m∑

k=0

ξ
2k

∣∣∣∣∣ +

∣∣∣∣∣
m∑

k=0

ξ
2k+1

∣∣∣∣∣
)

� |v0|−1|v0| α+1
2 +δ

since the standard deviation of ξ
k

is of order 1/|v0|. This easily implies (22) since T0 = |v0|α .
From (22) it immediately follows that for each δ > 0

sup
0�t�T0

|ζ0(t)| � |v0|(3α−1)/2+δ (23)

with high probability. Let σ = inf{t : y(t) /∈ B|v0|(0)} (with the convention that the infimum
of the empty set is +∞). By (20),

y(t) = z0(t) + ζ0(t) +
∫ t

0

∫ u

0
(F0(y(s)) − F0(z0(s))) ds du.

Therefore,

|y(t) − z0(t)| � |ζ0(t)| + T0||F0||C1(B|v0 |(0))

∫ t

0
|y(s) − z0(s)| ds for 0 � t � T0 ∧ σ.

By (21) and (23), this implies that for each δ > 0,

sup
0�t�T0∧σ

|y(t) − z0(t)| � |v0|(3α−1)/2+δ + δ|v0|2α ln |v0| sup
0�t�T0∧σ

|y(t) − z0(t)|

with high probability. Since δ|v0|2α ln |v0| < 1/2 for large enough |v0|, this implies that

sup
0�t�T0∧σ

|y(t) − z0(t)| � 2|v0|(3α−1)/2+δ

with high probability and, consequently, σ > T0 with high probability.
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Since δ was an arbitrary positive number, we obtain that for each δ > 0

sup
0�t�T0

|y(t) − z0(t)| � |v0|(3α−1)/2+δ (24)

with high probability. By (20),

ẏ(t) − v0 = ξ0(t) +
∫ t

0
(F0(y(s)) − F0(z0(s))) ds.

Due to (22) and (24), for each δ > 0

sup
0�t�T0

|ẏ(t) − v0| � |v0|(α−1)/2+δ (25)

with high probability. By the expression 〈∇F0, v〉, where v is a vector, we shall mean the
vector w with components wj = ∑d

i=1 F
j

0 xi
vi . If y(t) ∈ B|v0|(0) for 0 � t � T0, then by the

Taylor formula

sup
0�t�T0

|ẏ(t) − v0 − ξ0(t)| � sup
0�t�T0

∣∣∣∣∫ t

0
〈∇F0(z0(s)), (y(s) − z0(s))〉 ds

∣∣∣∣
+ sup

0�t�T0

1

2

∫ t

0
||F0||C2(B|v0 |(0))|y(s) − z0(s)|2 ds.

From (21) and (24) it follows that for each δ > 0 the second term in the right-hand side does
not exceed |v0|4α−1+δ with high probability. To estimate the first term we use the fact that

sup
0�t�T0

∣∣∣∣∫ t

0
F

j

0 xi
(z0(s)) ds

∣∣∣∣ � |v0|(α−1)/2+δ, 1 � i, j � d,

with high probability. Then, after integrating by parts and using (24) and (25), we obtain that
the first term in the right-hand side does not exceed |v0|2α−1+δ with high probability. Therefore,
for each δ > 0

sup
0�t�T0

|ẏ(t) − v0 − ξ0(t)| � |v0|2α−1+δ (26)

with high probability.
Note that the set {z0(t), t ∈ [T0/4, T0/2]} is a straight segment of length |v0|1+α/4, and the

points r0
i , i � 1, form a Poisson field. This implies that with high probability there is a moment

of time t ∈ [T0/4, T0/2] such that there are no points r0
i , i � 1, within the 4R-neighbourhood

of z0(t). Therefore,

η1 � T0 (27)

with high probability. Moreover, from the proximity of y(t) and z0(t) (formula (24)) and the
definition of τ1 it now follows

τ1 � T0 (28)

with high probability. Since α ∈ (0, 1) was arbitrary, this implies (16). Combining (28) with
(25) and (26), we obtain (17) and (18), respectively. Combining (27) and (28) with (22), we
obtain that for arbitrary δ > 0 we have∣∣∣∣∫ η1

0
F0(z0(s)) ds

∣∣∣∣ + |ξ0(τ1)| � |v0|−1+δ

with high probability, which implies (19). �

Remark. Obviously, the same result holds if the process Y (t) is replaced by the process Z(t)

with initial velocity v0. Therefore, we have the following corollary.
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Corollary 5.2. For each N and δ > 0 there is r > 0 such that for each n

P(τn+1 − τn > |vn|−1+δ|Gn) � |vn|−N, (29)

P

(
sup

τn�t�τn+1

|Ẏ (t) − vn| > |vn|−1+δ|Gn

)
� |vn|−N, (30)

P

(
sup

τn�t�τn+1

|Ẏ (t) − vn − ξn(t)| > |vn|−3+δ|Gn

)
� |vn|−N, (31)

P

(∣∣∣∣ξn(τn+1) −
∫ ηn+1

τn

F̃n(zn(s)) ds

∣∣∣∣ > |vn|−1+δ|Gn

)
� |vn|−N, (32)

hold almost surely on the event |vn| > r .

Let Hn be the following event:

Hn =
{∣∣∣∣Ẏ (τn+1) − Ẏ (τn) −

∫ ηn+1

τn

F̃n(zn(s)) ds

∣∣∣∣ � |vn|−1+δ

}
.

The following lemma will be proved in the appendix.

Lemma 5.3. For each δ > 0 we have

E

(
χH0

∣∣∣∣Ẏ (τ1) − v0 −
∫ η1

0
F0(z0(s)) ds

∣∣∣∣) � |v0|−3+δ (33)

for all sufficiently large |v0|.
For each δ > 0 there is r > 0 such that for each n

E

(
χHn

∣∣∣∣Ẏ (τn+1) − Ẏ (τn) −
∫ ηn+1

τn

F̃n(zn(s) ds)

∣∣∣∣ |Gn

)
� |vn|−3+δ (34)

almost surely on the event |vn| > r .

5.2. Behaviour of Y (t) and Ẏ (t) on a time interval proportional to |v0|3

Recall that x(t) = X(t/|v0|) satisfies (3) with ε = 1/|v0|2 and initial data x(0) = 0, ẋ(0) =
v0/|v0|. As discussed in the introduction, the scale on which we see the diffusion for ẋ(t) is
of order t ∼ 1/ε2 = |v0|4. Since ẋ(|v0|t) = Ẋ(t)/|v0|, one needs time of order t ∼ |v0|3 to
see fluctuations of order one for the process Ẋ(t)/|v0|.

In this section we recall the effective equation for Ẏ on the scale |v0|3 and provide estimates
for the probability that Ẏ changes much faster or much slower than expected.

For a, r > 0, b > 1, and n � 0, let

τ̂ a
n = min

k�n
{τk : τk − τn � ar3},

τ̌ b
n = min

k�n
{τk : |Ẏ (t)| /∈ (r, br) for some τn � t � τk},

τ n = min{τ̂ a
n , τ̌ b

n }.
(As always, the minimum over the empty set is +∞.) In what follows a and b will be fixed.
The constant r will serve as a large parameter, and |v0| will be assumed to be of order r . Thus
τ̂ a

0 is the first of the stopping times τk which is larger than ar3. Roughly speaking, τ̂ a
0 is very

close to ar3. The stopping time τ̌ b
0 is, roughly speaking, the first time when |Ẏ (t)| changes

from |v0| to either r or br (assuming that |v0| ∈ (r, br)).
Assume that r is large and |v0| ∈ (r, br). Let us first describe the behaviour of the process

Y (t) on the time interval [0, τ 0].
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Lemma 5.4. For each N , δ > 0, a > 0, and b > 1, we have

P(τn+1 − τn > |vn|−1+δ for some n such that τn < τ 0) � r−N, (35)

P

(
sup

τn�t�τn+1

|Ẏ (t) − vn| > |vn|−1+δ for some n such that τn < τ 0

)
� r−N, (36)

P(τ 0 = ∞) � r−N (37)

for all sufficiently large r (i.e. for all r � r0, where r0 depends on the distribution of the force
field and on N , δ, a and b) and all |v0| ∈ (r, br).

Proof. For fixed n, the probability P(τn+1 − τn > |vn|−1+δ, τn < τ 0) is estimated from above
by r−N due to (16) (if n = 0) and (29) (if n � 1). The number of n for which τn < τ 0 does not
exceed abr4. Since N was arbitrary, this implies (35). In the same way, (17) and (30) imply
(36). Finally, (35) implies (37) again due to the fact that τn � τ 0 for n > abr4. �

As before, by considering Z(t) instead of Y (t), we obtain the following.

Corollary 5.5. For each N , δ > 0, a > 0, and b > 1, we have

P(τk+1 − τk > |vk|−1+δ for some k such that τn < τk < τn|Gn) � r−N,

P

(
sup

τk�t�τk+1

|Ẏ (t) − vk| > |vk|−1+δ for some k such that τn � τk < τn|Gn

)
� r−N,

P(τ n = ∞|Gn) � r−N

for all sufficiently large r almost surely on the event |vn| ∈ (r, br).

Lemma 5.6. Assume that v0 = (|v0|, 0, . . . , 0), and |v0| → ∞. Then both families of
processes Ẏ (|v0|3t)/|v0| and Ż(|v0|3t)/|v0| converge weakly to the diffusion process V (t)

given by (7) starting at (1, 0, . . . , 0).

This lemma is a slight modification of the results of [4–6] to the case of the processes Y (t)

and Z(t), so we omit the proof. For example, the main theorem of [5] on page 24 gives the
desired result, except the fact that in the setting of [5] there is no renewal of the force field.
The proof, however, goes through without major modifications.

Corollary 5.7. For each a > 0 and b > 1 there is c < 1 such that

P(τ̂ a
0 < τ̌b

0 ) � c

for all sufficiently large r and all |v0| ∈ (r, br). The same is true if τ̂ a
0 and τ̌ b

0 are defined as
the stopping times for the process Z(t) with initial velocity v0.

Proof. It is sufficient to consider the process Y (t) since the proof for the process Z(t) is
completely similar. From lemma 5.6 and the rotation-invariance of the force field it follows
that when |v0| → ∞, the processes |Ẏ (|v0|3t)|/|v0| converge weakly to the diffusion process
|V (t)| with |V (0)| = 1. Therefore

lim sup
|v0|→∞

P

( |v0|
b

< |Ẏ (t)| < |v0|b for all 0 � t � a|v0|3
)

= lim sup
|v0|→∞

P

(
1

b
< |Ẏ (|v0|3t)|/|v0| < b for all 0 � t � a

)
� P

(
1

2b
< |V (t)| < 2b for all 0 � t � a

)
< 1,
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where the first inequality holds due to the weak convergence of Ẏ (|v0|3t)|/|v0| to V (t) since
the closure of the set {ϕ ∈ C([0, a], R) : 1/b < ϕ(t) < b for all 0 � t � a} is contained
in the open set {ϕ ∈ C([0, a], R) : 1/2b < ϕ(t) < 2b for all 0 � t � a}. The second
inequality is due to the fact that |V (t)| is a non-degenerate diffusion process on (0, ∞) starting
at 1, as follows from (7) and lemma 5.6. The corollary now follows from the definitions of
τ̂ a

0 and τ̌ b
0 . �

Now we can replace the stopping time τ 0 by τ̌ b
0 in lemma 5.4.

Lemma 5.8. For each N , δ > 0, and b > 1, we have

P(τn+1 − τn > |vn|−1+δ for some n such that τn < τ̌ b
0 ) � r−N, (38)

P

(
sup

τn�t�τn+1

|Ẏ (t) − vn| > |vn|−1+δ for some n such that τn < τ̌ b
0

)
� r−N, (39)

P(τ̌ b
0 = ∞) � r−N (40)

for all sufficiently large r and all |v0| ∈ (r, br).

Proof. Let

qY = qY (r) = sup
v0:|v0|∈(r,br)

P(τn+1 − τn > |vn|−1+δ for some n such that τn < τ̌ b
0 ).

Let qZ = qZ(r) be defined as qY , with the only difference that the stopping times are assumed
to correspond to the process Z(t) instead of Y (t). Take an arbitrary a > 0. Then, for
|v0| ∈ (r, br) we have

P(τn+1 − τn > |vn|−1+δ for some n such that τn < τ̌ b
0 )

� P(τn+1 − τn > |vn|−1+δ for some n such that τn < τ 0)

+ P(τn+1 − τn > |vn|−1+δ for some n such that τ 0 � τn < τ̌ b
0 ).

The first term in the right-hand side does not exceed r−N by lemma 5.4. In order to estimate
the second term, we observe that

P(τn+1 − τn > |vn|−1+δ for some n such that τ 0 � τn < τ̌ b
0 )

= P(τ̂ a
0 < τ̌b

0 and τn+1 − τn > |vn|−1+δ for some n such that τ̂ a
0

� τn < τ̌ b
0 ) � P(τ̂ a

0 < τ̌b
0 )qZ,

where the inequality is due to the Markov property with respect to the stopping time τ̂ a
0 (see

formula (15)). Therefore, by corollary 5.7,

qY � r−N + cqZ.

Similarly,

qZ � r−N + cqZ.

Since c < 1 and N is arbitrary, these two inequalities imply (38). The proof of (39) is similar.
In order to prove (40), define

qY (k) = sup
v0:|v0|∈(r,br)

P(τ̌ b
0 > 2kar3), k � 0.

Let qZ(k) be defined as qY (k), with the only difference that the stopping times are assumed to
correspond to the process Z(t) instead of Y (t). Note that for |v0| ∈ (r, br) we have

P(τ̌ b
0 > 2kar3) � P(τ̂ a

0 > 2ar3, τ̌ b
0 > 2kar3) + P(τ̂ a

0 � 2ar3, τ̌ b
0 > 2kar3), k � 1.

(41)
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Note that if τ̂ a
0 , τ̌ b

0 > 2ar3, then τk+1 − τk > ar3 for some k with τk < τ 0. Therefore, the
first term on the right-hand side can be estimated from above by r−N due to (35). By the
Markov property with respect to the stopping time τ̂ a

0 (see formula (15)), the second term does
not exceed P(τ̂ a

0 < τ̌b
0 )qZ(k − 1) � cqZ(k − 1), where c is the constant from corollary 5.7.

Therefore,

qY (k) � r−N + cqZ(k − 1).

Similarly,

qZ(k) � r−N + cqZ(k − 1).

Since c < 1 and N is arbitrary, these two inequalities imply that

max(qY (k), qZ(k)) � r−N + ck. (42)

This implies (40) since an arbitrarily large k can be taken. �

Corollary 5.9. For each N , δ > 0, and b > 1, we have

P(τk+1 − τk > |vk|−1+δ for some k such that τn < τk < τ̌ b
n |Gn) � r−N,

P

(
sup

τk�t�τk+1

|Ẏ (t) − vk| > |vk|−1+δ for some k such that τn � τk < τ̌ b
n |Gn

)
� r−N,

P(τ̌ b
n = ∞|Gn) � r−N

for all sufficiently large r almost surely on each of the events |vn| ∈ (r, br).

Lemma 5.10. For each N , δ > 0 and k > 0 we have

P

(
sup

0�t�|v0|3−δ

|Ẏ (t) − v0| > k|v0|
)

� |v0|−N

for all sufficiently large |v0|.

Proof. Let us write

Ẏ (t) − v0 = (v1 − v0) + (v2 − v1) + · · · + (vn − vn−1) + Ẏ (t) − vn, (43)

where n = n(t) is the random time such that τn−1 � t < τn. Without loss of generality we
may assume that k � 1/2. Let L = L(v0) = [2(|v0|4−δl−1 + 1)], where l = 4R + 1 is the
constant used in the definition of the stopping times τn. Let σ be the random time defined by

σ = min{m : |(v1 − v0) + (v2 − v1) + · · · + (vm − vm−1)| � k|v0|/2} ∧ L.

Observe that if |Ẏ (t)| does not exceed 2|v0| on the time interval [0, |v0|3−δ], then τL � |v0|3−δ

since τn+1 − τn � l/(2|v0|) for each n such that τn < |v0|3−δ , as follows from the definition of
the stopping times τn. Therefore,{

sup
0�t�|v0|3−δ

|Ẏ (t) − v0| > k|v0|
}

⊆ {σ < L} ∪
(

{σ = L} ∩
{

sup
0�t�|v0|3−δ

|Ẏ (t) − v0| > k|v0|
})

⊆ {σ < L} ∪
(

{σ = L} ∩
L⋃

m=1

{
sup

τm−1�t�τm

|Ẏ (t) − v0| � k|v0|
})

⊆ {σ < L} ∪
(

{σ = L} ∩
L⋃

m=1

{
sup

τm−1�t�τm

|Ẏ (t) − vm−1| � k|v0|/2

})
.
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Define ci , i � 1, by

(vi − vi−1) =
∫ ηi

τi−1

F̃i−1(zi−1(s)) ds + ci .

By corollary 5.2 and lemma 5.3 (formulae (31), (32) and (34)), for each N and ε > 0 the
estimates

P(|ci | > |v0|−1+ε|Gi−1) � |v0|−N, (44)

E(|ci |χ{|ci |�|v0|−1+ε}|Gi−1) � |v0|−3+ε (45)

hold for each i on {σ � i} if |v0| is sufficiently large. Let

Cj =
j∧σ∑
i=1

|ci |,

hj =
j∧σ∑
i=1

(|ci |χ{|ci |�|v0|−1+ε} − |v0|−3+ε). (46)

By (44) and (45), hj is a supermartingale. Let hj = αj + βj be the Doob decomposition of hj ,
where

βj =
j∧σ∑
i=1

E((|ci |χ{|ci |�|v0|−1+ε} − |v0|−3+ε)|Gi−1)

is a non-increasing process. Let 〈α〉j be the quadratic variation of αj . It is equal to

〈α〉j =
j∑

i=1

E(((hi − hi−1) − (βi − βi−1))
2|Gi−1), j � 1.

From (46) it follows that |hi − hi−1| � 2|v0|−1+ε for sufficiently large |v0|, and consequently
|βi − βi−1| � 2|v0|−1+ε. Therefore 〈α〉j � 16j |v0|−2+2ε, which implies that for each p ∈ N
there is a constant kp such that

〈α〉pj � kp(j |v0|−2+2ε)p.

Applying this inequality to j = L and noting that σ � L and 〈α〉pj is non-decreasing in j , we
obtain

〈α〉pσ � k′
p(|v0|2+2ε−δ)p.

Take ε = δ/3. Then, by the Chebyshev Inequality and the Martingale Moment Inequality, for
each N there are p and Kp such that

P(hσ � k|v0|/8) � P(ασ � k|v0|/8) � P(|ασ |2p � (k|v0|/8)2p)

� E|ασ |2p

(k|v0|/8)2p
� KpE〈α〉pσ

(k|v0|/8)2p
� |v0|−N

if |v0| is sufficiently large. Note that

P(Cσ � k|v0|/4) � P(hσ � k|v0|/8) + P(Cσ − hσ � k|v0|/8) (47)

� |v0|−N + P

(
σ∑

i=1

(|ci |χ{|ci |>|v0|−1+ε} + |v0|−3+ε) � k|v0|/8

)
.

Since σ � L, and therefore σ |v0|−3+ε < k|v0|/8 for all sufficiently large |v0|, the second term
in the right-hand side of (47) is estimated from above by

P(|ci | > |v0|−1+ε for some 1 � i � σ) � L|v0|−N,
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where the inequality follows after integrating both sides of (44) over the event {σ � i} and
recalling that σ � L. Since N was arbitrary and L � |v0|4 for all sufficiently large |v0|, this
implies that

P(Cσ � k|v0|/4) � |v0|−N (48)

if |v0| is sufficiently large. Let

fj =
j∧σ∑
i=1

∫ ηi

τi−1

F̃i−1(zi−1(s)) ds, j � 1. (49)

Note that fj is a martingale vector. Indeed,

E(fj − fj−1|Gi−1) = χ{j�σ }E

(∫ ηj

τj−1

F̃j−1(zj−1(s)) ds|Gi−1

)
.

Let G̃n be the σ -algebra determined by the Poisson field rn
i (see the definition of the random

field Fn in section 4.1). Then the last conditional expectation can be written as

E

(∫ ηj

τj−1

F̃j−1(zj−1(s)) ds|Gi−1

)
= E

(
E

(∫ ηj

τj−1

F̃j−1(zj−1(s)) ds|σ(Gi−1 ∪ G̃i−1)

)
|Gi−1

)
.

The inner conditional expectation is equal to zero since the functions f n
i from the definition of

the fields F̃n are independent of the Poisson fields, and are symmetrically distributed by (5).
We shall denote the components of the vector fj by f a

j , 1 � a � d. The quadratic
variation of fj is

〈f a, f b〉j =
j∧σ∑
i=1

E

((∫ ηi

τi−1

F̃ a
i−1(zi−1(s)) ds

) (∫ ηi

τi−1

F̃ b
i−1(zi−1(s)) ds

)
|Gi−1

)
, j � 1.

Using arguments similar to those in the proof of lemma 5.1 (see the justification of
formula (22)), it is easy to show that for p ∈ N there is a constant k′′

p such that for all
j � L we have

E|〈f 〉j |p � k′′
p(j |v0|−2+δ/2)p

if |v0| is sufficiently large, where |〈f 〉j | stands for the norm of the matrix 〈f a, f b〉j . In
particular, for j = L we obtain

E|〈f 〉σ |p � k′′′
p (|v0|2−δ/2)p.

By the Chebyshev Inequality and the Martingale Moment Inequality, for each N there are
p ∈ N and Kp > 0 such that

P(|fσ | � k|v0|/4) = P(|fσ |2p � (k|v0|/4)2p) � E|fσ |2p

(k|v0|/4)2p
� KpE|〈f 〉σ |p

(k|v0|/4)2p
� |v0|−N

if |v0| is sufficiently large.
Together with (48), this implies that

P(σ < L) � |v0|−N.

It easily follows from corollary 5.2 that

P

(
{σ = L} ∩

L⋃
m=1

{
sup

τm−1�t�τm

|Ẏ (t) − vm−1| � k|v0|/2

})
� |v0|−N. �
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6. Long time behaviour of Y (t)

The goal of this section is to show that the paths of Y (t) are not self-intersecting with probability
close to one, and therefore the distributions of X and Y are close, as claimed. This is achieved
in section 6.2. In section 6.1 we establish some a priori bounds on the growth of |Ẏ |.

6.1. Behaviour of |Ẏ (t)| as t → ∞
In this section we shall demonstrate that for large |v0| with high probability the norm of the
velocity vector |Ẏ (t)| grows as t1/3 when t → ∞.

The idea of the proof is the following. We consider Ẏ at the moments sn its modulus
crosses 2l (alternating odd and even l). By lemma 5.6 and (12), ln |Ẏ (sn)| can be well
approximated by a simple random walk biased to the right. It follows that |Ẏ (sn)| grows
exponentially and so |Ẏ (t)| spends most of the time near its maximum. By lemma 5.6, sn+1 −sn

is of order |Ẏ (sn)|3, which implies the desired result. Let us now give a detailed proof.
We start by describing a discretized version of the process |Ẏ (t)|. Let 2m− 1

2 � |v0| < 2m+ 1
2

for some m ∈ Z. Let 0 < δ < 1. Define, inductively, a sequence of events Eδ
n and three

processes sn, tn ∈ R+ ∪ ∞ and ξn ∈ Z as follows. Let Eδ
0 = �, s0 = t0 = 0 and ξ0 = m.

Assume that Eδ
n−1, sn−1, tn−1, and ξn−1 have been defined for some n � 1. We then define

sn = inf{t : |Ẏ (t)| = 2ξn−1−1 or |Ẏ (t)| = 2ξn−1+1},
tn = min{τk : τk � sn} and ξn = log2 |Ẏ (sn)|.
Eδ

n = Eδ
n−1 ∩ {tn < ∞} ∩ {τk+1 − τk � |vk|−1+δ for all k such that tn−1 < τk � tn}

∩
{

sup
τk�t�τk+1

|Ẏ (t) − vk| � |vk|−1+δ for all k such that tn−1 � τk � tn

}
.

Let Fn be the σ -algebra of events determined before tn, that is Fn = σ(∪m:τm�tnGm). The
process ξn can be viewed as a random walk (with memory and random transition times), while
tn can be viewed as transition times for the random walk. Note that the process |Ẏ (t)| takes
values equal to powers of 2 at times sn. It is more convenient, however, to consider times tn
(which are close to times sn, but coincide with the stopping times τk), and the σ -algebras Fn

are defined using the times tn.
The following lemma describes the one-step transition times and transition probabilities.

Lemma 6.1.

(a) Eδ
n is Fn-measurable. For each N > 0 there is M such that for m � M we have

P(Eδ
n|Fn−1) � 1 − 2−Nm almost surely on {ξn−1 = m} ∩ Eδ

n−1. (50)

(b) For each N > 0 there exist M and 0 < c < 1, such that for m � M we have

P(tn − tn−1 > 23mk|Fn−1) � ck + 2−Nm, k � 1, almost surely on {ξn−1 = m} ∩ Eδ
n−1.

(c) There exist M and 0 < c < 1, such that for m � M and n � 2 we have

P(tn − tn−1 < 23m|Fn−1) � c almost surely on {ξn−1 = m} ∩ Eδ
n−1.

(d) There is p > 1/2 such that for each ε > 0 there exists M , such that for m � M and n � 2
we have

|P(ξn = ξn−1 + 1|Fn−1) − p| � ε almost surely on {ξn−1 = m} ∩ Eδ
n−1.
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Proof.

(a) The fact that Eδ
n is Fn-measurable follows from the definition of Eδ

n and Fn.
Next, observe that if Eδ

n−1 happens, then to ensure that Eδ
n happens we need to exclude

three events: {tn = ∞}, {τk+1 − τk > |vk|−1+δ for some tn−1 � τk � tn} and{
sup

τk�t�τk+1

|Ẏ − vk| > |vk|−1+δ for some tn−1 � τk � tn

}
.

Therefore (50) follows from corollary 5.9 with b = 4 and r = 2m−1.
(b) The statement follows from (42) once we note that |Ẏ (tn−1)| ∈ (2m−1, 2m+1) on {ξn−1 =

m} ∩ Eδ
n−1 if m is sufficiently large.

(c) This follows from lemma 5.6 once we take into account that, by the definition of Eδ
n−1, for

n � 2 and all sufficiently large m we have

||Ẏ (tn−1)| − 2m| � 1 on {ξn−1 = m} ∩ Eδ
n−1. (51)

(d) Consider the limiting process V (t) with |V (0)| = 1. Let p be the probability that the
process |V (t)| reaches 2 before reaching 1/2. Note that p > 1/2. Therefore, the statement
follows from lemma 5.6 and (51). �

Lemma 6.2. For δ > 0 we have

lim
|v0|→∞

P
(
(|v0| + t1/3)1−δ � |Ẏ (t)| � (|v0| + t1/3)1+δ for all t � 0

) = 1.

Proof. Let ε be fixed and ε be a positive constant, to be specified later. Let Av0 be the following
event:

Av0 =
( ∞⋂

n=0

Eε
n

)
∩ {|ξn − pn − ξ0| � ε(n + ξ0) for all n}

(p is the constant from lemma 6.1(d)).
From parts (a) and (d) of lemma 6.1 it easily follows that we can take a large enough M

such that

P(Av0) � 1 − ε/3 (52)

if v0 is such that ξ0 > M . By part (b) of lemma 6.1,

P(Av0 ∩ {tn − tn−1 � k(n)23(p(n−1)+ξ0+ε(n−1+ξ0))}) � ck(n) + 2−N(p(n−1)+ξ0−ε(n−1+ξ0))

for each n, where 0 < c < 1. Take k(n) = 2ε(n+ξ0). Let

Bv0 = {tn − tn−1 � 2ε(n+ξ0)23(p(n−1)+ξ0+ε(n−1+ξ0)) for some n}.
Then

P(Av0 ∩ Bv0) �
∞∑

n=1

(c2ε(n+ξ0)

+ 2−N(p(n−1)+ξ0−ε(n−1+ξ0))).

The right-hand side of this inequality can be made smaller than ε/3 by taking sufficiently
large M .

Note that for each a(n) and k(n)

Av0 ∩ {tn < a(n)} ⊆ Av0 ∩ {tn − tn−1 < a(n)} ∩ · · · ∩ {tn−k(n) − tn−k(n)−1 < a(n)}. (53)



204 D Dolgopyat and L Koralov

Let k(n) = ε(n + ξ0) and a(n) = 23(p(n−1−k(n))+ξ0−ε(n−1+ξ0)). By part (c) of lemma 6.1, the
probability of the event in the right-hand side of (53) is estimated from above by ck(n)+1, where
0 < c < 1. Let

Cv0 = {tn < 23(p(n−1−ε(n+ξ0))+ξ0−ε(n−1+ξ0)) for some n}.
Then

P(Av0 ∩ Cv0) �
∞∑

n=1

cε(n+ξ0)+1.

The right-hand side of this inequality can be made smaller than ε/3 by taking sufficiently
large M . We have thus obtained that

P(Av0\(Bv0 ∪ Cv0)) � 1 − ε.

On the event Av0\(Bv0 ∪ Cv0) we have

|ξn − pn − ξ0| � ε(n + ξ0) for all n;
tn − tn−1 � 23(p(n−1)+ξ0+ε(n−1+ξ0))+ε(n+ξ0) for all n;
tn � 23(p(n−1−ε(n+ξ0))+ξ0−ε(n−1+ξ0)) for all n.

Since ε can be taken arbitrarily small, these three inequalities imply that for each δ > 0

(2ξ0 + t
1
3
n )1−δ � 2ξn � (2ξ0 + t

1
3
n )1+δ for all n � 0

on Av0\(Bv0 ∪ Cv0), provided that M is sufficiently large. This implies the statement of the
lemma since 2ξn−2 � |Ẏ (t)| � 2ξn+2 for tn � t � tn+1 on Av0\(Bv0 ∪ Cv0) due to (51). �

Corollary 6.3. For δ > 0 we have

lim
|v0|→∞

P(|vn|−1 � τn+1 − τn � |vn|−1+δ for all n � 0) = 1, (54)

lim
|v0|→∞

P((n|v0|−1 + n3/4)1−δ � τn � (n|v0|−1 + n3/4)1+δ for all n � 0) = 1. (55)

Proof. The first statement easily follows from (29). Then (55) follows from lemma 6.2 and
(54) (considering the cases τn < |v0|3 and τn � |v0|3 separately). �

Let Dδ
v0

be the following event:

Dδ
v0

= {(|v0| + t1/3)1−δ � |Ẏ (t)| � (|v0| + t1/3)1+δ for all t � 0}
∩ {|vn|−1 � τn+1 − τn � |vn|−1+δ for all n � 0}
∩ {(n|v0|−1 + n3/4)1−δ � τn � (n|v0|−1 + n3/4)1+δ for all n � 0}.

As we saw above,

lim
|v0|→∞

P(Dδ
v0

) = 1.

The next result provides more precise information about the growth of Ẏ (t) but only for a fixed
value of t .

Lemma 6.4. We have the following limit:

lim
|v0|→∞

lim inf
a→∞ lim inf

t→∞ P

(
1

a
t1/3 � |Ẏ (t)| � at1/3

)
= 1.
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Proof. First let us estimate the probability that |Ẏ (t)| is too large. To this end, let 0 � δ � 1/4,
m be the largest integer such that 2m � at1/3/4, and n∗ be the first time when ξn = m. Then
(tn∗+1 − tn∗)/ta3 is tight by lemma 5.6, and therefore P(Dδ

v0
∩{tn∗+1 − tn∗ � t}) → 0 as a → ∞

uniformly in t � 1. Since maxt�tn∗+1 |Ẏ (t)| � at1/3 on Dδ
v0

for large |v0|, we see that

P(|Ẏ (t)| � at1/3)

can be made as small as we wish by choosing a and |v0| large.
Proving that Ẏ (t) is unlikely to be small requires a more sophisticated argument. We show

that Ẏ cannot be small on whole [0, t] since this would require that Ẏ spends a lot of time near
2p for some small p contradicting the transience of ξn. On the other hand, lemma 5.6 allows
us to rule out the possibility that Ẏ (t) is small while Ẏ (s) is large for some s ∈ [0, t] since 0
is an inaccessible point for V (t).

Let us give the precise argument. Let n∗ = n∗(b, t) be the first time when |Ẏ (tn)| � bt1/3.

To estimate the probability that |Ẏ (t)| is too small, it is enough to show that

lim
|v0|→∞

lim inf
b→0

lim inf
t→∞ P(tn∗ � t) = 1 (56)

since, by lemma 5.6, for fixed b

P

(
min

s∈[tn∗ ,tn∗ +t]
|Ẏ (s)| � t1/3

a

)
can be made as small as we wish by taking a large uniformly in t � 1.

Let

T (p) =
∞∑

n=1

(tn+1 − tn)χ{ξn=p}.

Let p∗ = log2(bt1/3) + 2. Observe that on Dδ
v0

we have

(1 − δ) log2 |v0| � ξn � p∗ for n � n∗.

Let

Fv0,K = {T (p) � K23p × 2p∗−p for all p such that (1 − δ) log2 |v0| � p � p∗}.
We claim that for each N > 0 there are c0 > 0, c < 1, p0 > 0 such that for p � p0, all k

and v0 we have

P(T (p) � 23pk) � c0

√
k(c

√
k + 2−Np). (57)

Note that (57) implies that for each ε > 0 there exist constants K, r such that for |v0| � r we
have P(Fv0,K) � 1 − ε. Also note that (57) implies (56) since on Dδ

v0

⋂
Fv0,K we have for all

sufficiently large |v0|

tn∗ �
p∗∑

p=(1−δ) log2 |v0|
K23p × 2p∗−p.

To establish (57) we note that

P(#(n : ξn = p) �
√

k) � c
√

k

since every time ξn visits p it has a positive probability of never returning there. On the other
hand, by lemma 6.1(b)

P

(
max
n:ξn=p

(tn+1 − tn) � 23p
√

k|#(n : ξn = p) <
√

k

)
�

√
k(c

√
k + 2−Np)

so (57) follows. �
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6.2. Probability of a near self-intersection for Y (t)

In this section we prove that if |v0| is large, then with high probability the ‘tail’ of the the
trajectory Y (t) (the part of the trajectory corresponding to t � τn) leaves a neighbourhood of
Yn and then never comes close to the part of the trajectory corresponding to t � τn. This allows
us to conclude that switching to a new version of the force field at each of the times τn does
not have a major effect on the distribution of the solution, that is, the distributions of X(t) and
Y (t) are the same if we throw out events of small measure from their respective probability
spaces.

Let γn, n � 1, be the trajectory of the process Y (t) between times τn−1 and τn, that is,

γn = {Y (t), τn−1 � t � τn}.
Let �n be the trajectory of the process after time τn, that is,

�n = {Y (t), τn � t < ∞}.
Let γ 2R

n be the 2R-neighbourhood of γn and �R
n the R-neighbourhood of �n. We shall prove

the following lemma.

Lemma 6.5. There exists 0 < δ < 1 such that

P(Dδ
v0

∩ γ 2R
n ∩ �R

n+1 �= ∅) � (|v0| + n1/4)−4d+12−δ (58)

for all sufficiently large |v0| and all n � 1.

Before we prove lemma 6.5, let us make several remarks which will, in particular, allow
us to deduce parts (a), (b) and (c) of lemma 4.1 from lemma 6.5. For x, v ∈ Rd , let K+(x, v)

and K−(x, v) be the cones

K+(x, v) = {y ∈ Rd : (y − x, v) � 3
4 |y − x||v|},

K−(x, v) = {y ∈ Rd : (y − x, −v) � 3
4 |y − x||v|}.

From the definition of Dδ
v0

it easily follows that

P

(
Dδ

v0
∩

⋃
n

({γn � K−(Yn, vn)} ∪ {γn+1 � K+(Yn, vn)})
)

� |v0|−N

if |v0| is sufficiently large. This implies that for each 0 < δ < 1

P

(
Dδ

v0
∩

⋃
n

{γ 2R
n ∩ γ R

n+1 � B2R(Yn)}
)

� |v0|−N (59)

for all sufficiently large |v0|. Take 0 < δ < 1 such that (58) holds. Let

�v0 = Dδ
v0

∩ {γ 2R
n ∩ �R

n+1 = ∅ for all n} ∩ {γ 2R
n ∩ γ R

n+1 ⊆ B2R(Yn) for all n}. (60)

In order to see that parts (a) and (b) of lemma 4.1 hold, it remains to note that

lim
|v0|→∞

∞∑
n=1

(|v0| + n1/4)−4d+12−δ = 0 (61)

if d � 4. From the definition of Dδ
v0

it immediately follows that limt→∞ |Ẏ (t)| = ∞ on �v0 .
Furthermore, the trajectory Y (t) cannot have limit points in Rd , as follows from the definition
of �v0 . Therefore, limt→∞ |Y (t)| = ∞, which proves part (c) of lemma 4.1.
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Let us now return to lemma 6.5. From the definition of Dδ
v0

it follows that if δ′ > 0, then
γn ⊆ B(Y (τn), v

δ′
n ) for all n � 1 if δ > 0 is sufficiently small and |v0| is sufficiently large. Let

us represent �R
n+1 as follows:

�R
n+1 = �

R

n+1(δ) ∪ �
R

n+1(δ),

where �
R

n+1(δ) is the R-neighbourhood of �n+1(δ) = {Y (t), τn+1 � t � τn + |vn|3−δ} and

�
R

n+1(δ) is the R-neighbourhood of �n+1(δ) = {Y (t), τn + |vn|3−δ � t � ∞}.
Recall that the constant l from the definition of the stopping time τn is equal to 4R + 1.

Since lemma 5.10 is obviously also applicable to the process Z(t),

P(Dδ
v0

∩ {dist(K−(Yn, vn), �n+1(δ)) � 3R}) � (|v0| + n1/4)−4d+12−δ

if δ > 0 is sufficiently small and |v0| is sufficiently large. This implies (58) with �
R

n+1(δ)

instead of �R
n+1. Thus, lemma 6.5 will follow if we prove that

P

(
Dδ

v0
∩ γ 2R

n ∩ �
R

n+1(δ) �= ∅
)

� (|v0| + n1/4)−4d+12−δ. (62)

Lemma 6.6. There exist 0 < ε < 1 and 0 < δ0 < 1 such that for each 0 < δ, δ′ < δ0 and R′

the inequality

P(Dδ
v0

∩ {|Y (τn + |vn|3−δ + t) − x| � R′}|Gn) � (|vn|3−δ + t)−
4
3 (d−2)−ε (63)

holds for all sufficiently large |v0| uniformly in n � 0, x ∈ B(Y (τn), v
δ′
n ) and t � 0.

Proof. In view of lemma 5.10 we can assume that t > |vn|3−δ. Denote t̃ = τn + |vn|3−δ + t.

Let us first explain the proof of a weaker bound: for each ε > 0 we have

P(Dδ
v0

∩ {|Y (̃t) − x| � R′}|Gn) � t−
4
3 (d−2)+ε. (64)

This suffices for d > 4 (see the proof of lemma 6.5). Then we explain how to improve this
estimate to get (63). The proof of (64) consists of two steps.

(I) Fix ε1 > 0. We show that if the intersection does take place and Dδ
v0

takes place then with
high probability there exists a number k such that τn + t1−ε1 � τn+k � t̃ and the following
conditions are satisfied.

(A) |Y (τn+k) − x| � t4/3−ε,

(B) π
4 � � ((Y (τn+k) − x), vn+k) � 3π

4 .

(II) By step (I) it suffices to show that

P(Y (̃t) ∈ B(x, R′) and (A) and (B) hold) � Const t−
4
3 (d−2)+ε. (65)

To prove (65), denote r = |Y (τn+k) − x|, let � be the plane passing through x orthogonal to
v0 and let Pr denote the projection to �. We can find a set S = {xj } of cardinality at least
crd−2 such that x1 = x, the balls B(xj , R

′) are disjoint, and for each j there is an isometry Oj

leaving Y (τn+k) and vn+k fixed and such that Oj (xj ) = x1. By the rotation invariance,

P(P r(Y (̃t)) ∈ B(x1, R
′)) � 1

Card(S)
(66)

proving (65).
Thus to complete the proof of (64) it remains to justify step I. Observe that on Dδ

v0
we have

|Y (τn + t1−ε1) − Y (τn)| � Const t (
4
3 −ε1)(1+δ),

|Y (̃t) − Y (̃t − t1−ε1)| � Const t (
4
3 −ε1)(1+δ).
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On the other hand the inequality � (Ẏ (s), (Y (s) − x)) � π
3 for all s ∈ [τn + t1−ε1 , t̃ − t1−ε1 ]

would imply ∣∣|Y (̃t − t1−ε1) − x| − |Y (τn + t1−ε1) − x|∣∣ � Const t4/3(1−δ)

making intersection impossible if ε1 > 3δ. Thus there exists t1 ∈ [τn + t1−ε1 , t̃ − t1−ε1 ] such
that � (Ẏ (t1), (Y (t1) − x)) = π

3 . Next with high probability the angle changes less than π
12 on

[t1, t1 + t (1−ε1)(3−δ)]. Thus the motion on this interval is well approximated by a straight line
and consequently there is t2 ∈ [t1, t1 + t (1−ε1)(3−δ)] such that

|Y (t2) − x| � Const t (1−ε1)(3−δ)t1/3−δ.

Taking k to be the first number such that τn+k > t2 establishes our claim.
Let us now indicate how to prove the lemma in full generality. We need to prove (65)

with −ε instead of ε in the right-hand side. In the arguments leading to (65) we only used
the projection on the plane orthogonal to vn+k . Now we consider the projection of the process
onto the vn+k direction. During the time interval between t̃ − t1/10 and t̃ the projection of Ẏ (s)

can be well approximated by a martingale, and as such by a time-changed Brownian motion.
The time-change is almost linear on this small time interval, and thus the projection of Y (s)

is approximated well by the integral of the Brownian motion. This allows us to gain an extra
factor of t−2ε. Observe that the derivation of (66) only involved rotation-invariance, and thus
(66) remains valid if we replace the probability in the left-hand side by conditional probability
with the condition which involves the projection of the process on the direction of vn+k . �

Proof of lemma 6.5. Let

sn
k (δ) = τn−1 + k(|vn| + n1/4)−3δ, k = 0, . . . , [(τn − τn−1)(|vn| + n1/4)3δ].

As follows from the definition of Dδ
v0

, for each R′ these points form an R′-net in γn if |v0| is
sufficiently large. By applying (63) to xn

k (δ) = Y (sn
k (δ)), we obtain that

P(Dδ
v0

∩ {dist(Y (τn + |vn|3−δ + t), γn) � R′}|Gn) � (|vn|3−δ + t)−
4
3 (d−2)−ε(|vn| + n1/4)3δ

holds for all sufficiently large |v0| uniformly in n � 0 and t � 0. Since |Ẏ (t)| � (|v0|+ t1/3)1+δ

on Dδ
v0

, and R′ was arbitrary,

P

(
Dδ

v0
∩ γ 2R

n ∩ �
R

n+1(δ) �= ∅|Gn

)
� P

(
Dδ

v0
∩ {dist(�n+1(δ), γn) � 3R}|Gn

)
�

∫ ∞

0
(|vn|3−δ + t)−

4
3 (d−2)−ε(|vn| + n1/4)3δ(|v0| + (τn + |vn|3−δ + t)1/3)1+δ dt

(67)

holds for all sufficiently large |v0| uniformly in n � 0. It follows from the definition of Dδ
v0

that

|vn| � (|v0| + n1/4)1+3δ

on Dδ
v0

for all sufficiently large |v0|. Recall that

τn � (n|v0|−1 + n3/4)1+δ

on Dδ
v0

for all sufficiently large |v0|. Since ε is fixed, these estimates imply that the right-
hand side of (67) can be made smaller than the right-hand side of (62) by taking a sufficiently
small δ. �
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7. The convergence in distribution

Here we prove lemma 4.1(d). Recall that �v0 is given by (60).
For fixed v0, let us prove that the family of processes Ẏ (c3t)/c is tight, when restricted to

the event �v0 . By the Arzela–Askoli theorem, it is sufficient to show that for each T , ε, η > 0
there are c0 and � > 0 such that

P

(
�v0 ∩

{
sup

0�s�t�T ,t−s��

|Ẏ (c3t)/c − Ẏ (c3s)/c| > ε

})
< η (68)

for c � c0.
Let T , ε, η > 0 be fixed. Let n∗ = n∗(κ, c) be the first time when |Ẏ (τn)| � κc. Take

κ < ε/4. Define Uκ,c(t) = Ẏ (τn∗ + c3t)/c. By lemma 5.6, there is � > 0 such that

P

(
�v0 ∩

{
sup

0�s�t�T ,t−s��

|Uκ,c(t) − Uκ,c(s)| >
ε

2

})
< η

for large c. Now (68) follows easily.
From lemma 6.4, the definition of Dδ

v0
, and the tightness established above it follows that

for each T , ε, η > 0 there is κ > 0 such that

P

(
�v0 ∩

{
sup

t∈[0,T ]

∣∣∣∣Uκ,c(t) − Ẏ (tc3)

c

∣∣∣∣ � ε

})

= P

(
�v0 ∩

{
sup

t∈[0,T ]

∣∣∣∣ Ẏ (τn∗ + tc3)

c
− Ẏ (tc3)

c

∣∣∣∣ � ε

})
< η

for all sufficiently large c. Likewise, if τ̄κ is the first time when |V (τ̄ )| = κ , define
Uκ(t) = V (τ̄κ + t). Then for each T , ε, η > 0 there is κ > 0 such that

P

(
sup

t∈[0,T ]
|Uκ(t) − V (t)| � ε

)
< η.

Finally, from lemma 5.6 and the definition of �v0 it follows that the distribution of Uκ,c,
considered over the space �v0 with the normalized measure, is close to the distribution of Uκ

if c is large enough. This completes the proof of lemma 4.1.

Appendix A

Here we sketch the proof of lemma 5.3. Note that it is sufficient to prove (33), since (34)
follows from (33) in the same way as corollary 5.2 follows from lemma 5.1. We use the same
notation as in the proof of lemma 5.1. It is clear that η1 � T0 = |v0|α with high probability.
Therefore, due to (28) and (31) it suffices to show that

E

(∣∣∣∣∫ η1

τ1

F̃0(z(s0)) ds

∣∣∣∣ χ{max(τ1,η1)�T0}

)
� |v0|−3+δ

for all sufficiently large |v0|. Since F̃ is a Poisson field, the problem is reduced to showing
that for each δ > 0 one can choose α > 0 such that

E(|τ1 − η1|χ{max(τ1,η1)�T0}) � |v0|−3+δ
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Figure A1. Various sets used in the proof of (23).

for all sufficiently large |v0|. We shall only prove that

E((τ1 − η1)
+χ{max(τ1,η1)�T0}) � |v0|−3+δ (69)

since the inequality with η1 − τ1 instead of τ1 − η1 can be proved similarly.
Let γ > 0 and 0 � q � 2. We shall specify these constants later. For simplicity of

notation, assume that v0 is directed along the x1-axis, in the positive direction (see figure A1).
Let Sq,γ and S+

q,γ be the following random sets:

Sq,γ =
{
x ∈ Rd : dist(x, z0(η1)) � 2R, v0η1 − 2R � x1 � v0η1,

2R − |v0|−q+γ �
√

x2
2 + · · · x2

d � 2R − |v0|−q + |v0|−2
}
,

S+
q,γ =

{
x ∈ Rd : dist(x, z0(η1)) � 2R, v0η1 − 2R � x1 � v0η1,

2R − |v0|−q + |v0|−2 <

√
x2

2 + · · · x2
d � 2R

}
.

Let �q,γ be the following random set:

�q,γ =
{
x ∈ Rd : x1 = v0η1 + |v0|−2+2γ + q

2 ,

√
x2

2 + · · · x2
d � |v0|−2+γ

}
.

Let Uq,γ be the following random set:

Uq,γ = {x ∈ Rd : dist(x, z0(η1)) � 2R, dist(x, �q,γ ) � 2R}.
Let ES

q,γ be the event that at least one of the points r1, r2, . . . belongs to Sq,γ but none belong
to S+

q,γ . Let EU
q,γ be the event that at least one of the points r1, r2, . . . belongs to Uq,γ . Let A

be a point on the semi-axis {x ∈ Rd : x1 � 0, x2 = · · · = xd = 0}. Note that ES
q,γ and EU

q,γ are
independent when conditioned on {z0(η1) = A}. The respective conditional probabilities can
be estimated from above by |v0|−q+2γ and |v0|−2+3γ + q

2 for all sufficiently large |v0|. Therefore,
P(ES

q,γ ∩ EU
q,γ ) � |v0|−2+5γ− q

2 .
Let us examine the contribution to the expectation (69) from the event ES

q,γ . First,

E(χES
q,γ ∩EU

q,γ
(τ1 − η1)

+χ{max(τ1,η1)�T0}) � T0P(ES
q,γ ∩ EU

q,γ ) � |v0|α−2+5γ− q

2 .

Note that the power α − 2 + 5γ − q

2 can be made less than −3 + δ by selecting small γ

and α close to −1. Next, note that with high probability the trajectory y(t) reaches the set
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�q,γ between times η1 and η1 + |v0|−3+3γ + q

2 due to the proximity of y(t) and z0(t). Note that
the distance between �q,γ and S+

q,γ is greater than 2R. Therefore, on ES
q,γ \EU

q,γ , none of the
points r1, r2, . . . belongs to the 2R-neighbourhood of the point where y(t) first intersects �q,γ .
Therefore, for each N > 0,

E(χES
q,γ \EU

q,γ
(τ1 − η1)

+χ{max(τ1,η1)�T0}) � |v0|−3+3γ + q

2 P(ES
q,γ ) + |v0|−N � |v0|−3+6γ− q

2 .

Again, the power −3 + 6γ − q

2 can be made less than −3 + δ by selecting small γ . We have
thus obtained that

E(χES
q,γ

(τ1 − η1)
+χ{max(τ1,η1)�T0}) � |v0|−3+δ. (70)

Note that for fixed γ one can find finitely many numbers q1, ..., qn ∈ [0, 2] such that
P(

⋃n
i=1 ES

qi ,γ
) = 1. Therefore, (70) implies (69).
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