
REPULSION FROM RESONANCES.

DMITRY DOLGOPYAT

Abstract. We consider slow-fast systems with periodic fast mo-
tion and integrable slow motion in the presence of both weak and
strong resonances. Assuming that the initial phases are random
and that appropriate non-degeneracy assumptions are satisfied we
prove that the effective evolution of the adiabatic invariants is given
by a Markov process. This Markov process consists of the motion
along the trajectories of a vector field with occasional jumps. The
generator of the limiting process is computed from the dynamics
of the system near strong resonances.
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1. Introduction.

Averaging method is one of the most classical and most effective
tools in dynamics. The basic idea is very simple. Consider a two scale
system

ẏ = Y (x, y, ε)

ẋ =
X(x, y, ε)

ε
, where ε ≪ 1.

If we are interested in the evolution of the slow variables y the direct
computations are costly since y changes at times O(1) while any nu-
merical procedure should have step o(ε) which is the natural time scale
for the change of fast variables. In fact, the instabilities of the fast
system can make computations unreliable. Therefore it is natural to
approximate y by the solution of the effective equation

(1.1) ˙̄y = Ȳ (ȳ) where Ȳ (ȳ) = 〈Y (ȳ, x, 0)〉
and 〈. . . 〉 denotes the averaging with respect to an invariant measure
for the frozen system

ẋ = X(x, ȳ, 0)

(finding the correct measure for 〈. . . 〉 is part of the problem).
While the averaging method itself was invented about quarter of

the millennium ago motivated by the needs of the Celestial Mechanics
(see [58] for a historical survey) the work on its rigorous justification
started much later. The first results were limited to the case where
the fast motion is periodic [20, 38, 10, 36] or more generally uniquely
ergodic [9]. In the uniquely ergodic case there is only one invariant
measure so the meaning of 〈. . . 〉 in (1.1) is clear. However the uniquely
ergodic setting is insufficient even for describing small perturbation of
nearly integrable systems (because in this case the unperturbed system
contains resonant tori which possess many invariant measures). The
justification of averaging method in the general case is more subtle
since in that case the actual trajectory is close to the averaged one
not everywhere but only on a large measure set of initial conditions.
The work on the justification of the averaging method in the general
setting was undertaken in the second half of 20th century mostly by
the Soviet School ([2, 3, 4, 21, 32, 33, 35, 39, 41, 42]). By now the
averaging principle is justified under quite general conditions (see e.g.
[5, 24, 34, 37]).

In the case the fast motion is chaotic (for example an Anosov system
or a Markov process) one can also obtain the limiting distribution for
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the difference between the actual and the averaged trajectory (see re-
view [34]). Such estimates are not yet available in the classical setting
of the quasiperiodic fast motion. One situation where such deviations
are important is when the averaged system has first integrals (which
are called adiabatic invariants for the original system). The change of
the adiabatic invariants occurs only due to deviations from the aver-
aged motion. It is well known that in the quasiperiodic case the main
source of deviations from the averaged motion happens due to passages
through resonances. The contribution of the individual resonance has
been computed by several authors [14, 26, 27, 40, 41, 48]. There are
many examples of the systems where multiple resonance passages can
lead to destruction of adiabatic invariants on the appropriate time scale
(see the above cited papers as well as [30, 31, 43, 47, 57, 59, 60, 61, 62]).
Since the quasiperiodic case remains the prevalent source of application
of the averaging techniques the development of the statistical theory
of adiabatic invariants is one of the most important problems in the
averaging theory. The goal of the present paper is to make a step in
this direction by considering the simplest case of periodic fast motion.

The basic idea is that the passage through resonances makes the
dynamics hyperbolic on most of the phase space [47]. In fact the hy-
perbolicity is created due to the combination of strong shearing away
from resonances with the destruction of the shear-invariant foliation
near the resonances. (For the general discussion of the sheared induced
stochasticity we refer the reader to [1, 28, 56, 63].) Therefore the meth-
ods developed to treat hyperbolic fast motion ([7, 13, 17, 18, 19]) can
be applied. The difference between our approach and the other papers
on quasiperiodic averaging is that rather than computing C0-norm of
the deviation with a very high precision we get more coarse informa-
tion about C2-norms and exploit the properties which are shared by
our system and its C2-small perturbations. Unfortunately this shift
of the point of view leads to the increased size of the paper. Indeed
the C2-estimates required for our method were not readily available in
the literature (even though their derivation proceeds similarly to the
C0-bounds). For completeness we provide the required estimates in the
appendices.

We hope that this new point of view can be useful in the general
quasiperioidic case. However new ideas will be required to handle the
overwhelming growth of complexity coming from the fact that in the
quasiperiodic case there are infinitely many resonances.
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2. The Problem.

Consider the simplest three scale system.

(2.1)
İ = α1(I, φ, θ) + εα2(I, φ, θ, ε)

φ̇ = p(I) + β1(I, φ, θ) + εβ2(I, φ, θ, ε)

θ̇ = 1
ε
ω(I, φ) + η(I, φ, θ, ε)

where α1 and β1 satisfy

(2.2)

∫ 1

0

α1(I, φ, θ)dθ =

∫ 1

0

β1(I, φ, θ)dθ = 0.

Here I varies over an interval [I1, I2] and φ and θ vary over the circle
R/Z.

The averaging principle guarantees that away from resonant surfaces
{ω = 0} the effective dynamics of slow variables is given by the aver-
aged equation

(2.3)
˙̄I = 0
˙̄φ = p(Ī)

In particular I is an adiabatic invariant of (2.1). We are interested in
evolution of this invariant on a longer time scale. Before formulating
our results let us review known facts (see [5], [37]).

The case where ω 6= 0 is quite well understood. Namely, we can
introduce an improved invariant

(2.4) J = I − ε

ω
A1

where ∂A1

∂θ
= α1. Then J̇ = O(ε). So if we are interested in the dynamics

of I on a time scale shorter than 1
ε

then all changes happen in a small
neighborhood of resonances ω = 0. Let us study the dynamics near
the resonances more closely. If the resonance is non-degenerate in the
sense that ∂ω

∂φ
6= 0 then it is convenient to make the following change

of variables

τ =
t√
ε
, r =

ω√
ε
.

Then (2.1) takes the following form.

(2.5)

θ′ = r +
√
εη̄(I,

√
εr, θ, ε)

r′ = a(I)p(I) + g(I, θ) +
√
εrβ̄(I,

√
εr, θ, ε) + εβ̂(I, θ, ε)

I ′ =
√
εᾱ(I,

√
εr, θ, ε)
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Here we let (I, φ(I)) be the parametrization of the resonance curve,

(2.6) a(I) =
∂ω

∂φ
(I, φ(I)),

(2.7)

g(I, θ) =
∂ω

∂φ
(I, φ(I))β1(I, φ(I), θ, 0) +

∂ω

∂I
(I, φ(I))α1(I, φ(I), θ, 0)

and β̄, β̂ represent the corrections to the main term coming from the
fact that in the RHS of (2.5) φ 6= φ(I) and ε 6= 0 respectively. Note
that

∫ 1

0

g(I, θ)dθ = 0.

(2.5) has a limit at ε = 0 where I does not move and the dynamics of
the other variables is given by

θ′ = r(2.8)

r′ = L(I) + g(I, θ)

where L(I) = a(I)p(I). (2.8) is Hamiltonian with the Hamiltonian
function

(2.9) HI(θ, r) =
r2

2
− L(I)θ −GI(θ)

where

(2.10) GI(θ) =

∫ θ

0

g(I, s)ds =

a(I)

∫ θ

0

β1(I, φ(I), s)ds+
∂ω

∂I
(I, φ(I))

∫ θ

0

α1(I, φ(I), s)ds.

It is convenient to introduce a variable

(2.11) E =
HI(θ, r)

L(I)

which allows us to consider the dynamics of (2.8) on the cylinder by
identifying points whose E values differ by an integer.

Observe that in (2.5)

(2.12) ᾱ(I,
√
εr, θ, 0) = α1(I, φ(I), θ) + O(

√
ε).

Hence (2.5) and (2.8) suggest that the main contribution to the change
of I due to resonance crossing equals

√
εσ(E, I) where E is the value

of the energy when the orbit crosses the resonance, and

(2.13) σ(E, I) =

∫ ∞

−∞
α1(I, φ(I), θ(s))ds
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where (r(s), θ(s)) is the solution of (2.8) with energy E.
For computations it is more convenient to restate this formula using

θ as integration variable. Thus if L > 0 then

(2.14) σ(E, I) = 2

∫ ∞

θ∗(E)

α1(I, φ(I), θ)
√

2(LE + Lθ +G)
dθ

and if L < 0 then

(2.15) σ(E, I) = 2

∫ θ∗(E)

−∞

α1(I, φ(I), θ)
√

2(LE + Lθ +G)
dθ

where GI(θ
∗(E)) = −L(E + θ∗(E)).

To see to what extent (2.13) can be justified we need to look more
closely at the dynamics of (2.8). We distinguish two cases. (Below in
order to fix our notation we assume that L > 0.)

Figure 1. Motion near a weak resonance

(I) Weak resonance. If minθ g(I, θ) > −L then the phase portrait
of (2.8) is topologically the same as the phase portrait of the averaged
system (2.3) (which is obtained from (2.8) by dropping g). In this case
r is a monotone function of s and the amount of time an orbit spends
near the resonance is uniformly bounded from above. Hence for ε 6= 0
the phase portrait is also similar to the phase portrait of the averaged
system and our formal asymptotics for the change of I can be easily
justified.
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(II) Strong resonance. Suppose that minθ g(I, θ) < −L. The phase
portrait of (2.8) in this case is shown on fig. 2. In this case points can
spend arbitrary long time near the saddle. As a consequence, for ε 6= 0
the dynamics is qualitatively different. Namely given a saddle θ = θ(I)
let Ω denote the set of points inside the separatrix loop of this saddle
and let Γ be the boundary of this set. Let

ĤI(θ, r) =
r2

2
− L(I)θ −GI(θ) +K(I)

where K(I) is chosen so that Ĥ equals 0 on Γ. Let

(2.16) M(I) =

−
∮

Γ

[

r2β̄(I, 0, θ, 0)− (L(I) + g(I, θ))η̄(I, 0, θ, 0) +
∂Ĥ

∂I
ᾱ(I, 0, θ, 0)

]

ds.

Figure 2. The limiting system for strong resonance

(To see that this integral converges note that

(2.17)
∂Ĥ

∂I
(I, 0, θ(I)) +

∂Ĥ

∂θ
(I, 0, θ(I))

dθ

dI
= 0.

Since ∂Ĥ
∂θ

(I, 0, θ(I)) = 0 it follows that ∂Ĥ
∂I

(I, 0, θ(I)) = 0.)
A typical behaviour of the trajectories for M > 0 is depicted on

fig. 3. In particular the initial conditions starting on the thick segment
get captured into resonance and so I experience a jump. A captured
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point moves along the resonance. The motion along the resonance is
also a slow-fast system with slow variables Ĥ and I and fast variable θ
so it can also be descibed by the averaging principle, see (3.3) below.
At some point the orbit can enter a region where M(I) < 0. In this
case dynamics near the saddle (0, θ(I)) looks like a mirror image of
fig. 3 and the orbit can escape from the resonance so its motion again
can be described by the averaged system (2.3). According to [47] (see
also Appendix E.5) during each passage a set of points of measure
about

√
εM(I)+ gets captured. (Here and below we use the notation

a+ = max(a, 0).) Therefore we expect that after O(1/
√
ε) passages a

set of measure O(1) gets captured. Hence 1/
√
ε is the natural time scale

for this problem. At this scale there are two mechanisms responsible
for the change of I.

(I) Capture into resonance. This phenomenon has been described
above. It is only relevant if M > 0 for one of the saddles of (2.8).

The second mechanism is important regardless of the sign of M.

Figure 3. Motion near a strong resonance. A projec-
tion of a set of orbits starting with a fixed values of I = I0
and r = −r0 where r0 ≫ 1 to the (r, θ)-plane is shown.

(II) Repulsion from resonances ([51]). To describe this phenom-
enon, suppose for a moment that (2.1) preserves the Lebesgue measure
dIdφdθ. For each time t the phase space of (2.1) is the union of two
sets. First, there is a set of measure O(

√
ε) consisting of points which

has been captured into resonance and at time t move inside one of
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the separatrix domains. For these points I changes with unit speed.
This creates a flux of measure of order

√
ε. Secondly there are points

of measure 1 − O(
√
ε) which follow the orbits of the averaged system

(2.3). Therefore in order to maintain the balance of measure most of
these points which are not captured move with speed

√
ε in the oppo-

site direction. In general Lebesgue measure is not preserved. However
the divergence of the flow is given by

(2.18) D(I, φ, θ) =
∂α1

∂I
+
∂β1

∂φ
+
∂η

∂θ
+ O(ε)

Now (2.2) and the periodicity of η imply
∫ 1

0

D(I, φ, θ)dθ = O(ε).

So in average the measure is preserved on time scale o(1/ε) and the
previous argument applies.

The flux of orbits moving inside the separatrix domain Ω equals to

(2.19) ΨΩ(I) = −
(
∫∫

Ω

α1(I, φ0(I), θ)drdθ

)

/L(I),

M and Ψ play an important role in the description of the effective
evolution of the adiabatic invariant I given in the next section.

3. Results.

3.1. Dynamics before capture. We are now ready to formulate our
main results. They require certain non-degeneracy conditions for the
system (2.1). Assume that for each I ∈ [I1, I2] the following conditions
are satisfied.

(A) p(I) 6= 0. This means that I is the only invariant of the averaged
system (2.3).

(B) Resonances are non-degenerate. Namely if (I, φ1(I)), (I, φ2(I)) . . . (I, φq(I))
are resonances counted counterclockwise then

aj(I) =
∂ω

∂φ
(I, φj(I)) 6= 0.

(C) (Twist condition)
∂wj

∂I
6= 0 where

wj(I) =

∫ φj+1(I)

φj(I)

ω(I, φ)

p(I)
dφ.

(Here j + 1 is understood mod q.)
(D) For each j, the function θ → Lj(I)θ + GI(θ) is Morse. Namely,

there is at most one critical point on each level set and the critical
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points are non-degenerate. (Here and below we ignore the dependence
of G on j in order to simplify the notation).

We also impose a non-degeneracy condition in the I-direction, namely
(E) If (0, θjk(I)) is a saddle of (2.8) then for each (j, k) we have

α1(I, φj(I), θjk(I)) 6= 0. (Here j counts the resonances and k counts
the saddles of the given resonance).

(F) For each I the critical points of the function E → σ(I, E) are
non-degenerate.

Suppose that I = I0 and that (φ(0), θ(0)) are chosen uniformly
with respect to the Lebesgue measure. Let Iε(t) = I(t/

√
ε). Since

(φ(0), θ(0)) are random, Iε(t) is a random process. Stop it when it
leaves [I1, I2] or get captured. Let

Ψj(I) =
∑

k

Ψjk(I), Ψ(I) =
∑

j

Ψj(I)

where Ψjk(I) = ΨΩjk
(I) (see (2.19)) and Ωjk denotes the domain

bounded by the separatrix loop of the saddle (0, θjk). We denote

λ(I) =

{

∑

jk
Mjk(I)+p(I)

|Lj(I)| if I ∈ (I1, I2)

∞ otherwise.

Theorem 1. Under conditions (A)–(F) the process Iε(t) converges
weakly as ε → 0 to the solution of

(3.1)
dI
dt

= Ψ(I)p(I), I(0) = I0

killed with intensity λ(I).

In other words let I(I0, s) denote the solution of (3.1). Then the
probability that the orbit is not stopped until time t equals

(3.2) p(t) = exp

[

−
∫

t

0

λ(I(I0, s))ds

]

.

In case of survival I(t) = I(I0, t).

Remark. In fact Theorem 1 as well as Theorem 2 below are valid for
a larger class of initial distribution. Namely it is enough to assume
only that the fast variable θ has a Hölder density with respect to Leb-
sesgue measure. The precise class of allowable measures consists of the
convex hull of the measures corresponding to the standard pairs. See
subsection 6.2 for details.
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3.2. Life after capture. In this section we extend Theorem 1 to a
fixed size time interval. During that time a positive measure set of
orbits is going to be captured, some of them several times, and we
need to extend our analysis beyond the time of the capture.

To this end we introduce entrance–exit maps Qjk(I) ([47, 5]). To
define these maps we consider the system (2.8) on the domain Ωjk. We
assume that

(G) There are no saddle points of (2.8) inside Ωjk.
In this case all orbits in the interior of Ωjk are closed so that (2.5) is

a slow–fast system with two slow variables I and Hjk where

Hjk =
r2

2
− Lj(I)θ −GI(θ) +Kjk(I)

and Kjk(I) is chosen so that Hjk vanishes on Ωjk.
Let θjk(H, I, s) denote the solution of (2.8) with Hamiltonian H and

action I and let Tjk(H, I) denote the period of this solution. Consider
the averaged quantities

Xjk(H, I) =

∫ Tjk(H,I)

0

[

r2β̄(I, 0, θjk(s), 0)−

(Lj(I) + g(I, θjk(s)))η̄(I, 0, θjk(s), 0) +
∂Hjk

∂I
ᾱ(I, 0, θjk(s), 0)

]

ds,

Yjk(H, I) =

∫ Tjk(H,I)

0

ᾱ(I, 0, θjk(s), 0)ds.

(In principle we need to divide those quantities by Tjk(H, I) but we can
avoid doing this by rescaling the time. Observe that the entrance-exit
maps Qjk defined below depend only on the orbit of (3.3), not on its
time parametrization.)

We observe that as H → 0, Xjk ∼ −Mjk(I). Hence Xjk < 0 for
small H since a capture is possible near the saddle θjk. Also Yjk ∼
ᾱ(I, 0, θjk(I), 0)Tjk(H, I). Thus Yjk is non-zero for small H due to con-
dition (E). Consider inner averaged equation

(3.3)
dH̄

ds
= Xjk(H̄, Ī),

dĪ

ds
= Yjk(H̄, Ī)

with initial condition (H̄, Ī)(0) = (0, I). Then for small positive s we
have H̄(s) < 0. We make two assumptions

(H) There exists sjk(I) such that H̄(s) < 0 for s ∈ [0, sjk(I)],
H̄(sjk(I)) = 0. Moreover Mjk(I) > 0 and Mjk(Ī(sjk(I)) < 0.

(I) (3.3) is not overtwisted at I (the notion of overtwisting is defined
in Section 3.3.)
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To formulate our last assumptions consider inner averaged equation
(3.3) near an elliptic rest point. By assumption (G) there is a unique
such point (θ∗jk(I), 0, I) inside each domain Ωjk. It is convenient to use

variable H̃ = r2

2
− Lj(I)θ − GI(θ) + K̃(I) where K̃ is chosen so that

H̃(θ∗jk(I), 0, I) = 0. Arguing similarly to (2.17) we get

∇H̃(θ∗jk(I), 0, I) = 0.

Considering Taylor series of (η̄, β̄, ᾱ) in (r, θ − θ∗jk) and observing that
the averaging kills odd degree terms we can write the averaged equation
for H̃ near {H̃ = 0} as

(3.4)
d ¯̃H

ds
= Λ(Ī , ¯̃H) ¯̃H.

Let Sjk = (θ∗jk(I), 0, I) denote the curve of elliptic fixed points. (3.4)
means that Sjk is invariant under the averaged dynamics. The restric-
tion of the inner averaged equation to Sjk is

(3.5)
dĪ

ds
= 2π

ᾱ(θ∗jk(Ī), 0, Ī, 0)

ωjk(Ī)

where iωjk(I) is the eigenvalue of the rest point. We assume that
(J) The zeroes of ᾱ are non-degenerate.
Thus Sjk is a union of fixed points and their stable manifolds.
Let Ijkl be the set of zeroes of the RHS of (3.5). Our last assumption

is
(K) Λ(Ijkl, 0) 6= 0.
In other words all fixed points on Sjk are hyperbolic.
We let

Qjk(I) = Ī(sjk(I)).

We are now ready to generalize Theorem 1. Let G be a finite union
of closed intervals such that the conditions (A)–(K) are satisfied for
all I ∈ G. Moreover we assume that for each I ∈ G for each pair
(j, k) the assumptions (G), (I) and (K) are satisfied for all I along the
orbit of inner averaged equation (3.3) from I to sjk(I). We now relax
the stopping rules as follows. We stop our process when the orbit is

less than
√

ε
| ln ε| away from the resonance surface and Iε(t) is not in

G. (It will follow from Theorem 2 below that there are two reasons
a typical orbit is stopped. Either it reaches the boundary of G while
moving along the trajectory of (3.1) or it gets captured at some I and
Qjk(I) 6∈ G.) Unlike Theorem 1 we do not require G to be connected
since entrance-exit maps Qjk can move orbits between the different
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components. In particular we do not insist that I ∈ G while it moves
along the resonance surface.

As in Theorem 1 we assume that I(0) = I0 is fixed and (φ(0), θ(0))
are uniformly distributed.

Theorem 2. As ε → 0, Iε(t) converges to the Markov process with
generator

L(A) = Ψ(I)
dA

dI
+
∑

jk

(

Mjk(I)+p(I)

Lj(I)
[A(Qjk(I)) − A(I)]

)

.

In other words (3.1) and (3.2) have to be supplemented by the fol-
lowing
• Given that the point got captured at time t the conditional prob-

ability that it get captured near θjk is

Mjk(I(t))+/Lj(I(t))
∑

jk[Mjk(I(t))+/Lj(I(t))]

• If the point gets captured at time t near θjk then it moves instantly
to Qjk(I(t)).

Remark. Since the limiting process has jumps the convergence is un-
derstood in the space of functions without jumps of second kind with
Skorokhod topology ([25], Section VI.5). Namely two functions are
close if their discontinuities are close and the values of the functions
are close away from the discontinuities. More precisely, the topology is
given by the distance

d(I1, I2) = inf
h

(

sup
t∈[0,T ]

|I1(t) − I2(h(t))| + sup
t∈[0,T ]

|t− h(t)|
)

where [0, T ] is the common domain of I1 and I2 and the infimum is
taken over all homeomorphisms h : [0, T ] → [0, T ].

Remark. Assumptions (A)-(K) state that certain functions are differ-
ent from 0. Therefore for a typical system we can expect them to hold
in a neighborhood of a typical point. However we can not expect them
to hold globally so in Theorems 1 and 2 we stop the process when it
escapes the region of validity of assumptions (A)-(K). See Section 12
for the discussion of the ways to relax the assumptions (A)-(K).

3.3. Formal solution of the averaged equation. To complete the
formulation of Theorem 2 it remains to explain the condition (I). To
do so we discuss the properties of the inner averaged equation (3.3).
In this section we shall omit the subscripts j and k in order to simplify
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the notation. Thus we shall write θcr instead of θjk and let U be the
potential of the Hamiltonian Hjk. Define

(3.6) c(I) =
α1(I, φ(I), θcr(I))
√

∣

∣

∂2U
∂θ2

(θcr(I), I)
∣

∣

.

The next result is proven in Appendix F (see also [46]).

Lemma 3.1. As H tends to 0

X(H, I) → −M(I), Y (H, I) ∼ c(I)| ln |H||.
∂X

∂H
∼ O (| ln |H||) , ∂X

∂I
= O(1),

∂Y

∂H
∼ c(I)

|H| ,
∂Y

∂I
∼ c′(I)| ln |H||,

∂2X

∂H2
∼ O

(

1

|H|

)

,
∂2X

∂H∂I
= O (| ln |H||) , ∂2X

∂I2
= O(1),

∂2Y

∂H2
∼ c(I)

H2
,

∂2Y

∂H∂I
=

c′(I)

|H| ,
∂2Y

∂I2
= c′′(I)| ln |H||.

Using this lemma we analyze the variational equation of (3.3). Con-
sider a solution to (3.3) defined on the interval [0, t] such that (H, I)(0) =
(H0, I0) and (H, I)(t) = (Hf , If). We assume that H0 and Hf are small
so that t is close to s(I0). We have

˙δH =
∂X

∂H
δH +

∂X

∂I
δI,

δ̇I =
∂Y

∂H
δH +

∂Y

∂I
δI.

Let ∆(t) = Y δH −XδI. Then ∆̇ =
(

∂X
∂H

+ ∂Y
∂I

)

∆.
Observe that due to assumption (H) the RHS has an integrable sin-

gularity. Let

A(t) = exp

(
∫ t

0

[

∂X

∂H
+
∂Y

∂I

]

(s)ds

)

.

Then ∆(t) = A(t)∆0. Accordingly

˙δH =

(

∂X

∂H
+
Y

X

∂X

∂I

)

δH −
∂X
∂I
A(t)∆0

X
.

Let

B(t) = exp

(
∫ t

0

[

∂X

∂H
+
Y

X

∂X

∂I

]

(s)ds

)

.
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Then

δH(t) = B(t)

(

δH(0) − ∆0

∫ t

0

A(s)∂X
∂I

B(s)X
ds

)

.

Denoting

(3.7) C∗(I) = B(s(I))

∫

s(I)

0

A(s)∂X
∂I

B(s)X
ds

we obtain the following asymptotics of the solutions as H0, Hf → 0
(3.8)
∂Hf

∂H0

∼ −C∗(I0)c(I0)| ln |H0||,
∂If
∂H0

∼ −C∗(I0)c(I0)c(If)| ln |H0||| ln |Hf ||
M(If )

,

(3.9)
∂Hf

∂I0
∼ −C∗(I0)M(I0),

∂If
∂I0

∼ −C∗(I0)M(I0)c(If)| ln |Hf ||
M(If )

.

In the proof of Theorem 2 it is convenient to have the leading terms
given by the above equations non-vanishing. We say that (3.3) is over-
twisted at I0 if C∗(I0) = 0.

Condition (I) provides additional hyperbolicity for our system since it
implies that for orbits passing closer to a saddle point of (2.8) expansion
is stronger than for points staying far from the saddles. See Appendix F
for details.

4. Examples.

Here we illustrate typical applications of our main results. In this sec-
tion we restrict ourselves to demonstrating how to reduce these exam-
ples to the form (2.1) required to apply our results relegating straight-
forward but lengthy computations of the limiting process to Appendix
G. We leave it to the reader to check that the nondegeneracy condi-
tions needed in Theorems 1 and 2 are satisfied on an open set of values
of I for a typical values of the parameters involved in our examples.

4.1. Motion in rapidly oscillating force field.

Example 1. Consider a particle in a potential field which is subjected
to forcing which rapidly changes both in space and time.

ẍ+ U ′(x) = sin

(

x− t

ε

)

.

Introduce θ = x−t
ε
. Then we have θ̇ = v−1

ε
. The averaged equation

therefore takes form

(4.1) ẍ+ U ′(x) = 0
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and so its energy

I =
v2

2
+ U − 1

2
where v = ẋ

is an adiabatic invariant for original system. (Here the normalization
by subtracting 1

2
is made in order to simplify the formulas below).

Observe that

İ = v sin θ.

The resonant curve takes form {v = 1}. Introducing r = v−1√
ε

we obtain

the inner system

θ′′ = r′ = −U ′(x) + sin θ.

The relation

I = U(x) +
(1 +

√
εr)2

2
− 1

2
gives

U(x) = I −√
εr + O(ε).

Let Z denote the local inverse of U, U(Z(u)) = u then Z ′ = 1
U ′
. The

inner system takes form

(4.2) θ′′ = −U ′(Z(I)) + sin θ +
U ′′

U ′ (Z(I))r
√
ε+ O(ε).

The computation of the limiting process is given in Appendix G.1.
We see that at time intervals of order 1 we can ignore the oscillating
force and so the motion of the particle appears to follow the averaged
system (4.1). The influence of the forcing is felt at time intervals of
order ε−1/2. Namely it causes the changes of the particle’s energy by a
slow drift according to the equation (G.3) and occasional captures into
resonances which happen with intensity given by (G.4). The entrance-
exit function is computed using inner averaged equation (G.2).

4.2. Motion on narrow cylinder in the presence of magnetic
field.

Example 2. Consider a particle moving on a narrow cylinder in the
presence of a magnetic field

ż = v, v̇ = z(N + y)u,

θ̇ = u
ε
, u̇ = −z(N + y)v

where y = sin θ. The kinetic energy is preserved and we assume that it
is equal to 2, v2 + u2 = 1. Introducing a variable ψ such that

v = cosψ, u = sinψ
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we rewrite our system as

θ̇ =
sinψ

ε
,

ż = cosψ,

ψ̇ = z(N + y).

After averaging over the fast variable θ the last equation becomes ψ̇ =
Nz and so the averaged system

(4.3) ż = cosψ, ψ̇ = Nz

has a first integral

I =
Nz2

2
− sinψ.

For the actual system we have

İ = −z cosψ sin θ.

The resonance curves are {ψ = 0} and {ψ = π}. Introducing r = sinψ√
ε

we get

r′ = z cosψ(N + sin θ) = ±
√

2(I +
√
εr)

N
(N + sin θ) + O(ε).

So the inner system takes form

(4.4) θ′′ = ±
(
√

2I

N
(N + sin θ) +

√
ε√

2NI
r(N + sin θ)

)

+ O(ε).

The computation of the limiting process is given in Appendix G.2.
We see that most of the time particle makes rapid rotations around the
cylinder with its vertical coordinate changing according to a pendulum
equation (4.3). At time intervals of order 1/

√
ε the energy of the pen-

dulum experiences abrupt changes due to captures in resonances which
manifest themselves by particle moving vertically for times of order 1.
The time before capture is an exponential random variable with pa-
rameter λ(I) given by formula (G.7) and the entrance-exit function is
computed using equations (G.5)–(G.6).

5. Idea of the proof.

In this section we present main ideas of the proof of Theorem 1.
The proof of Theorem 2 proceeds along similar lines. The necessary
modifications are presented in Section 11.

We shall use freely formal manipulations and heuristic arguments.
Rigorous justifications (of somewhat weaker results which are still suf-
ficient for the proof of Theorem 1) will be given later.
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We need some notation. Given a resonance φ = φj(I) define two

surfaces S and S̃ as follows. Let c be a small number. (The precise
conditions on c will be given later but they are not important in the
discussion to follow.) If aj(I) > 0 let

(5.1) S =

{

ω√
ε

= −
(

cε−1/4 +
GI(θ)

cε−1/4

)}

,

(5.2) S̃ =

{

ω√
ε

= cε−1/4 +
GI(θ)

cε−1/4

}

.

If aj(I) < 0 then we define S by (5.2) and S̃ by (5.1). Thus S is a sec-

tion immediately before the resonance and S̃ is a section immediately
after resonance. One motivation for this choice of the sections is that
(5.1) and (5.2) have quite simple expressions in terms of the improved
adiabatic invariants, see Appendix B. Another motivation is that in
(r, θ) coordinates

S̃ =

{

r = ∓
(

R̄ +
G

R̄

)}

where R̄ = c/ε−1/4. Hence

(5.3)
∂E

∂θ
∼ ±1.

Let xn be consecutive visits to Ss corresponding to different reso-
nances. (2.3) suggests that it takes time about 1

p(I)
to make a complete

circle. Since there are q resonances per period we expect that the time
of the nth visit is tn = n

p(I)q
(1 + o(1)). Let A(xn) denote the change of

I between tn and tn+1. To establish Theorem 1 we need to show that
if N ≪ 1√

ε
and m ≤ Const/

√
ε then for orbits which has not been

captured up to time m
(I) The probability of capture on the segment [m,m + N ] is about

λ(I)N
√
ε

pq

(II) For non-captured points

1

N

m+N
∑

n=m

A(xn) ∼
Ψ(I)N

pq
.

The first statement is nothing but the Poisson Limit Theorem for our
system and the second is the Law of Large Numbers. Both results are
well understood for independent or weakly dependent random variables
so we need to show that xn are weakly dependent. To understand
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where this independence comes from consider first few iterations of the
Poincare map. Suppose that x0 has a smooth density on

SI0 := S
⋂

{I = I0} .

We want to describe the distribution of x1. The passage to the next
resonant surface S̄ consists of two parts.

(1) Passage of the resonant zone (from S to S̃).
(2) Motion far from resonance (from S̃ to S̄).
The considerations of Section 2 suggest that during the first part I

changes as follows

(5.4) Ĩ ≈ I +
√
εσ(E, I), so

∂Ĩ

∂E
≈ √

ε
∂σ

∂E
.

On the other hand (2.1) and (2.3) suggest that

θ̄ − θ̃ ≈ 1

ε
w(Ĩ) =

1

ε

∫ φ̄

φ

ω(Ĩ, φ)

p(Ĩ)
dφ.

Formal differentiation gives

(5.5)
∂θ̄

∂θ̃
≈ 1

ε

∂w

∂I
(I).

Combining this with (5.3) we obtain

∂Ē

∂E
≈ 1√

ε

∂w

∂I

∂σ

∂E
.

Now Assumption (F) implies that for most points ∂σ
∂E

6= 0. In this case
Assumption (C) tells us that a preimage of a unit interval has length
O(

√
ε) so ∂σ

∂E
is approximately constant at this preimage. That is, on

such intervals E → Ē can be approximated by a linear map. For lin-
ear maps of slope 1√

ε
the images of the segments of length ≫ √

ε are

uniformly distributed. In other words we can prescribe the phase of x0

with a good precision and still the phase of x1 is uniformly distributed.
In this sense we can regard the phases of x1 and x0 as weakly dependent.
To summarize the image of SI0 consists of finitely many segments con-
sisting of captured points, O(1/

√
ε) almost linear segments and finitely

many ’parabolic’ segments coming from neighborhoods of the critical
points of σ. Assumption (F) makes it plausible that if E0 is a critical
point of σ then for E near E0

Ē − Ē0 ∼
(E − E0)

2

√
ε
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so the total measure in parabolic pieces is O(ε1/4) (by definition a
parabolic piece consists of points which are within a unit distance from
Ē0).

Now let us see what happens for large n. The non-captured part of
the image of SI0 consists of

(a) almost linear segments;
(b) parabolic pieces;
(c) curves of more complicated geometry appearing when a parabolic

piece comes near the critical points of σ.

Figure 4. Large time image of SI0.

To apply the argument used for x0 we need to prove that most of the
measure is concentrated in the linear segments. To this end we have
to show that once an orbit finds itself in a parabolic piece it is much
more likely to escape (that is to get farther than a unit distance from
the tip) rather than stay close to the tip or even enter into a curve of
type (c). The reason is the following. Since ∂σ

∂E
∼ 1 for most points we

can expect that

(5.6)
∂σ

∂E
(Ē0) ∼ 1

in which case for the second iteration we would get

¯̄E − ¯̄E0 ∼
(E −E0)

2

ε
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Figure 5. Parabolic pieces are close to the image of C
(thick line). Since this image is transversal to C (dashed
line) most of the returns are isolated.

so the set of points staying close to the tip for two iterations in a
row would have measure O(

√
ε) (there are also secondary parabolas

appearing at the intersection of the the primary one with the critical
curves but if (5.6) holds then their measures are O(

√
ε) as well). Con-

tinuing this reasoning it is not difficult to convince oneself that the
set of points staying in (b) or (c) segments three times in a row have
measure o(

√
ε). Thus if n < Const/

√
ε then the set of non-linear pieces

is small as required. The problem with this argument is that it is un-
reasonable to expect (5.6) for all initial values of I0. Let C = { ∂σ

∂E
= 0}.

Then (5.5) implies that the image of C also consist of almost linear
segments and so we can not keep the image of C from intersecting it-
self. Dynamics near such intersection could be quite complicarted. In
particular elliptic islands could be formed. For this reason we can not
guarantee for the first and the second iteration of the Poincare map
that only a set of measure o(

√
ε) contributes to the nonlinear part of

the image. Fortunately this problem is confined to the first two iterates
only. Indeed even for the first iteration the required o(ε) bound can be
obtained if we assume that I0 has isolated returns that is, the images of
C⋂SI0 are far from C. Starting from the third iteration we can actually
prove that most of the returns are isolated. Indeed (5.5) tells us that
the points of intersection of C and the image of C form a lattice of step
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O(ε). On the other hand most of the second image of SI0 is in linear
segments. There are O(1/ε) such segments. By (5.4) the variation of
their I values is O(

√
ε) so the distance between consecutive segments

is O(ε3/2). Thus most of the segments are far from the critical lattice.
Hence most of the returns are isolated (see fig. 5). So the total measure
of the non-linear segments can be bounded by

o(n
√
ε) + O(ε1/4)

where the second term estimates the measure of bad points formed
during the first two iterations. Thus most of the measure is in linear
segments giving the required independence.

6. Plan of the proof.

Here we present the main steps of the proof of Theorem 1.

6.1. One passage. Our analysis in Section 5 was based on heuristic
formulas for the derivatives of the Poincare map. Here we present
the precise results. Let us emphasize that the parts of the statements
not dealing with derivative estimates are well known. Still we provide
sketches of proofs in Appendix A in order to make our exposition self
contained.

Let Sj denote the preresonance surface of the resonance (I, φj(I)).
Denote S =

⋃

j Sj . We want to study the Poincare map P : S → S. Let

S and S̄ be the surfaces corresponding to two consecutive resonances
(I, φ(I)) and (I, φ̄(I)). Below we present some information about P :
S → S̄. Observe that if we are interested in the derivatives bounds
then it is not convenient to work with I and θ since they are rapidly
oscillating and a slight change of the surface produces big changes of
the derivatives. For this reason we shall work with the variables J and
E defined by (2.4) and (2.11) respectively. Denote P (J,E) = (J̄ , Ē).

In the statements below o(. . . ) means the limit then both c and ε
tend to 0 but c goes to 0 much slower than ε. That is there exists a
function c0 = c0(ε) such that the asymptotics below are uniform for
c, ε small, c ≥ c0(ε).

In Appendix B we prove the following.

Proposition 6.1. If (I, φ(I)) is a weak resonance then

(a) The passage time t(J,E) ∼ φ̄−φ
p(I)

.

(b)

Ī − I = J̄ − J + o(
√
ε) =

√
εσ(J,E) + o(

√
ε).
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(c) We have

(6.1)
∂Ē

∂E
=

1√
ε

(Λ(J,E) + o(1)) + O(1),
∂Ē

∂J
=

1

ε

(

∂w

∂I
+ o(1)

)

,

where

Λ(J,E) =
∂w

∂I

∂σ

∂E
, and

(6.2)
∂2Ē

∂E2
=

1√
ε

∂Λ(J,E)

∂E
+ O

(

ε1/4

∣

∣

∣

∣

∂Ē

∂E

∣

∣

∣

∣

2
)

.

(d)
∂J̄

∂J
= O(1),

∂J̄

∂E
= O(

√
ε),

∂2J̄

∂E2
= O

(√
ε
)

+O
(

ε5/4

∣

∣

∣

∣

∂Ē

∂E

∣

∣

∣

∣

2
)

,

∂2Ē

∂E∂J
= O

(

1

ε

)

+O
(

ε−3/4

∣

∣

∣

∣

∂Ē

∂E

∣

∣

∣

∣

)

,
∂2J̄

∂E∂J
= O (1)+O

(

ε1/4

∣

∣

∣

∣

∂Ē

∂E

∣

∣

∣

∣

)

,

∂2Ē

∂J2
= O

(

1

ε−7/4

)

,
∂2J̄

∂J2
= O

(

ε−3/4
)

.

For strong resonance the formulations are more complicated because
as we explained above the heuristic formulas of Proposition 6.1 are not
valid for all orbits but on the other hand we do not want to exclude
too large a set.

Fix arbitrary δ > 0. For ε = 0 the union of the saddles of (2.8)

N =
⋃

jk

{φ = φj(I), θ = θjk(I)}

is a normally hyperbolic invariant set of the flow (2.5). Hence for small
ε there is a normally hyperbolic invariant set Nε near N (see [29]).
Let d be the distance of the orbit from Nε and τ be the time the orbit
spends in a δ neighborhood of Nε.

In Appendix E we prove the following.

Proposition 6.2. If (I, φ(I)) is a strong resonance then the following
statements hold.

(a) If d > δ then the estimates of Proposition 6.1 are valid.

(b) If
√

ε
| ln ε| < d ≤ δ but the orbit is not captured, then the state-

ments of Proposition 6.1 should be modified as follows. Part (a) re-
mains valid, part (b) has to be replaced by

(6.3) J̄ − J ∼ √
ετα1(I, φ(I), θjk(I))
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where (0, θjk(I)) is the saddle of (2.8) the orbit is passing near. Part
(c) has to be replaced by

(6.4)
∂Ē

∂E
≥ Const

d
√
ε
,

∂Ē

∂J
≤ Const

dε
.

Also for part (d) in the estimates for the first derivative the RHS has
to be multiplied by 1/d and in the estimates for the second derivative
the RHS has to be multiplied by | lnm d|/d2 where m is a sufficiently
large number.

Let γ be the graph of J = g(E), with |g′| < ε1/2+δ,
(c) Let ξ > ε1/2+δ. Then measure of points with d ≤ ξ is less than

Constξ.

(d) Let [E
(jk)
− , E

(jk)
+ ] be the segment of points captured while passing

near the resonance (I, φj(I), θjk(I)). Then

E
(jk)
+ − E

(jk)
− =

√
ε
Mjk(I)

Lj(I)
+ o(

√
ε).

Comparing the statements above with the heuristic estimates of Sec-
tion 5 we see the following. The first derivative bounds can be obtained
by the formal differentiation of the formulas suggested by the averaged
equation (after replacing I by J). This is not true however for the
second derivatives. The reason is that our analysis suggested that the
map E → Ē was close to linear. Now if we perturb a linear map such
as E → E√

ε
by a small nonlinearity, say

E → E → E√
ε

+ δh

(

E√
ε

)

then the effect of the nonlinear term is δh′′(E/
√
ε)/ε which can be

larger than 1/
√
ε even if δ is small. However the second derivative

bounds are still sufficient to derive the conclusions we want. Namely,
for most points

∂Ē

∂E
∼ 1√

ε
whereas

∂2Ē

∂E2
= O(ε−3/4) ≪

∣

∣

∣

∣

∂Ē

∂E

∣

∣

∣

∣

2

which is enough to conclude that the image looks like a linear map
(cf. Lemma H.1). On the other hand if ∂Ē

∂E
≪ 1√

ε
then the formal

arguments of Section 5 remain valid (since we have quadratic decrease
in the terms coming from the nonlinearity!) and we still are able to
prove quadratic bounds near the parabolic pieces.
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We conclude this section by computing the average for our Law of
Large Numbers. The proof is given in Appendix A.

Lemma 6.3. The average value of the jump at resonance (I, φj(I)) is
∫ 1

0

σ(I, E)dE = Ψj(I).

6.2. Standard pairs. Now we state more precisely what we mean by
“almost linear” segments. The most obvious requirement is that we
want to control the curvature. However we need two more conditions.
First we want not only the geometry of the image to be close to lin-
ear but also the image of the initial measure to be uniform since the
uniformity of the phase plays a key role in our argument. Secondly,
to control the geometry of high iterates inductively the way we ana-
lyzed the first iteration we want to assert that the images are close to
SI curves, namely that they go roughly in E-direction. The precise
definition is the following.

Let c1, c2, C1, C2, C3 be constants whose precise values will be speci-
fied later and δ be a small number.

Definition. A standard pair is a pair ℓ = (γ, ρ) where γ is a curve
in some S and ρ is a probability density on γ such that

(a) c1 ≤ length(γ) ≤ c2
(b) γ is a graph of a map J = g(E) with
(b1) |g′(E)| ≤ C1ε,
(b2) |g′′(E)| ≤ C2ε

1/2+δ,
(c) | d

dE
ln ρ| ≤ C3

If ℓ is a standard pair and A is a function we write

Eℓ(A) =

∫

γ

A(x)ρ(x)dx.

Standard pairs had been applied to derive the averaging results in
case the fast motion is hyperbolic ([7, 13, 19]). Here we shall use them
in the periodic setting.

We want to show that most of the image of SI0 consists of standard
curves. The problem is that an orbit can pass close to either region
where ∂σ

∂E
= 0 where expansion coefficient of (6.1) is small or it can pass

close to the separatrix of (2.8) in which case it spends a long time near
resonance and the perturbation terms can become too large invalidat-
ing (6.1). Let γ be a standard curve. If either of the above problems
happen we say that the orbit has a close return. We call passages near
the separatrix close returns of the first kind and passages near critical
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region close returns of the second kind. We postpone the precise defi-
nition of these notions till the later sections since it is quite technical.
For close returns of the first kind, the time spent near the separatrix is
logarithmic function of the minimal distance which implies that returns
where the deviations from the unperturbed inner system are significant
have small probability, so they can be ignored. However close returns
of the second kind should be treated more carefully. Namely in this
case we consider few consecutive iterations of the Poincare map. If
they also give close returns when we say that the orbit got stuck in the
critical region. Likewise for the returns of the first kind we say that the
orbit got stuck near the separatrix. Also observe that whatever return
is close or not depends not only on the point itself but on the curve
under consideration because we want to have expansion in the tangent
direction of this curve. However we will not emphasize this dependence
in order to simplify the notation. In this section we shall only use the
properties of the close returns described in the next two propositions.
Let ℓ = (γ, ρ) be a standard pair. Denote by P̄ (x) the first free return
to some resonant surface and let n(x) be the number of the first free
return. We shall arrange that 1 ≤ n(x) ≤ 3.

We claim that most of the image of a standard curve consists of
standard curves. The precise statements are given below. As it was
explained in Section 5 we get more precise bounds for higher iterates
since we are able to avoid non-isolated returns.

Proposition 6.4. (Invariance) (a) P̄ (γ) =
⋃

j γj where n is contin-

uous on P̄−1γj and (γj, ρ̄/cj) is a standard pair where ρ̄ is the induced
density on P̄ γ and cj = Pℓ(P̄

−1γj)
(b) Pℓ(n(x) > 1) ≤ Constε1/4.
(c) The time before the first free return is

n(x)−1
∑

j=0

φ(P j+1x) − φ(P jx)

p(I)
+ o(1)

(of course, the angle difference is measured counterclockwise).
P̄ is not defined on a set Z1

⋃

Z2 where Z1 consists of the points
which got stuck and Z2 consists of captured points.

(d) Pℓ(Z1) ≤ ε7/16−δ/4

(e) Pℓ(Z2) ≤ Const
√
ε

(f) (Hyperbolicity) There exists δ̃ > 0 such that ||dP̄−1|| ≤ Constεδ̃.

Observe that a priori bounds (d) and (e) look unsatisfactory since
they do not preclude that all points get eliminated during the first
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1/
√
ε iterations. However already P̄ 2γ is sufficiently well distributed

to improve these bounds.

Proposition 6.5. (Equidistribution)

(a) Let A be a C1 function and ℓ = (γ, ρ) be a standard pair. Let (J̃ , Ẽ)
be a point on γ. Then

Eℓ(A ◦ P̄ ) =

∫ 1

0

A(J̃ , E)dE + O(εδ̃)

(b) Pℓ(P̄
2x gets captured before the next free return to S) =

√
εM(J̃)(1+o(1)).

(c) Pℓ(P̄
2x gets stuck before the next free return to S) ≤ Const

√

ε

| ln ε| .

Proposition 6.4 is proved in Section 9 and Proposition 6.5 is proved
in Section 10.

6.3. Short time evolution. As we explained in Section 5 Proposition
6.5 allows us to obtain the Poisson Limit Theorem and the Law of
Large Numbers (statements (I) and (II) of Section 5) if the number
of iterations is much smaller than 1/

√
ε. Let us formulate the precise

result used in the proof of Theorem 1.
We define inductively a sequence of curves {γkj} such that

⋃

j γkj
lie on the part of the orbit of γ not captured in the resonance after k
steps. Put γ01 = γ. If {γkj} is already defined up to some k, decompose

P̄ γkj =
⋃

l

γkjl
⋃

Z1kj

⋃

Z2kj

as in Proposition 6.4 and let {γ(k+1)j} be some reindexing of {γkjl}. Let
Γk ⊂ γ be the set of points having representatives

⋃

j γkj. For x ∈ Γk let

xk = (Jk, Ek) denote the representative of γkj(x). Let Γ′
k denote the set

of points captured before time k and Γ′′
k denote the set of points which

got stuck at m-th free return for some m ≤ k. Fix a small number δ1.
Let N = [δ1q/

√
ε].

Proposition 6.6. There exist a function δ2(δ1) such that limδ1→0 δ2 =
0 and a subset Γ′′′

N ⊂ γ such that

(a) Pℓ(Γ
′′′
N ) = o(δ1),

(b) |IN − I0 − δ1Ψ(I0)| ≤ δ1δ2

for all x ∈ ΓN − Γ′′′
N ,
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(c) Let t(0)(x) be the time between x0 and xN then
∣

∣

∣

∣

√
εt(0)(x) − δ1

p(I0)

∣

∣

∣

∣

≤ δ1δ2

for all x ∈ ΓN − Γ′′′
N ,

(d)

∣

∣

∣

∣

Pℓ(Γ
′
N) − δ1λ(I0)

p(I0)

∣

∣

∣

∣

≤ δ1δ2,

(e) Pℓ(Γ
′′
N) ≤ δ1δ2.

Theorem 1 is derived from Proposition 6.6 in Section 7. In Section 8
we explain how Proposition 6.6 follows from Propositions 6.4, 6.5 and
Lemma 6.3.

7. Convergence.

Proof of Theorem 1. Let us first prove this result in the case then
(I, φ, θ)(0) are distributed according to some standard pair ℓ. Let Γ(1) =

ΓN − Γ′′′
N . Let {γ(1)

j } be the union of ΓNj not falling into Γ′′′
N . Repeat

the procedure described above with each γ
(1)
j instead of γ and let Γ(2)

be union of the resulting sets. Continue inductively to obtain a nested
sequence

γ ⊃ Γ(1) ⊃ · · · ⊃ Γ(n−1) ⊃ Γ(n) ⊃ . . . .

Let {γ(n)
j } denote the set of the resulting curves. For x ∈ Γ(n) let

x(n) = (I(n), E(n)) be the point from the orbit of x on γ
(n)
j and let t(n−1)

denote the time between the returns of x(n−1) and x(n). Set τn(x) =
∑n−1

m=0 t
(m)(x). By Proposition 6.6

∣

∣I(n+1) − I(n) − δ1Ψ(I(n))
∣

∣ ≤ δ1δ2,

∣

∣

∣

∣

√
ε [τn+1 − τn] −

δ1
p(I(n))

∣

∣

∣

∣

≤ δ1δ2.

Let (J̃ , τ̃ ) be the solution of

J̃ ′ = Ψ(J̃), τ ′ = 1/p.

Then
(

I([t/δ1]), τ ([t/δ1])
)

= (J̃ , τ̃)(t) + o(1), as δ1, δ2 → 0.

This describes the dynamics of the points from Γ([T/δ1]). Next define

Γ(n)′,Γ(n)′′ and Γ(n)′′′ similarly to Γ′
N ,Γ

′′
N and Γ′′′

N . It remains to show
that Γ′′ and Γ′′′ have small probability and to compute the asymptotics
of Γ′ (captured trajectories). First, by induction

Pℓ(Γ
(n)′′ − Γ(n−1)′′) ≤ δ1δ2n, Pℓ(Γ

(n)′′′ − Γ(n−1)′′′) ≤ δ1δ2n
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which implies that Γ(n)′′ and Γ(n)′′′ have small measure for n ≤ T/δ1.

Denote pn = Pℓ(Γ
(n)′). Then the foregoing discussion and Proposition

6.6(d) imply

(7.1) pn+1 − pn = δ1(1 − pn)λ(J̃(nδ1)) (1 + oδ1→0(1)) .

Letting δ1 → 0 we obtain (3.2). This completes the proof of Theorem
1 for (I, φ, θ) being chosen according to Pℓ. Next, let γα be the first
visit of

σα = {I = I0, φ = α}
to S and let ρα denote the measures on γα which is the image of the
uniform measure on σα. Write ℓα = (γα, ρα). Applying the foregoing
discussion to

µ =

∫ 1

0

Pℓαdα

we obtain the original statement of Theorem 1. �

Remark. In fact, the proof gives a stronger result. Namely, random-
ness in θ alone is sufficient to obtain Markovian evolution.

8. Short time dynamics.

Proof of Proposition 6.6. Given γ let

b(x) =
I(Px) − I(x)√

ε
,

b̄γ(x) =

n(x)−1
∑

j=0

b(P jx), b̄(xk) = b̄γkj(x)
(xk).

We extend b̄(xk) = Ψk (here k is understood mod q) if the trajectory of
x gets stuck or captured for some m ≤ k. Likewise we define n(xk) =
nγkj(x)

(xk) and extend it to 1 if xk is not defined. Define

λ̃j(I) =
∑

k

Mjk(I)+

|Lj(I)|

where the sum is over all saddles of (2.8) on Sj . Write Ψ̄(x) = Ψj,

λ̃(x) = λ̃j if x ∈ Sj.

Let ℓ̃ = (γ̃, ρ̃) be a standard pair such that with γ̃ ⊂ P̄ kγ and ρ̃ is a
normalized induced density. Then by Proposition 6.4 (b)

Eℓ̃(|n(x) − 1|) = O
(

ε1/4
)

.
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Next, let ℓkj denote the pair (γkj, ργ(x0)/ckj) where ckj = Pℓ(xk ∈ γkj).
Then

Eℓ(|n(xk)−1|) ≤
∑

j

ckjEℓkj
(|n(x)−1|) ≤ Constε1/4

∑

j

ckj ≤ Constε1/4.

Therefore

Eℓ

(∣

∣

∣

∣

∣

N−1
∑

k=0

n(xk) −N

∣

∣

∣

∣

∣

)

= O(Nε1/4).

Hence

Pℓ

(∣

∣

∣

∣

∣

N−1
∑

k=0

n(xk) −N

∣

∣

∣

∣

∣

>
δ2N

2

)

≤ 2ε1/4

δ2
.

Since tk = n(xk)/p(Ik) + o(δ2) we get using Proposition 6.1(a)

Pℓ

(∣

∣

∣

∣

∣

N−1
∑

k=0

tk(x) −
N

p(I0)

∣

∣

∣

∣

∣

> δ2N

)

≤ Constε1/4

δ2
.

Including the part of γNj where the above sum is larger than δ2N in
Γ′′′
N we obtain part (c) of Proposition 6.6. Next let

În = I0 +

√
εn

q
Ψ(I0), ∆n = In − În.

We have

∆nq =
√
ε

[

n−1
∑

j=0

q−1
∑

r=0

(

b̄(xjq+r) − Ψ̄(xjq+r)
)

+

(

n−1
∑

j=0

(

Ψ(Ijq) − Ψ(Îjq)
)

)

+

(

n−1
∑

j=0

(

Ψ(Îjq) − Ψ(I0)
)

)]

(8.1)

=
√
ε

[

n−1
∑

j=0

q−1
∑

r=0

(

b̄(xjq+r) − Ψ̄(xjq+r)
)

+

(

n−1
∑

j=0

O
(∣

∣

∣
Ijq − Îjq

∣

∣

∣

)

)

+ O(n2
√
ε)

]

.

Lemma 8.1.

(8.2) Eℓ





(

n−1
∑

k=0

[

b̄(xk) − Ψ̄(xk)
]

)2


 ≤ Constn2δ20
1 .

Therefore

Eℓ

(∣

∣

∣

∣

∣

n−1
∑

k=0

[

b̄(xk) − Ψ̄(xk)
]

∣

∣

∣

∣

∣

)

≤ Constnδ10
1 .
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Proof. We have

Eℓ





(

∑

k

[

b̄(xk) − Ψ̄(xk)
]

)2




= Eℓ

(

∑

k2−k1>2

(

[̄b(xk1) − Ψ̄(xk1)][̄b(xk2) − Ψ̄(xk2)]
)

)

+ O(n).

Let k3 = [k1+k2
2

]. By Proposition 4(f) the map xk1 → xk3 expands

distances by at least ε−δ̃. We claim that this implies that for each
standard pair ℓk3j = (γk3j , ρk3j) such that γk3j ⊂ P̄ k3γ there exists a
number ζk3j such that

(8.3)
∣

∣b̄(xk1) − Ψ̄(xk1) − ζk3j
∣

∣ ≤ δ20
1

uniformly on each γk3j . Indeed since the preimages of γk3j under P̄

have lengths O(εδ̃) and since b is well approximated by σ which is
continuous away from the separatrix of the inner system we only have
to establish (8.3) in case xk1 passes near the separatrix. To analyze
this case we assume that n(xk1) = 1 (other possibilities are similar).
Then by Proposition 6.2

∣

∣

∣

∣

dσ(xk)

dEk

∣

∣

∣

∣

≤ Const

d

whereas
∣

∣

∣

∣

dEk+1

dEk

∣

∣

∣

∣

≥ Const

d
√
ε

so the preimage of γk+1,j(x) has Ek-length O(d
√
ε) and the oscillations

of b on such interval are O(
√
ε) ≪ 1 verifying (8.3).

On the other hand applying Proposition 6.5(a) for each j we have

Eℓk3j

(

ζk3
(

b̄
(

xk2) − Ψ̄k2(xk2)
)))

= O(εδ̃).

Summation over j gives

Eℓ

(

ζk3
(

b̄
(

xk2) − Ψ̄k2(xk2)
)))

= O(εδ̃).

Combining this with (8.3) we obtain

Eℓ

((

[̄b(xk1) − Ψ̄(xk1)][̄b(xk2) − Ψ̄(xk2)]
))

= O(δ20
1 ).

proving (8.2). �

Next, since Eℓ(|b̄(xk)|) = O(1) we get an a priori bound

(8.4) Eℓ(|Ik − I0|) ≤ Constk
√
ε
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and hence

(8.5) Eℓ(|Ik − Îk|) ≤ Constk
√
ε.

Plugging (8.5) into (8.1) we get

(8.6) Eℓ(|∆k|) = O(δ2
1

√
ε+ k2ε)

for k ≤ N. Plugging (8.6) back into (8.1) we get

∆n = O(δ2
1) + ∆̃n

where

Eℓ(|∆̃N |) = O(δ3
1).

Adding to Γ′′′
N the set of points where |∆̃1| > δ

3/2
1 we obtain parts

(a) and (b) of Proposition 6.6.
Next, using Proposition 6.5(c) we get by induction that for m ≥ 3

Pℓ(Γ
′′
m − Γ′′

m−1) ≤ Const

√

ε

| ln ε| .

Combining this with parts (d) and (e) of Proposition 6.4 for m < 3 we
get (e).

Let now Qk = Pℓ(Γ
′
k). Then

Qk+1 −Qk =
∑

j

ck−2,jPℓk−1,j

(

Γ′
k+1 − Γ′

k

)

where ck,j = Pℓ(P̄
−kγkj). Using Proposition 6.5(b) we get

Qk+1 −Qk =

(

∑

j

ck−2,j

)

√
εEℓ(λ̃(xk))(1 + o(1)).

By already proven parts (a) and (e) of Proposition 6.6
∑

j

ck−2,j = 1 −Qk−2 + o(δ1)

so

(8.7) Qk+1 −Qk = (1 −Qk−2)
√
εEℓ(λ̃(xk))(1 + o(δ1)).

This gives a priori bounds

(8.8) Qk+1 −Qk = O(
√
ε) and Qk = O(δ1).

Combining (8.7) and (8.8) we get

Qk+1 −Qk =
√
ελ̃(xk)(1 + O(δ1)).
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Thus given r we obtain after the summation over the period

r+q−1
∑

k=r

Qk+1 −Qk =
√
ελ(I0)(1 + O(δ1)).

This proves part (d) of Proposition 6.6. �

9. Free returns.

9.1. Definitions. Here we prove Proposition 6.4. First we need to
give precise definitions of close returns and also to explain when we
consider an orbit stuck. Let (J,E) → (J̄ , Ē) denote the Poincare map.
Given a standard curve we write

k =
dE

dJ
, q =

d2E

dJ2
, r =

d

dE
ln ρ, k̄ =

dĒ

dJ̄
, q̄ =

d2Ē

dJ̄
, r̄ =

d

dĒ
ln ρ̄.

Close returns of the first kind are defined by the condition that the

orbit of (J,E) is within distance
√

ε
| ln ε| from Nε. Close returns of the

second kind are more complicated to define. Indeed we need to satisfy
several conditions (conditions (a)–(c) of the definition of the standard
pair). We begin with expansion. Observe that

dĒ

dE
=
∂Ē

∂E
+ k

∂Ē

∂J
=
∂Ē

∂E
+ O(1)

by Proposition 6.1 and part (b1) of the definition of the standard pair.

Hence expansion may fail only near zeroes of ∂Ē
∂E
. By Proposition 6.1 if

c is sufficiently small then these zeroes are close to the critical points of

σ. Proposition 6.1 and Assumption (F) now imply that if
∣

∣

∣

∂Ē
∂E

∣

∣

∣
≤ δε−3/8

then
∣

∣

∣

∂2Ē
∂E2

∣

∣

∣ ≥ Const/
√
ε. Also

d2Ē

dE2
=
∂2Ē

∂E2
+ 2k

∂2Ē

∂E∂J
+ k2∂

2Ē

∂J2
+ q

∂Ē

∂J
=
∂2Ē

∂E2
+ O(ε−(1/2−δ)).

Hence
∣

∣

∣

d2Ē
dE2

∣

∣

∣
≥ Const√

ε
near possible zeroes of dĒ

dE
. We now define close

returns of the second kind by the condition
∣

∣

∣

dĒ
dE

∣

∣

∣
< ε−1/4. If a point has

a close return of the first kind we declare it stuck and remove it from
consideration. For the close returns of the second kind we truck the
orbit for two more iterations to see if its recovers the lost hyperbolicity.
Namely if

∣

∣

∣

∣

dĒ

dE

∣

∣

∣

∣

< εδ
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we declare the point stuck. Otherwise let ( ¯̄J, ¯̄E) and (
¯̄̄
J,

¯̄̄
E) be the

images of (J̄ , Ē). If
∣

∣

∣

∣

dĒ

dE

∣

∣

∣

∣

< ε−1/16

we declare the orbit stuck if
∣

∣

∣

∣

∣

d ¯̄E

dĒ

∣

∣

∣

∣

∣

< ε−(1/4+δ) or

∣

∣

∣

∣

∣

d
¯̄̄
E

d ¯̄E

∣

∣

∣

∣

∣

< ε−(1/4+δ)

or if ( ¯̄J, ¯̄E) or (
¯̄̄
J,

¯̄̄
E) experience close returns of the first kind. Other-

wise we declare the orbit free. If

(9.1) ε−1/16 ≤
∣

∣

∣

∣

dĒ

dE

∣

∣

∣

∣

< ε−1/8

we declare the orbit stuck if
∣

∣

∣

∣

∣

d ¯̄E

dĒ

∣

∣

∣

∣

∣

< ε−1/8 or

∣

∣

∣

∣

∣

d
¯̄̄
E

d ¯̄E

∣

∣

∣

∣

∣

< ε−(1/4+δ)

or if ( ¯̄J, ¯̄E) or (
¯̄̄
J,

¯̄̄
E) experience close returns of the first kind. Other-

wise we declare the orbit free. Finally if
∣

∣

∣

∣

dĒ

dE

∣

∣

∣

∣

≥ ε−1/8

then we set an orbit free if
∣

∣

∣

∣

∣

d ¯̄E

dĒ

∣

∣

∣

∣

∣

> ε−1/4,

otherwise we declare it stuck.

9.2. Free orbits form standard pairs. We now show that these
rules allow us to preserve standard pairs. First we consider the case
when all the traversed resonances are weak and then describe the mod-
ifications needed to treat strong resonances. We begin with points
without close returns. We have

(9.2) k̄ =
∂J̄
∂E

+ k ∂J̄
∂J

∂Ē
∂E

+ k ∂Ē
∂J

.

Combining the identity

∂J̄

∂E

∂Ē

∂J
=
∂J̄

∂J

∂Ē

∂E
+ O(1)
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(valid by (2.18)) with Proposition 6.1 we get

(9.3)
∂J̄

∂E
= O(ε)

∂Ē

∂E
+ O(ε).

Thus on the set where
∣

∣

∣

∂Ē
∂E

∣

∣

∣

−1

= O(1) we have

(9.4)
∂J̄
∂E

+ k ∂J̄
∂J

dĒ
dE

= O(ε).

so k̄ = O(ε) and (b1) follows if C1 is large enough. Next

q̄ =
∂2J̄
∂E2 + 2k ∂2J̄

∂J∂E
+ k2 ∂2J̄

∂J2

(

dĒ
dE

)2 −

(

∂J̄
∂E

+ k ∂J̄
∂J

)(

∂2Ē
∂E2 + 2k ∂2Ē

∂J∂E
+ k2 ∂2Ē

∂J2

)

(

dĒ
dE

)3

(9.5) +q







∂J̄
∂J

(

dĒ
dE

)2 −
dJ̄
dE

∂Ē
∂J

(

dĒ
dE

)3






= (I) + (II) + (III).

Now

|I| =
O(

√
ε)

|∂Ē
∂E

|2
+

O(ε5/4)

|∂Ē
∂E

|
+ O(ε5/4) = O(ε).

Next by (9.4)

(II) = O






ε×

∂2Ē
∂E2 + 2k ∂2Ē

∂J∂E
+ k2 ∂2Ē

∂J2

(

dĒ
dE

)2






.

The second factor here is

O
(

1√
ε

)

|∂Ē
∂E

|2
+

O(ε1/4)

|∂Ē
∂E

|
+ O(ε1/4) = O(1)

so II = O(ε). Finally using (9.3) we get

(III) = q ×
[

O
(

1

|∂Ē
∂E

|2

)

+ O
(

∂Ē
∂J

|∂Ē
∂E

|2
ε

)]

= O(ε1+δ).

Thus

(9.6) q̄ = O(ε).
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Condition (a) is automatic since we delete points which come close
to critical set and the distance between those points is of order 1. Next,

ρ̄(Ē) =

(

ρ(E)
dĒ
dE

)

/c̄

where c̄ is the normalization constant. Hence

(9.7) r̄ =
r

(

dĒ
dE

) −
d2Ē
dE2

(

dĒ
dE

)2 =
r

(

dĒ
dE

) + O(ε1/4) + O







1√
ε

(

dĒ
dE

)2






.

The first term is O(ε1/4) and the last is

O
(

1/
√
ε

(ε−1/4)2

)

= O(1)

so (c) follows if C3 is large enough.
We now come to the close returns of the second kind. Consider the

case
∣

∣

∣

dĒ
dE

∣

∣

∣
≥ ε−1/8 first. In this case (9.4) gives k̄ = O(ε). Next (9.5)

and (9.4) give q̄ = O(ε3/4) and (9.7) implies O(r̄) = ε−1/4. Thus if the
orbit brakes free on the second step then we have

¯̄k = O(ε), ¯̄q = O(ε), ¯̄r = O(1)

verifying (a)–(c).

Next if ε−1/16 ≤
∣

∣

∣

dĒ
dE

∣

∣

∣
≤ ε−1/8 then we get

k̄ = O(ε), q̄ = O(ε5/8), r̄ = O(ε−3/8)

If the orbit survives the next steps we have

(9.8) ¯̄k = O(ε), ¯̄q = O(ε3/4), ¯̄r = O(ε−1/4),

¯̄̄
k = O(ε), ¯̄̄q = O(ε), ¯̄̄r = O(1).

In case εδ < dĒ
dE

< ε−1/16 these estimates take the following form

(9.9) k̄ = O(ε1−2δ), q̄ = O(ε1/2−4δ), ¯̄r = O(ε−(1/2+2δ))

¯̄k = O(ε), ¯̄q = O(ε1−2δ), ¯̄r = O(ε−(1/4+δ)),
¯̄̄
k = O(ε), ¯̄̄q = O(ε), ¯̄̄r = O(1).

This proves part (a) of Proposition 6.4. Also, part (f) follows because

at each step we have
∣

∣

∣

dĒ
dE

∣

∣

∣
> εδ and on the last step the expansion is

at least ε−1/4. Part (c) follows from Proposition 6.1(a). This concludes
the proof of parts (a)–(c) of Proposition 6.5 in case all three resonances
γ has to traverse are weak.The case where some of the resonances are
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strong requires minimal modifications. First we have to remove the
points coming too close to Nε. Since the distance between the saddles
of (2.8) and the zeroes of of ∂Ē

∂E
is of order 1 by (6.1) and assumption

(E) we still have uniform lower bounds on the image lengths. For the

estimates of k, q and r we claim that if at some point |∂Ē
∂E

| > ε−1/4 then

the worst case is still when |∂Ē
∂E

| ∼ ε−1/4. Indeed (9.4) holds near Nε by
Proposition 6.2. Thus comparing what happens near Nε with points
near parabolic pieces we see that for terms having dĒ

dE
, (dĒ

dE
)2 and (dĒ

dE
)3

in the denominator the denominator is multiplied by 1
dε1/4 ,

1
d2ε1/2 and

1
d3ε3/4 respectively whereas the numerator increases by | lnm d|

d
, ln2m d

d2
and

| ln3m d|
d3

respectively so the situation is much better. It remains to prove
parts (d) and (e) of Proposition 6.4.

9.3. Measure estimates. Here we complete the proof of Proposition
6.4. Again we first analyze the case when all resonances are weak
and describe the modifications needed for strong resonances at the end
of this section. In this section we shall make a frequent use of two
estimates. The first is a standard distortion bound (see Lemma H.1 of
Appendix H). The second is (9.13) below.

Let E0 be a point where dĒ
dE

= 0. Then near E0

(9.10)
ĉ1√
ε
≤
∣

∣

∣

∣

d2Ē

dE2

∣

∣

∣

∣

≤ ĉ2√
ε
.

Hence in the region where

(9.11)

∣

∣

∣

∣

dĒ

dE

∣

∣

∣

∣

≤ δε−3/8

we get

(9.12)
c′1√
ε
|E − E0| ≤

∣

∣

∣

∣

dĒ

dE

∣

∣

∣

∣

≤ c′2√
ε
|E − E0|.

For these values of E we have

(9.13)
c′′1√
ε
(E − E0)

2 ≤
∣

∣Ē − Ē0

∣

∣ ≤ c′′2√
ε
(E − E0)

2.

It follows from (9.12) that the close returns of the second kind have
measure O(ε1/4). We now estimate the measure of Z1. It consists of
several parts. Points coming too close on the first step have measure

(9.14) Pℓ(ZI) ≤ Constε1/2+δ.

by (9.12) (since ρ is uniformly bounded above and below by parts (a)
and (c) of the definition of the standard pair). Next there are points
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which satisfy εδ < dĒ
dE

< ε−1/16. In the worst case scenario all those
points will be removed at the second step so we can not do better than
estimate the measure of points removed from this part by their total
measure, that is

(9.15) Pℓ(ZII) ≤ Constε7/16

(see (9.12)). Next, consider points satisfying (9.1). They satisfy

|Ē − Ē0| ≤ Const

and if these points are removed on the second step then (9.12) and

(9.13) show that Ē should be close to the zeroes of ∂ ¯̄E/∂Ē. Hence on
the second step we remove finitely many intervals of Ē-length O(ε3/8)
(till the end of this section we use the phrase ’finitely many’ to mean
that the corresponding number is uniformly bounded as ε → 0). Next
(9.12) and (9.13) show that the induced density (which we denote ρ̃ to
distinguish it from the conditional density ρ̄) satisfies

ρ̃(E) =
ρ(E)

|dĒ
dE

|
∼ ε1/4

√

|Ē − Ē0|
.

Since 1√
|Ē−Ē0|

is increasing towards Ē0 the worst case is when one of

whose intervals contains E0. In this case the probability ∆ of getting
stuck can be estimated with the help of (9.13). We get

∆2

√
ε

= Constε3/8

that is

(9.16) Pℓ(ZIII) ≤ Constε7/16

On the third step we have to remove finitely many critical intervals

(where
∣

∣

∣

∂ ¯̄E
∂Ē

∣

∣

∣
≤ ε−1/4) and several non-critical intervals.

Let us first estimate how much we remove from the critical intervals.
Reasoning as above we see that on each interval we have to remove a set
of ¯̄E-length O(ε1/4−δ) hence its Ē-length is O(ε3/8−δ/2) and E-length
is O(ε7/16−δ/4). Thus

(9.17) Pℓ(ZIV ) ≤ Constε
7
16

− δ
4 .

Now consider non-critical intervals. Recall constants c1, c2 from the
definition of the standard pair. Decompose

{

ε−1/16 <

∣

∣

∣

∣

∂Ē

∂E

∣

∣

∣

∣

< ε−1/8,

∣

∣

∣

∣

∣

∂ ¯̄E

∂Ē

∣

∣

∣

∣

∣

≥ ε−1/4

}

=
⋃

α

Yα
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where length(PYα) < c2 and either length(PYα) > c1 or Yα is adjacent
to one of the interval removed at the first two steps. If the first alter-
native holds we call Yα complete, otherwise we call it incomplete. Let
Zα = P (Yα).

c

1

2

2

33

33

4

4

55

5

5

55

Figure 6. Thick line stands for C. 1 is the interval re-
moved at the first step, 2 are the intervals removed at
the second step, 3 are critical intervals, 4 are incomplete
intervals, 5 are complete intervals.

By the estimates of Section 9.2, P has bounded distortion on Yα
(since Zα are non-critical). We remove a set of ¯̄E-measure O(ε1/4−δ)
from each Zα. This set has Ē-measure O(ε1/4−δ|Yα|). Taking the union

of all αs we get a set of Ē-measure O(ε1/4−δ)|Ē1 − Ē0| where ∂Ē
∂E

(E1) =

ε−1/8. Thus the total Ē-measure of the deleted set is O(ε3/8ε1/4−δ) =
O(ε5/8−δ). Since P expands by at least ε−1/16 on the set where (9.1)
holds the total measure deleted from the complete intervals is

(9.18) Pℓ(ZV ) ≤ Constε11/16−δ.

There are also finitely many incomplete intervals. Since the minimal
extension on the second step is Constε−1/4 for non-critical intervals we
conclude that Ē-length of the removed set is O(ε1/2−δ) and since the
expansion of E → Ē is at least ε−1/16 we get

(9.19) Pℓ(ZVI) ≤ Constε9/16−δ.
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Finally we consider points with
∣

∣

∣

dĒ
dE

∣

∣

∣
> ε−1/8. We remove intervals

of Ē-length O(ε3/8) and since we have expansion of at least ε−1/8 the
bound we obtain is

(9.20) Pℓ(ZVII) ≤ Const
√
ε.

This completes the proof of Proposition 6.4(d) for weak resonances. In
the presence of strong resonances there are additional complications.

(a) There are points which are removed on the first step due to
returns of the first kind.

(b) Returns of the first kind could appear after the returns of the
second kind.

(c) There are points which come close to Nε on the second step
without getting stuck and we need to check that this does not destroy
our estimates.

Case (a) contributes a set of measure O
(

√

ε
| ln ε|

)

by Proposition

6.2(d).
To handle (b) observe that the probability to have a close return of

the first kind on the second step is O(ε1/2| ln ε|−1/2) since we have to
remove an interval of Ē-length O(ε1/2| ln ε|−1/2) and E-length of the
preimage of any such interval is O(ε1/2| ln ε|−1/4). On the third step we
have to distinguish critical and non-critical cases. In the critical case
we have a bound O(ε1/2| ln ε|−1/8) by the argument used for the sec-
ond step. In the non-critical case we see using the bounded distortion
property that we remove a set of Ē-measure

O(ε1/2| ln ε|−1/2|Ē1 − Ē0|) = O(ε3/4| ln ε|−1/2)

so the contribution of non-critical intervals is O(ε5/8| ln ε|−1/4).
Finally (c) is of no concern since the expansion near Nε is better

than the expansion away from Nε and the bounded distortion property
still holds so our estimates only become better.

It remains to prove Proposition 6.4(e). Again capture can occur ei-
ther on the first step or after a return of the second kind. For immediate
capture we use a bound O(

√
ε) of Proposition 6.2(c). Captures on the

second and the third steps are analyzed similarly to close returns of the
first kind. The difference is that now we use Proposition 6.2(d) instead
of 6.2(c) so we do not have powers of δ in the corresponding estimates.
So instead of O(ε1/2+δ/4) bound we get O(ε1/2) bound.

We also observe that this bound comes from possible captures in
critical intervals. Namely for captures from non-critical intervals we
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have O(ε5/8) bound corresponding to O(ε5/8+δ/2) bound for the first
kind returns.

Proposition 6.4 follows.

10. Equidistribution.

10.1. Equidistribution on a unit scale. Here we prove Proposition
6.5. To prove (a) observe that if |E − E0| > ε1/4−δ then r̄ < Cε2δ.
Divide the part of γ where |E − E0| > ε1/4−δ into segments {Yα} so
that the image of each segment has Ē-length 1. Then by Lemma H.1
on each Yα the map E → Ē is ε2δ close to linear. Since linear maps
have required equidistribution properties part (a) of Proposition 6.5
follows.

10.2. Isolated returns. Our next task is to prove part (c) of Proposi-
tion 6.5 following the outline given in Section 5. We say that a standard
curve γ has an isolated return if for all E0 such that dĒ

dE
(E0) = 0 we

have
∣

∣

∣

∣

∣

∂ ¯̄E

∂Ē
(Ē0)

∣

∣

∣

∣

∣

> ε−[(1/4)+4δ].

Let us derive some consequences of the isolation. Let X be a compo-
nent consisting of points which have a close return of the second kind
but are not removed at the first step. X consists of three segments

X = X1

⋃

X2

⋃

X3 where X1 =

{

εδ ≤
∣

∣

∣

∣

dĒ

dE

∣

∣

∣

∣

≤ ε−1/16

}

,

X2 =

{

ε−1/16 <

∣

∣

∣

∣

dĒ

dE

∣

∣

∣

∣

≤ ε−1/8

}

, X3 =

{

ε−1/8 <

∣

∣

∣

∣

dĒ

dE

∣

∣

∣

∣

≤ ε−1/4

}

.

Let (E1, J1) be the endpoint of X in X1. Then by (9.12) |E1 − E0| ≤
Constε1/2+δ. So by property (b1) of standard pairs the J-coordinate
satisfies |J1−J0| ≤ Constε3/2+δ. It follows from (9.13) that |Ē1− Ē0| ≤
Constε1/2+2δ and Proposition 6.1(d) gives |J̄1 − J̄0| ≤ ε1+δ. It follows

from the bounds on the second derivatives of ¯̄E given by Proposition
6.1 that

(10.1)

∣

∣

∣

∣

∣

∂ ¯̄E

∂Ē

∣

∣

∣

∣

∣

(E1) ≥
1

2
ε−[1/4+4δ].

Next let E2 be the closest point to E1 in X such that |d ¯̄E
dĒ

(Ē2)| = ε−1/4.
Then (9.9) implies that the arguments of Section 9.3 are available giving

(10.2)
∣

∣Ē2 − Ē1

∣

∣ ∼ Cε1/4−4δ.
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Now (9.13) implies that |E2 −E1| ∼ Constε3/8−2δ and (9.12) gives

(10.3)

∣

∣

∣

∣

dĒ

dE
(E2)

∣

∣

∣

∣

≥ Constε−1/8−2δ.

10.3. Getting stuck at isolated returns. Let Ẑ1 denote the event
that the orbit gets stuck due to the second kind return.

Lemma 10.1. If γ has an isolated return then

Pℓ(Ẑ1) < ε1/2+δ.

Proof. We need to show how to improve (9.15), (9.16), (9.17) and (9.20)
for isolated returns.

We begin with X1. An argument similar to the proof of (10.1) shows
that on PX1

(10.4)

∣

∣

∣

∣

∣

d ¯̄E

dĒ

∣

∣

∣

∣

∣

≥ 1

10
ε−(1/4+4δ)

so nothing is removed on the second step. Also (10.4) means that P
has bounded distortion on PX1. Consider two cases.

(1) |P 2X1| > 1. By the bounded distortion Ē-measure of the removed

set is at most O(ε1/4−δ|PX1|) = O(ε5/8−δ) and since |dĒ
dE

| > εδ on X1

the E-measure of the removed set is O(ε5/8−2δ).

(2) |P 2X1| ≤ 1. Since ¯̄E-measure of the removed set is O(ε1/4−δ),
by (10.4) Ē-measure of the removed set is at most O(ε1/2+3δ) and its
E-measure is at most

P(Z̃II) = O(ε1/2+2δ).

(Here the tilde is used to emphasize that this inequality is valid only
for isolated returns).

Case III is analyzed similarly to case I giving

P(Z̃III) = 0.

In case IV we have the following changes comparing with case II. Due
to (9.12) and (9.13)

ε1/4

C
≤ |P (X2)| ≤ Cε1/4

and (10.2) shows that (10.4) still holds so only case (1) can happen.
Now Ē-length of the removed set is O(ε1/4−δ|PX2|) = O(ε1/2−δ). But
the expansion on the first step is at least ε−1/16 so

P (Z̃IV ) = O(ε9/16−δ).
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Case VII is analyzed as before except that due to (10.3) for points
having close return on the second step the minimal expansion on the
first step is now O(ε−1/8−2δ) giving much needed improvement of 2δ.
Thus

P(Z̃VII) = O(ε1/2+δ).

This completes the proof of Lemma 10.1. �

10.4. Proof of Proposition 6.5(c) for returns of the second
kind. In the next section we show that non-isolated returns are rare.
More precisely we establish the following result.

Lemma 10.2. P(component containing P̄ 2x has a non-isolated return)=
O(ε1/8−4δ| ln ε|).

This Lemma implies the estimate of part (c) of Proposition 6.5 for
returns of the second kind since the contribution of isolated returns
is O(ε1/2+δ) by Lemma 10.1 and the contribution of the non-isolated
returns is

O(ε1/8−4δ| ln ε| × ε7/16−δ/4) = O(ε9/16−(17/4)δ | ln ε|)
where the first factor is the probability of a non-isolated returns and
the second factor is the probability of getting stuck in a non-isolated
return.

10.5. Isolated returns are rare. Here we prove Lemma 10.2. Let

Cε =

{

∂Ē

∂E
= 0

}

, Uε =

{∣

∣

∣

∣

∂Ē

∂E

∣

∣

∣

∣

< ε−3/8

}

, Hε =

{∣

∣

∣

∣

∂Ē

∂E

∣

∣

∣

∣

≥ ε−3/8

}

.

Thus Cε is the critical set, Uε is a small neighborhood of the critical
set and on Hε our system is strongly hyperbolic.

We want to follow the outline of Section 5 but we need to address
two issues.

(i) The isolated returns are defined in terms of dĒ
dE
, not ∂Ē

∂E
.

(ii) We know that

∂Ē

∂E
∼ 1√

ε

(

∂w

∂I

∂σ

∂E
+ o(1)

)

but we need to check that o(1) term does not invalidate our arguments.

To address (i) let E0 be a point such that dĒ
dE

(E0) = 0. Then

∂Ē

∂E
= O(1)

whereas
∣

∣

∣

∣

d

dE

∂Ē

∂E

∣

∣

∣

∣

=

∣

∣

∣

∣

∂2Ē

∂E2
+ O(1)

∣

∣

∣

∣

≥ Const√
ε
.
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Therefore either there exists E ′
0 such that |E ′

0 − E0| ≤ Const
√
ε and

(E ′
0, I

′
0) ∈ Cε or E0 is near a boundary of its standard curve.

In the first case we have |Ē ′
0 − Ē0| ≤ Const

√
ε so if the return is

non-isolated then

(10.5)

∣

∣

∣

∣

∣

∂ ¯̄E

∂Ē
(Ē ′

0)

∣

∣

∣

∣

∣

≤ 2ε−(1/4+4δ).

Therefore we have the following statement.

Corollary 10.3. If a subcurve γ̃ ⊂ P̄ 2γ has a non-isolated return then
either there exists x ∈ γ̃ such that x ∈ Cε and d(Px,Cε) ≤ Constε1/4−4δ

or d(∂γ̃, Cε) ≤ Const
√
ε.

Now in our inductive construction we have a freedom of how to break
Pγ into pieces. If we avoid putting the endpoints in Uε then the second
possibility would means that γ̃ experienced a close return and this has
probability ε1/4. Thus we can ensure isolation by excluding (10.5). This
takes care of (i).

To handle (ii) we show that Cε has properties similar to C. Namely

on Cε,
∂
∂E

(∂Ē
∂E

) 6= 0, so Cε is a graph of a function E = F (J) with

(10.6)
∂F

∂J
= −

∂2Ē
∂E∂J
∂2Ē
∂E2

= O
(

1√
ε

)

.

Let (Ê, Ĵ) be the image of Cε. Then

(10.7)
1

C∗ε
≤
∣

∣

∣

∣

∣

dÊ

dJ

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∂Ē

∂J

∣

∣

∣

∣

(F (J), J) ≤ C∗

ε

by twist condition.
The next lemma shows what we can disregard points with small

expansion.

Lemma 10.4. P(∃j ≤ n(x) + n(P̄ (x)) : P jx ∈ Uε) = O(ε1/8).

Proof. Since close returns have probability O(ε1/4) ≪ ε1/8 we can con-
sider only points avoiding close returns. In this case we have bounded
distortion property so the probabilities are the same for image and
preimage giving the result. �

Now consider Pγ
⋂Hε. It has many components.

Lemma 10.5. J-distance between consecutive components is O(ε).
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Proof. If we lift the picture to a strip in (E, J)-plane then the E-
distance between the components is O(1). On the other hand by (9.3)

dJ̄

dE
= O

(∣

∣

∣

∣

∂Ē

∂E

∣

∣

∣

∣

)

ε.

Since ln
∣

∣

∣

∂Ē
∂E

∣

∣

∣
oscillates by O(1) on components from Hε the result fol-

lows. �

Now consider P−1Cε. Since D = ∂Ē
∂E

∂J̄
∂J

− ∂Ē
∂J

∂J̄
∂E

= 1 + o(1) we have

(10.8)
∂J

∂J̄
∼ ∂Ē

∂E
,

∂E

∂J̄
∼ −1

ε

∂w

∂I
,

(10.9)
∂J

∂Ē
= O(

√
ε),

∂E

∂Ē
= O(1).

Lemma 10.6. Take (Ē1, J̄1) ∈ Cε. Let P−1(Ē1, J̄1) = (E1, J1) belong
to one of the components of Pγ

⋂Hε. Then ∃(Ē∗
1 , J̄

∗
1 ) ∈ Cε such that

(10.10)
∣

∣J̄∗
1 − J̄1

∣

∣ ∼ Constε

|(∂J/∂J̄)(J̄1)|
and P−1(Ē∗

1 , J̄
∗
1 ) belongs to either the consecutive component of Pγ

⋂Hε

or to Uε.

Figure 7. Components of Pγ (thin lines) and P−1Cε
(thick lines) have many crossings

Proof. Suppose to fix our notation that ∂J
∂J̄

(J̄1) = (∂Ē/∂E)(E1,J1)
D

> 0.
Let J = f1(E) and J = f2(E) be equations of consecutive components
of Pγ. We claim that P−1Cε can not be squeezed between the graphs
of f1 and f2. Indeed by property (b1) of standard pairs fj(E) have
slopes O(ε). Also the distance between the components is O(ε) by
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Lemma 10.5. On the other hand P−1Cε has slope at least cε5/8 by
(10.6), (10.8)) and (10.9). This shows the existence of the intersection.
It remains to establish (10.10).

We have by the Intermediate Value Theorem

|J1 − J∗
1 | =

∣

∣J̄1 − J̄∗
1

∣

∣

dJ

dJ̄
(Ē♦, J̄♦).

Next
dJ

dJ̄
=
∂J

∂J̄
(1 + o(1)) =

∂Ē

∂E
(E♦, J♦)(1 + o(1)).

Using the definition of standard pairs and Proposition 6.1 we see that
on Pγ

∣

∣

∣

∣

d

dE

∂Ē

∂E

∣

∣

∣

∣

≤ Const√
ε
.

Next if the image of [E♦, E1] belongs to Hε then |E1 − E♦| ≤ ε3/8 so
that

∣

∣

∣

∣

∂Ē

∂E
(E1) −

∂Ē

∂E
(E♦)

∣

∣

∣

∣

≤ ε−1/8

and hence
∂Ē

∂E
(E♦, J♦) =

∂Ē

∂E
(E1, J1)(1 + o(1)).

This completes the proof of (10.10). Lemma 10.6 is proved. �

Let now E2 < E1 < E3 be such that the interval [E2, E3] inside
Pγ is the preimage of the standard component containing (Ē1, J̄1). Let
∆E = E3 − E2, ∆J = |J̄1 − J̄∗

1 |. By bounded distortion, (10.8) and
Lemma 10.6

|∆E| ≤ Const
∂Ē
∂E

(E1, J1)
≤ Const

ε
|∆J |.

Let Rε ⊂ Cε denote the subset of points having non-isolated returns.
Let (Ēα, J̄α) be the points of the intersection Rε

⋂

P 2γ
⋂

PHε and
consider corresponding ∆Eα,∆Jα. It follows that

∑

α

|∆Eα| ≤
Const

ε

∑

α

∣

∣∆Jα
∣

∣ ≤ Const

ε

∣

∣

∣
Rε

⋂

Kε

∣

∣

∣

where Kε is the interval of feasible values of J after two passages.
Observe that |Kε| ≤ Const

√
ε ln ε since J jumps by at most O(

√
ε ln ε).

By (10.7) each component of Rε has J-length O(ε5/4−4δ). Since it takes
at least the length of Constε to wind around the cylinder there are at
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most O
(

| ln ε|√
ε

)

such components intersecting P̄ 2γ̃. Their total measure

is O(ε3/4−4δ| ln ε|). Thus

|Rε

⋂

Kε| ≤ Constε3/4−4δ| ln ε|.
Therefore

∑

α

|∆Eα| ≤ Constε−1/4−4δ| ln ε|.

We need to estimate the measure of preimages of these intervals. Since
P expands by at least Constε−3/8 by the definition of Hε this measure
is at most ε1/8−4δ| ln ε| as claimed.

10.6. Passages near saddle points. We are now ready to complete
the proof of Proposition 6.5. Divide γ into subintervals {Zα} such
that |P̄ 2Zα| ∼ 1. Again for most segments the map Zα → P̄ 2Zα has
distortion O(εδ) and so Proposition 6.2(d) gives
(10.11)
Pℓ(P̄

2x gets captured before the next return |x ∈ Zα) =
√
ελj(x)+2(x).

To prove part (b) of Proposition 6.5 we need to get this estimate with
next return replaced by next free return. The problem is that near the
parabolic tip the preimage of a set of Ē-measure O(

√
ε) can have mea-

sure O(
√
ε) (see (9.13)). Therefore on the second step a set of measure

O(
√
ε) can be removed so that (10.11) could fail if we replace P̄ 2 by

P̄ . In other words we need to show that most of the tips of P̄ 2γ do
not get captured immidiately. To do so we can extend the definition of
isolation to require d(Ē0,Nε) ≥ ε1/4. Arguing as in subsection 10.5 we
can show that most returns are isolated in the sense of this new defini-
tion. Therefore captures of the second step are much less likely that the
captures at the first step so that (10.11) gives the main contribution in
Proposition 6.5(b). This completes the proof of part (b).

The new notion of isolation also allows to improve the estimate for
the measure of points getting stuck due to a return of the first kind to
O
(

ε1/2| ln ε|−1/2
)

(even though the bound O
(

ε1/2| ln ε|−1/8
)

established
in Section 9 would suffice for the proof of Theorem 1). This completes
the proof of part (c) of Proposition 6.5.

11. Theorem 2.

11.1. Preliminaries. We shall follow the main ideas of the proof of
Theorem 1. We need to supplement Propositions 6.1 and 6.2 by the
description of the dynamics of captured orbits. In the Proposition
below d is the closest distance the orbit comes to Nε during the time of
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capture (this distance is realized at either entrance into the resonance
or the exit from it).

Proposition 6.2*. The Poincare map P : S → S satisfies the
following on the set of captured orbits. Let orbit of (J,E) be captured

near the saddle θjk and (J̄ , Ē) = P (J,E). Then for d >
√

ε
| ln ε| the

following holds
(a) sup

d<
√

ε
ln ε

|J̄ −Qjk(J)| → 0.

(b) There exists a function c̄(I) such that

∂Ē

∂E
∼ c̄(I)

ln2 ε

ε
,

∂Ē

∂J
= O

(

ln2 ε

ε3/2

)

,

∂J̄

∂J
= O

(

ln2 ε√
ε

)

,
∂J̄

∂E
= O

(

ln2 ε
)

.

(c) For any δ̄ > 0 the estimates for the second derivatives are worse

than the estimate of Proposition 6.2 by a factor of O
(

ε−(1+δ̄)
)

. Thus

∂2J̄

∂E2
= O

(

ε−(3/4+δ̄)
)

,
∂2Ē

∂E2
= O

(

ε(−7/4+δ̄)
)

,

∂2J̄

∂J∂E
= O

(

ε(−5/4+δ̄)
)

,
∂2Ē

∂J∂E
= O

(

ε−(9/4+δ̄)
)

,

∂2J̄

∂J2
= O

(

ε−(7/4+δ̄)
)

,
∂2Ē

∂J2
= O

(

ε−(11/4+δ̄)
)

.

(d) The time of capture is bounded by Const ln ε.

(e) Probℓ

(

d <
√

ε
| ln ε|

)

= O
(

√

ε
| ln ε|

)

.

The proof of Proposition 6.2* is given in the Appendix F. The
explicit expression for c̄(I) is (recall the notation of Section 3)

c̄(I) =
−C∗c(I)c(Q(I))

4M(Q(I))

∂w

∂I
(Q(I)).

Next we extend P̄ to captured points as follows. If the orbit gets

captured we let P̄ = P unless d <
√

ε
| ln ε| in which case we declare the

orbit stuck. Propositions 6.4 and 6.5 have to be modified as follows.
Proposition 6.4*. Proposition 6.4 remains valid with the new def-

inition of P̄ .
The proof of Proposition 6.4* for captured points is similar but easier

then the proof (of Proposition 6.4) for non captured points. Indeed for
captured points the expansion is stronger while distortion is still under
control. We leave the details for the reader.
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Proposition 6.5* Proposition 6.5 remains valid with the new defi-
nition of P̄ .

Proposition 6.5* follows immediately from Proposition 6.5 since we
now exclude a smaller set.

Comparing to subsection 6.3 we now enlarge Γ′′
k since some captured

points get stuck afterwords. We let Γ′
k to be the set of points which

have been captured but have not been stuck so we have Γ′
k ⊂ Γk in the

new definition. Let Γ∗
Njk denote the set of points experiencing exactly

one capture which happens near θjk and let Γ̂N = Γ′
N −

(

⋃

jk Γ∗
Njk

)

.

Proposition 6.6* There exist a function δ2(δ1) such that limδ1→0 δ2 =
0 and a subset Γ′′′

N ⊂ γ such that

(a) Pℓ(Γ
′′′
N ) = o(δ1),

(b) |IN − I0 − δ1Ψ(I0)| ≤ δ1δ2

for all x ∈ ΓN − (Γ′
N

⋃

Γ′′′
N),

(c) Let t(0)(x) be the time between x0 and xN then
∣

∣

∣

∣

√
εt(0)(x) − δ1

p(I0)

∣

∣

∣

∣

≤ δ1δ2

for all x ∈ ΓN − (Γ′
N

⋃

Γ′′′
N),

(d1)
∣

∣

∣
Pℓ(Γ

∗
Njk) −

δ1Mjk(I0)+
Lj(I0)

∣

∣

∣
≤ δ1δ2 and for x ∈ Γ∗

Njk

(d2) IN −Qjk(I0) = o(1),
(d3) t0(x) ≤ ConstN ,
(e) Pℓ(Γ

′′
N) ≤ δ1δ2,

(f) Pℓ(Γ̂N) ≤ δ1δ2.
The proof of Proposition 6.6* is similar to the proof of Proposition

6.6. The only new issue is to show that the set of points experiencing
more than one collision has measure oδ1→0(N

√
ε). This is done in two

steps. First we use Proposition 6.5(b) to show that the set of points
experiencing at least one collision by the time of the n-th return has
measure at most Cn

√
ε. Secondly we use this bound to deduce that

the set of points experiencing at least two collisions by the time of the
n-th return has measure at most (Cn

√
ε)2.

11.2. Proof of Theorem 2. We follow the proof of Theorem 1. Again
it is enough to obtain the result for (I, φ)(0) being distributed according
to a standard pair ℓ.

We define Γ(n), Γ(n)′′′ , Γ(n)′′ , Γ̂(n) and γ
(n)
j , similarly to the definitions

of Section 7. As before we show that if n ≤ T/δ1 then the measures

of Γ(n)′′′ , Γ(n)′′ and Γ̂(n) are small. Also Proposition 6.6*(b) shows that
I(n) changes little between τn and τn+1 except for a small measure set
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so it is enough to restrict our attention to (I(n), τn). We want to show
that as ε→ 0 and δ1(ε) → 0 at appropriate rate (I(t/δ1), τt/δ1) converges
to a Markov process with generator

(LA)(I, τ) = Ψ
∂A

∂I
+

1

p

∂A

∂τ
+
∑

jk

Mjk(I)+

Lj(I)
[A(Qjk(I), τ) − A(I, τ)] .

We first show that the family {(I(t/δ1), τt/δ1)} is tight. Let T0 be a small
number. Since by Proposition 6.6* this family is uniformly Lipshitz
apart from the jumps by [25], Section VI.5 it suffices to show that
given κ > 0 there exists T0, ε0, δ0 such that
(11.1)

Prob(∃t0 ∈ [0, T−T0] : I(t/δ) experience at least two jumps on [t0, t0+T0]) ≤ κ

provided that δ1 ≤ δ0, ε ≤ ε0.
To this end we show that there are constants C1, C2 > 0 such that

(11.2)
Pℓ (there are at least m jumps for by time T0/δ1) ≤ C1(C2T0)

m.

(11.2) with m = 2 implies (11.1) since the interval [0, T ] can be subdi-
vided into O(T−1

0 ) subintervals of size T0. So it remains to demonstrate
(11.2). Proposition 6.6*(f) allows us to neglect points having at most
two jumps between τn and τn+1 for some n. Let

wmn = Pℓ (Jmn) where

Jmn = {there are at least m jumps by time n but there is at most 1
jump on τk, τk+1 for each k ≤ n}.

We wish to show that

(11.3) wmn ≤ C1 (C2nδ1)
m

Proposition 6.6*(d1) gives a recursive relation

wm+1,n+1 ≤ wm+1,n +Kδ1wmn

from which (11.3) follows by induction. (11.3) implies (11.2) proving
the tightness.

Let (I(t), τ (t)) be a limit point. We shall show that for any functions
of compact support B1, B2 . . . Bm, A for any moments s1 < s2 < · · · <
sm < t1 < t2
(11.4)

E

(

∏

k

Bk(I(sk), τ (sk))

[

A(I(t2), τ (t2)) − A(I(t1), τ (t1)) −
∫ t2

t1

(LA)(I(s), τ (s))ds

]

)

= 0.

To establish (11.4) we let nq (q = 1, 2) be the numbers such that

nqδ1 are closest to tq. Take some γ
(n1)
j and let ℓj be the corresponding
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standard pair. We show that

(11.5) Eℓj

(

A(I(n2), τn2) − A(I(n1), τn1) − δ1

n2
∑

s=n1

(LA)(I(s), τs)

)

→ 0

as ε → 0, δ(ε) → 0.

Let γ
(s)
r be standard curves such that P̄−(s−n1)Nγ

(s)
r ⊂ γ

(n1)
j and let

ℓ
(s)
r be the associated standard pairs. Let (I∗, τ ∗) be values of action and

time for a point from γ
(s)
r . Then on γ

(s)
r we have (I, τ) = (I∗, τ ∗)+o(1).

We shall show that

(11.6) E
ℓ
(s)
r

(

A(I(n2), τn2) − A(I(n1), τn1) − δ1(LA)(I∗, τ ∗)
)

= o(δ1).

Then the summation over r and s will give (11.5). Next, since the

product of Bs in (11.4) is almost constant on γ
(n1)
j we have

Eℓj

(

B

[

A(I(n2), τn2) − A(I(n1), τn1) − δ1

n2
∑

s=n1

(LA)(I(s), τs)

])

→ 0

as ε → 0, δ(ε) → 0 where B =
∏

k Bk(I
(−(n1−sjδ1), τ(−(n1−sjδ1)).

Summing over j and passing to the limit as ε → 0 we obtain (11.4)
as claimed.

To establish (11.6) we consider the contribution of several terms to
E
ℓ
(s)
r

(A(IN , t
(0)(x)) − A(I∗, τ ∗)).

(I) The contributions of Γ′′′,Γ′′ and Γ̂ are o(δ1) due to parts (a) and
(f) of Proposition 6.6*.

(II) The contribution of Γ − (Γ′⋃Γ′′⋃Γ′′′) is

δ1

[

Ψ
∂A

∂I
+

1

p

∂A

∂τ

]

(I∗, τ ∗)

due to parts (b) and (c) of Proposition 6.6*.
(III) The contribution of Γ∗

Njk is

δ1
Mjk(I

∗)+

Lj(I∗)
[A(Qjk(I

∗), τ ∗) − A(I∗, τ ∗)]

due to part (d) of Proposition 6.6*.
Combining (I), (II) and (III) we obtain (11.6) completing the proof

of Theorem 2.

12. Open problems.

In this paper we described effective evolution of slow-fast systems
with periodic fast motion and integrable slow motion in the presence of
both weak and strong resonances. This is a first step in developing the
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statistical theory of adiabatic invariants. Below we list open questions
motivated by our work.

12.1. Weakening of conditions (A)-(K). The theorems of this pa-
per are valid under nondegeneracy assumptions (A)-(K). For a typical
system one can expect these assumptions to hold in a neighborhood of
a typical point. However they may not be valid globally. For example,
assumption (E) says that a certain function of I is non-zero. While one
can expect this functions to be non-zero near a given point I0, on the
whole interval it may have zeroes which can not be removed by a small
perturbation. As a result Theorems 1 and 2 describe the evolution of
the system only locally in time, that is, until the orbit leaves the region
where the assumptions (A)-(I) hold. By, contrast, the assumptions (J)
and (K) can be expected to hold globally since they ask that certain
maps R → R

2 are non-zero. It is desirable to relax the other conditions
as well so that they would hold globally for a typical system. Below
we discuss possible weakening of conditions (A)-(I).

Question 1. Is it possible to extend Theorem 1 and 2 to the following
cases

(a) there is an orbit of the averaged system which is tangent to a
resonance curve;

(b) two resonances cross?

The first step in answering these questions is to obtain the analogue
the normal form ((2.8), (2.13)) for systems with degeneracies described
above. The estimates of errors for averaging of slow-fast systems with
single frequency fast motion under the assumption of general position
singularities were obtained in [6] but we need a more precise informa-
tion to deal with the problem of adiabatic invariants.

Question 2. Are Theorems 1 and 2 still valid if the twist condition
is replaced by the assumption that the critical points of the function
I → wj(I) are non-degenerate?

Heuristic arguments of Section 5 indicate that in case all wj are con-
stant the system may have many elliptic islands since the hyperbolicity
is lost (cf. [52]). On the other hand if

∂wj

∂I
have only isolated zeroes

then there is still some hyperbolicity even though it is much weaker
than in the case where the twist condition holds.

Question 3. Extend Theorems 1 and 2 to the case where assumptions
(D)-(F) hold except for finitely many values of I.

In order to achieve such an extension one needs to do two things.
First, an asymptotics of Propositions 6.1 and 6.2 should be improved
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since lower order terms will play a role near the degeneracies. Sec-
ondly, one needs to modify the definition of stuck orbits. Indeed the
assumptions (D)-(F) are used to establish hyperbolicity so near the
points where (D)-(F) fail the hyperbolicity is weaker and more time is
needed to recover good estimates near the parabolic tips.

Assumption (G) is discussed in Section 12.2.
Finally we come to assumptions (H) and (I). They can be weakened

as follows.
(H ′) There exists sjk(I) such that H̄(s) < 0 for s ∈ [0, sjk(I)],

H̄(sjk(I)) = 0. The functions I →Mjk(I) and I →Mjk(Ī(sjk(I)) have
only isolated zeroes {I ′jkl} and {I ′′jkl} respectfully. Moreover Ψ(I ′′jkl) 6=
0.

(I ′) The inner averaged equation is not overtwisted apart from finitely

many points {Ĩjkl}. Moreover Ψ(Ĩjkl) 6= 0.
Theorem 2′. Theorem 2 remains valid if assumptions (H) and (I)

are replaced by (H ′) and (I ′).

Proof. Take h(ε) → 0 as ε → 0 sufficiently slowly (for example h(ε) =
εδ where δ = 0.001 would do). Let ∆jkl = [Ijkl − h, Ijkl + h]. (Ijkl can

be either I ′jkl, I
′′
jkl, or Ĩjkl.) On the complement of ∆jkl’s the argument

of Theorem 2 remain valid since Proposition 6.2* remains valid (indeed
assumptions (H) and (I) is satisfied on G − ∪jkl∆l). However inside
∆l standard pairs need not be preserved after the capture since the
estimates of Appendix F are no longer valid. However by Theorem 1
the probability that the orbit is captured inside one of ∆jkl near the

bad saddle is O(h) so it tends to 0 as ε → 0. (In case of I ′′jkl and Ĩjkl
this is true because a typical orbit spends time O(h) on ∆jkl. In case
if I ′jkl the estimates of Appendix F can only be violated for the orbit
captured near the saddle θjk(I) but the probability of such capture is
small since Mjk is small on ∆jk.) Therefore bad captures inside ∆jkl

can be disregarded. �

12.2. Separatrix crossings. A typical situation where the results of
this paper apply is small perturbations of integrable systems. In order
to bring the system to the form 2.1 one needs to pass to action-angle
variables of the integrable system. However the integrable systems
usually admit action-angle coordinates only locally. In fact, in 1 degree
of freedom systems the resonances typically happen at the separatrices
separating the regions with different action-angle coordinates (since the
vanishing of frequency is equivalent to the period being infinite). A well
known example of this situation is one (and a half) degree of freedom
systems with slowly changing Hamiltonian H(p, q, εt). Currently the
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results of our paper do not apply to this setting since action-angle
coordinates are singular near the separatrices and so the smoothness
assumptions of our paper are not satisfied. The C0 expansions for the
change of quantities of interest are obtained in [11, 12, 44, 53], but to
apply our arguments one needs to supplement them by the C2-bounds.
We hope that the analysis of Appendices E and F can be helpful in
obtaining such bounds.

Question 4. Extend Theorems 1 and 2 to the case where the vanishing
of the frequency ω happens on the separatrices of the integrable system.

This question deals with separatrices of the fast system. However
separatrix crossing appear at other stages of our analysis as well.

Question 5. Extend Theorems 1 and 2 to the case where the averaged
system (2.3) has separatrices.

For systems with separatrices it it natural to consider the limiting
Markov process not on the segment but on the graph whose vertexes
correspond to the separatrices. The motion inside each edge could
be analyzed by the method of our paper, but this analysis should be
supplemented by the boundary conditions describing the probability of
the orbit to enter different action-angle domains after the separatrix
crossing. We refer the reader to [22, 23, 48, 49] for surveys of problems
where similar limiting processes on graphs appear.

Question 6. Extend Theorem 2 to the case where the inner unperturbed
system (2.8) has both centers and saddles.

In this case the entrance-exit maps become random since the domain
which the trajectory chooses after crossing the separatrix of the inner
averaged equation becomes random. The probability of chooosing a
particular domain is computed in [43] (see also [5, 8]).

12.3. Systems without strong resonances.

Question 7. Describe the effective evolution of the adiabatic invariants
in case all resonances are weak.

If all resonances are weak then Theorem 2 tells us that most orbits
do not move at time t ∼ ε−1/2. Since the Law of Large Numbers gives
a trivial description of the dynamics it is natural to conjecture that the
main contribution comes from deviations which are described by the
Central Limit Theorem. That is, one expects [50] that the adiabatic
invariants evolve so that

I(t) − I(0) ∼ √
ε
√
t



56 DMITRY DOLGOPYAT

and hence the correct scaling is τ = tε−1 and the limiting process
should be a diffusion. That is the generator should be

L = a(I)∂I +
1

2
b(I)∂2

I .

A comparison with systems with chaotic fast motion [18] suggests that
the diffusion matrix should be determined by the leading terms in the
change of I. Namely,

b(I) =

∫

σ2(I, E)dE.

One the other hand in order to compute the drift one needs to take
into account subleading terms as well. To understand this consider a
simple recurrence relation

In+1 − In =
√
εσn + εσ̃n

where (σn, σ̃n) are independent and E(σn) = 0. In this case n ∼ ε−1

steps are needed for I to change by O(1). During this time the sys-
tematic contribution of the subleading term σ̃n is ∼ εn which is of the
same order as the fluctuations O(

√
ε
√
n) of the leading term σn. One

case where drift computations can be simplified is when the invariant
measure of the limiting process is known. For example if the original
slow-fast system has smooth invariant measure this measure could be
projected into the space of adiabatic invariants yielding the invariant
measure for the limiting process. In this case the condition that a
given measure is invariant yields a relation between drift and diffusion
coefficients (sometimes called Einstein relation).

In the general case in order to compute the drift one needs to improve
the asymptotics of Proposition 6.1. It is likely that higher order im-
proved adiabatic invariants can be helpful but the computations would
be more involved than the computations presented in the appendices
of the present paper.

Another problem is that one needs to relax the definition of stuck
orbits since otherwise all the orbits will be removed from consideration
by the time t ∼ ε−1. Some progress in this direction has been obtained
in [15].

After the systems with weak resonances only are understood one can
pass to the generic systems where the segment of possible I values is
divided into several regions, some of which admit only weak resonances
while the others have the resonances of both types. In particular, one
should study the transition between different regions. The questions
discussed in Section 12.1 should be of particular relevance here in de-
scribing the motion near the boundary.
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In case the space of Is is higher dimensional the regions also are
higher dimensional and so their boundaries have positive dimension.
In the analysis of these systems one is likely to encounter diffusions
with non standard boundary conditions. The study of such diffusions
is of independent interest.

12.4. Non integrable averaged motion. Our paper deals with the
case where the averaged system is integrable. This is a special instance
of the general problem in averaging theory which can be stated as
follows.

Suppose that the long time behavior of the averaged system is well
understood. Describe the long time behavior of the actual system.

While this problem is too general we would like to formulate the
following question.

Question 8. What happens if the averaged system is Morse-Smale?

In other words we suppose that the limit set of the averaged system
consists of finitely many periodic (and fixed) orbits. Therefore each
trajectory of the averaged system eventually settles close to one of these
orbits. However the capture into a resonance may eventually move the
actual trajectory into the attraction domain of another orbit. So the
actual system will exhibit metastability ([49]). The limiting process
should be a finite state Markov chain describing near which orbit the
trajectory is located. Question 8 makes sense for any dimension of
the slow variables but it is especially relevant in two dimensions since
the Morse-Smale property is generic among dissipative two dimensional
flows [54].

12.5. Higher dimensions.

Question 9. Extend Theorem 2 to higher dimensional systems.

It seems likely that the methods of the present paper are sufficient
to handle the case of higher dimensional slow variables. In fact, the
inner unperturbed system (2.8) is integrable in any dimensions ([5,
37]) and many results of Appendices C and D admit straightforward
generalizations to the case I and φ have arbitrary dimensions.

The case of higher dimensional fast variables (that is of quasiperiodic
fast motion) is quite different. It is possible that our approach can
be adapted to the case when there are only finitely many resonances
(that is αs and βs in (2.1) are trigonometric polynomials in θ) once
an appropriate definition of the standard pair is found in this case.
However the general case when infinitely many resonances are present
requires new ideas. In fact, it is not even clear how to generalize our
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assumptions (A)–(K) to the quasiperiodic case. In the periodic case
these conditions require that certain expressions should be different
from zero. Since there are only finitely many resonances we could
utilize compactness to get uniform bounds from below. It is unrealistic
to expect such uniform bounds in case of infinitely many resonances.
On the other hand merely requiring the corresponding quantities to be
different from zero is likely to be insufficient for our arguments to work.
For example, recall that in the periodic case if there are no resonances
then the KAM theory is applicable. However mere irrationality of
rotation number is insufficient to guarantee the existence of invariant
tori. One has to require some qualitative non resonance estimate as
given for example by the Diophantine condition. It is not clear how to
formulate qualitative extensions of conditions (A)–(K) which would be
sufficient for our approach to work but would not be too restrictive so
that they could be verified for systems of interest.

As a first step in handling quasiperiodic fast motion one can try to
prove that the jumps of adiabatic invariants at different resonances are
independent for times of order 1. (For periodic fast motion such results
have been obtained in [55] in a model problem).

Acknowledgment. I am grateful to Anatoly Neishtadt for many use-
ful comments on the prelimnary version of this paper.
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Appendix A. Asymptotics of the Poincare map.

A.1. Size of the jump. Here we prove Proposition 6.1(b). First we
check the convergence of (2.13). To this end we observe that by (2.14)
we have to establish the convergence of

∫

α1(I, φ(I), θ)dθ
√

2(LE + Lθ +G)
=

∫

dA1(I, φ(I), θ)
√

2(LE + Lθ +G)
=

A1(I, φ(I), θ)
√

2(LE + Lθ +G)
+

1

2

∫

A1(2L+ g)
(

√

2(LE + Lθ +G)
)3dθ

and the last integral converges at ∞ since the denominator behaves as
θ3/2.

Next, we estimate the change of J in three different regions.
(1) {|ω| ≥ Kε1/4}
(2) {R√ε ≤ |ω| ≤ Kε1/4}
(3) {|ω| ≤ R

√
ε}

where K and R are parameters. Let ∆i denote the jump of J in
the region (i). Since |J̇ | ≤ Const ε

ω2 we have |∆1| ≤ Const
√
ε/K2. To

bound ∆2 we have to estimate
∫

ε
ω2dt where the integral is over region

(2). Recall that r = ω√
ε
, dθ
dt

=
√
εr, r2 ∼ θ. Therefore using θ as the

integrand we get
∣

∣

∣

∣

∫

ε

ω2
dt

∣

∣

∣

∣

≤ Const

∫ √
ε

|r|3dθ ≤ Const

√
ε√
θ

∣

∣

θ2

θ1
≤ Const

√
ε

r

∣

∣

Kε−1/4

R
≤ Const

√
ε

R
.

To estimate ∆3 we observe that by (2.4) ∆3 = ∆̃3 +O(
√
ε
R

) where ∆̃3 is

the change of I in region (3). To estimate ∆̃3 change variables in (2.5):

Î = I−Ĩ√
ε
. where Ĩ is the value of I at the time our trajectory crosses

{|ω| =
√
εR}. Then

Î ′ = ᾱ(Ĩ +
√
εÎ,

√
εr, θ, ε)

and we also replace I by Ĩ +
√
εÎ in the RHS of (2.5). Now as ε → 0

the equation (2.5) converges to

θ′ = r, r′ = L+ g, Î ′ = α1(Ĩ , 0, θ)

It follows that ∆̃3 ∼
√
εσR(Ĩ, Ẽ) where where Ẽ is the value of E at the

time our trajectory crosses {|ω| =
√
εR} and σR denotes the integral

(2.13) taken between the limits r = ∓R.
Next we claim that

(A.1) Ẽ = E + o(1), c→ 0
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Observe that the evolution of E is given by the following equation (see
(2.5))

(A.2) E ′ =
√
ε
r2L′

2L2
α1+

M
∑

m=1

√
ε
m
rm+1γ̃

(m)
1 +

M
∑

m=1

√
ε
m+1

rmγ̃
(m)
2 +HOT

where γ̃
(m)
1 have zero mean in θ. Thus γ̃

(m)
1 =

dΓ
(m)
1

dθ
. Make a change of

variables

Ē = E −
[

√
ε
r2L′

2L2
A1 +

∑

m

εmrmΓ
(m)
1

]

.

Then (A.2) and the fact that θ′ = O(r) imply that dĒ
dθ

= O(
√
ε). Since

θ changes on the interval of order c2/
√
ε (A.1) follows. Combining our

bounds for ∆1, ∆2 and ∆3 we get the following asymptotics for the
total jump

∆ ∼ √
ε

[

O
(

1

K2
+

1√
r

)

+ σR(I, E)

]

.

Since K and R are arbitrary we can let them go to ∞ getting ∆ ∼√
εσ(I, E).

A.2. Passage time. To obtain Proposition 6.1(a) we observe that by
argument of Section A.1 implies that

(I, φ)(t) = (Ī , φ̄)(t) + O(
√
ε)

where (Ī , φ̄)(t) is the solution of (2.3) with the same initial condition.
Now the result is obvious.

A.3. Proof of Lemma 6.3.

Proof. Observe that (2.8) preserves Lioville measure drdθ = L(I)dEdt.
Let tz be the first moment when the solution of (2.8) has r(t) = z.
Then uniformly in θ, I

a(θ, I) = lim
z→∞

∫ tz

−tz
α1(I, φj(I), θ(I, E, s))ds.

Since the union of orbits starting on
{

r = −
(

R + GI(θ)
R

)}

covers whole

cylinder [0, 1] × R except for the loops Ωjk we get
∫
[
∫ tz

−tz
α1(I, φj(I), θ(I, E, s))ds

]

dE

=

∫∫

[0,1]×[−z,z]−S

k Ωjk

α1(I, φj(I), θ)
drdθ

L(I)
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Figure 8. Proof of Lemma 6.3. The fluxes through the
clear and filled domains have opposite signs.

= −
∑

k

∫∫

Ωjk

α1(I, φj(I), θ)
drdθ

L(I)
= Ψj(I)

(the second identity follows from the fact that
∫∫

[0,1]×[−z,z]
α1(I, φj(I), θ)drdθ = 0

by (2.2).) �

Appendix B. Derivatives of the Poincare map. Outline of

the proof

Here we describe the asymptotics of Poincare maps between sections
corresponding to different resonances. We assume first that the orbit
avoids δ0 neighborhood of the separatrix and then show how to remove
this restriction. Let R̄ = cε−1/4. Given a resonance we let r = ω/

√
ε,

S =

{

r = −
(

R̄ +
G

R̄

)}

, S̃ =

{

r = R̄ +
G

R̄

}

.

To simplify the formulas we we use H instead of E variable. Then
the asymptotics of Proposition 6.1 take form

∂H̄

∂H
=

1√
ε
L̄
∂w

∂I

∂σ

∂H
+ o(1),

∂H̄

∂J
=
L̄

ε

∂w

∂I
+ o(1),
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∂2H̄

∂H2
=

1√
ε
L̄
∂w

∂I

∂2σ

∂H2
+ O

(

ε1/4

∣

∣

∣

∣

∂H̄

∂H

∣

∣

∣

∣

2
)

.

where L̄ is the value of L at the new resonance.
To estimate the derivatives we decompose the Poincare map into

several pieces by cutting the orbit between the sections into several
parts.

Below we use the following terminology. Given a surface S and a
point x0 let τ(x0) be the first time the orbit of x0 visits S. We call
time τ(x0) map of our differential equation the hit map of S (for x0).
If instead of fixing time we project orbits near x0 to S along the flow
lines we shall call the result landing (to S) map.

(1) (J,H) → (I,H)
(2) Landing to {θ = θ0}. For steps (3) and (5) we use θ as the time

variable
(3) Hit of {r = −R}
(4) Passage of resonance (from {r = −R} to {r = R})
(5) Hit of S̃1

(6) Landing to S̃1

(7) (I,H) → (J,H)
(8) (J,H) → (J, θ)
(9) Hit of S2

(10) Landing to S2

(11) (J, θ) → (J,H)

In the computations below we always assume that ε → 0, c → 0,
R → ∞ so that ε ≪ c, ε ≪ 1/R. That is first, we choose c as small
and R as large as needed and then let ε ≤ ε̄(c, R).

We shall use subscripts j for the variables appearing at step j. Thus
the total Poincare map takes (J0, H0) → (J11, H11).

Steps (1)–(7) constitute the passage through the resonance. We call
the map (J0, H0) → (J7, H7) the inner map. It is analyzed in Appendix
C. The estimates of Appendix C can be summarized as follows.

Proposition B.1.

(B.1)
∂J7

∂H0
∼ √

ε
∂σ

∂H
,

∂J7

∂J0
∼ 1,

∂H7

∂H0
∼ 1,

∂H7

∂J0
≤ Const√

ε
,

(B.2)
∂2J7

∂H2
0

=
√
ε
∂2σ

∂H2
+ o(

√
ε),
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∂2J7

∂H0∂J0

= O(1),
∂2J7

∂J2
0

= O
(

1√
ε

)

,

∂2H7

∂H2
0

= O(1),
∂2H7

∂H0∂J0

= O
(

1√
ε

)

,
∂2H7

∂J2
0

= O
(

1

ε

)

.

Steps (8)-(11) describe the motion far from resonance. We call the
map (J7, H7) → (J11, H11) the outer map. It is analyzed in Appendix D.
The upshot is the following.

Proposition B.2.

(B.3)
∂H11

∂J7
∼ 1

ε
L̄
∂w

∂I
,

∂H11

∂H7
= O(1),

∂J11

∂H7
= O(ε),

∂J11

∂J7
∼ 1.

∂2H11

∂J2
7

= O
(

ε−7/4
)

,
∂2H11

∂J7∂H7
= O

(

ε−3/4
)

,
∂2H11

∂H2
7

= O (1) ,

∂2J11

∂J2
7

= O
(

ε−3/4
)

,
∂2J11

∂J7∂H7
= O

(

ε1/4
)

,
∂2J11

∂H2
7

= O (ε) .

Proof of Proposition 6.1. The first derivative estimates follow immedi-
ately from the identity

(

A Bε
C/ε D

)(

a b
√
ε

c/
√
ε d

)

=

(

Aa Ab
√
ε

Ca/ε Cb/
√
ε

)

+HOT

and Propositions B.1 and B.2.
Also the estimates of ( ∂

∂J0
)2 follow directly from the above propo-

sitions. For other derivatives we obtain using Propositions B.1 and
B.2

(B.4)
∂2H11

∂H2
0

=
∂H11

∂J7

∂2J7

∂2H2
0

+ O(1) + O
(

ε−7/4

∣

∣

∣

∣

∂J7

∂H0

∣

∣

∣

∣

2
)

,

∂2J11

∂H2
0

= O
(√

ε
)

+ O
(

ε−3/4

∣

∣

∣

∣

∂J7

∂H0

∣

∣

∣

∣

2
)

,

∂2H11

∂H0∂J0
= O

(

1

ε

)

+O
(

ε−7/4

∣

∣

∣

∣

∂J7

∂H0

∣

∣

∣

∣

)

,
∂2J11

∂H0∂J0
= O (1)+O

(

ε−3/4

∣

∣

∣

∣

∂J7

∂H0

∣

∣

∣

∣

)

.

Next, using Propositions B.1 and B.2 once more we get

(B.5)
∂H11

∂H0

=
∂H11

∂J7

∂J7

∂H0

+
∂H11

∂H7

∂H7

∂H0

∼ L

ε

∂w

∂I

∂J7

∂H0

+ O(1).
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Thus Assumption (C) gives

∂J7

∂H0
= O(ε)

∂H11

∂H0
+ O(ε).

Plugging this into last four inequalities we obtain the second derivative
bounds.

The asymptotic formula for ∂J11

∂H0
follows from (B.1) and (B.5). The

asymptotics for ∂2H11

∂H2
0

follows from (B.2), (B.3) and (B.4). �

Appendix C. Derivatives of the inner map.

C.1. Some classes of maps invariant under the compositions.
We say that a family of maps (a, b) → (A,B) depending on a parameter

ε is in class T if D = det
(

∂(A,B)
∂(a,b)

)

is uniformly bounded from (above

and) below,
∥

∥

∥

∥

∂A

∂a

∥

∥

∥

∥

≤ Const,

∥

∥

∥

∥

∂A

∂b

∥

∥

∥

∥

≤ Const
√
ε,

∥

∥

∥

∥

∂B

∂a

∥

∥

∥

∥

≤ Const√
ε
,

∥

∥

∥

∥

∂B

∂b

∥

∥

∥

∥

≤ Const,

∥

∥

∥

∥

∂2A

∂b2

∥

∥

∥

∥

≤ Const
√
ε,

∥

∥

∥

∥

∂2A

∂a∂b

∥

∥

∥

∥

≤ Const

∥

∥

∥

∥

∂2A

∂a2

∥

∥

∥

∥

≤ Const√
ε,

∥

∥

∥

∥

∂2B

∂b2

∥

∥

∥

∥

≤ Const

∥

∥

∥

∥

∂2B

∂a∂b

∥

∥

∥

∥

≤ Const√
ε

∥

∥

∥

∥

∂2B

∂a2

∥

∥

∥

∥

≤ Const

ε
.

We further say that this family is in T+ if addition

||A||C2 ≤ Const, ||B||C2 ≤ Const

(that is powers of (
√
ε)−1 are replaced by constants).

Lemma C.1. Classes T and T+ are closed with respect to compositions
and inverses.

Proof. Let (a0, b0) → (a1, b1) and (a1, b1) → (a2, b2) belong to T . Then

∂a2

∂b0
=
∂a2

∂a1

∂a1

∂b0
+
∂a2

∂b1

∂b1
∂b0

and both terms are O(
√
ε). Also

∂2a2

∂b20
=
∂2a2

∂a2
1

(

∂a1

∂b0

)2

+2
∂2a2

∂a1∂b1

∂a1

∂b0

∂b1
∂b0

+
∂2a2

∂b21

(

∂b1
∂b0

)2

+
∂a2

∂a1

∂2a1

∂b20
+
∂a2

∂b1

∂2b1
∂b20

and each term here is O(
√
ε).Now each time we replace a2 by b2 or b0 by

a0 the estimates worsen by a factor (
√
ε)−1. This proves the estimates

for other derivatives, so T is closed with respect to compositions.
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Next let (a, b) → (A,B) be in T . We have

∂a

∂B
= −

∂A
∂b

D
= O(

√
ε)

and the rest of the first derivatives can be estimated similarly. Next

∂2a

∂B2
= − ∂

∂B

[

∂A
∂b

D

]

=
∂

∂b

[

∂A
∂b

D

]

O(1) +
∂

∂a

[

∂A
∂b

D

]

O(
√
ε).

Furthermore,

∂

∂b

[

∂A
∂b

D

]

=
∂2A
∂b2

D − ∂A
∂b

∂D
∂b

D2
= I + II

where I = O(
√
ε) and

II = O(
√
ε)
∂

∂b

[

∂A

∂a

∂B

∂b
− ∂A

∂b

∂B

∂a

]

= O(
√
ε)

[

∂2A

∂a∂b

∂B

∂b
+
∂A

∂a

∂2B

∂b2
− ∂2A

∂b2
∂B

∂a
− ∂A

∂b

∂2B

∂a∂b

]

= O(
√
ε).

Similarly

∂

∂a

[

∂A
∂b

D

]

= O(1),

so ∂2a
∂B2 = O(

√
ε). The rest of the derivatives can be estimated using

the same reasoning as for compositions. This completes the proof for
T . Since T+ is the intersection of T with C2 bounded maps the result
follows. �

The maps we consider also depend on two other parameters c and
R. We use T0 to indicate maps in T which for c sufficiently small, R
sufficiently large and ε≪ c, ε ≪ 1/R satisfy
∥

∥

∥

∥

∂A

∂a

∥

∥

∥

∥

∼ 1,

∥

∥

∥

∥

∂A

∂b

∥

∥

∥

∥

= o(
√
ε),

∥

∥

∥

∥

∂B

∂a

∥

∥

∥

∥

= o

(

1√
ε

)

,

∥

∥

∥

∥

∂B

∂b

∥

∥

∥

∥

∼ 1,

∥

∥

∥

∥

∂2A

∂b2

∥

∥

∥

∥

= o(
√
ε),

∥

∥

∥

∥

∂2A

∂a∂b

∥

∥

∥

∥

= o(1),

∥

∥

∥

∥

∂2A

∂a2

∥

∥

∥

∥

= o

(

1√
ε

)

,

∥

∥

∥

∥

∂2B

∂b2

∥

∥

∥

∥

= o(1),

∥

∥

∥

∥

∂2B

∂a∂b

∥

∥

∥

∥

= o

(

1√
ε

)

,

∥

∥

∥

∥

∂2B

∂a2

∥

∥

∥

∥

= o

(

1

ε

)

.

Lemma C.2. T0 is closed with respect to compositions and inverses.
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Proof. The statement about the compositions is clear since in all terms
we get o(1) improvement compared with T . For inverses observe that
for maps in T0, D ∼ 1 so the first derivative bounds are straightforward.
For the second derivatives all terms in the numerator contain second
derivative of either A or B so again we get o(1) improvement against
T . �

C.2. Step by step analysis of the inner map.

Lemma C.3. The map of step (7) belongs to T0.

Proof. We have

(C.1) δJ7 =

(

1 − ε
∂

∂I

(

A1

ω

))

δI6 − ε
∂

∂φ

(

A1

ω

)

δφ6 −
εα1

ω
δθ6.

Next, let S = ω −
√
ε
R̄
G. Then on S̃1

(C.2) 0 = dS =

(

∂ω

∂I
−

√
ε

R̄

∂G

∂I

)

δI6 +
∂ω

∂φ
δφ6 +

√
ε

R̄
gδθ6.

It follows that

(C.3) δφ6 = −
∂ω
∂I

−
√
ε
R̄
∂G
∂I

∂ω
∂φ

δI6 −
√
εg

R̄ ∂ω
∂φ

δθ6.

Also H = ω2

2ε
− θL−G so

δH6 =
ω

ε

(

∂ω

∂I
δI6 +

∂ω

∂φ
δφ6

)

−
(

L′θ − ∂G

∂I

)

δI6 − (L+ g)δθ6.

Expressing the first term through (C.2) we get

δH6 =

(

ω√
εR̄

∂G

∂I
− L′θ − ∂G

∂I

)

δI6 +
( ω

εR̄
g − g − L

)

δθ6

Since on S̃1
ω√
εR̄

− 1 = G
R̄2 we have

δH6 =

(

G∂G
∂I

R̄2
− L′θ

)

δI6 +

(

Gg

R̄2
− L

)

δθ6.

Thus

(C.4) δθ6 = − δH6

L− gG
R̄2

− L′θ − G ∂G
∂I

R̄2

L− Gg
R̄2

δI6.

Plugging (C.3) into (C.1) we get

δJ7 =

(

1 − ε
∂

∂I

(

A1

ω

)

+ ε
∂

∂φ

(

A1

ω

) ∂ω
∂I

−
√
ε
R̄

∂G
∂I

∂ω
∂φ

)

δI6−
(

εα1

ω
+

√
εg

R̄∂ω
∂φ

)

δθ6.
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Using (C.4) we get

δJ7 =



1 − ε
∂

∂I

(

A1

ω

)

+ ε
∂

∂φ

(

A1

ω

) ∂ω
∂I

− ε
R̄
G

∂ω
∂φ

+

(

εα1

ω
+

√
εg

R̄∂ω
∂φ

)





L′θ − G ∂G
∂I

R̄2

L− gG
R̄2







 δI6

+

(

εα1

ω
+

√
εg

R̄∂ω
∂φ

)

δH6

L− gG
R̄2

.

This proves the first derivative estimates.
To estimate the second derivatives we must differentiate these ex-

pressions once more. Observe that

d

dH
=

∂θ

∂H

∂

∂θ
,

d

dI
=

∂

∂I
+
∂θ

∂I

∂

∂θ
,

so, by (C.4), d
dH

does not change ε-powers and d
dI

decreases the terms
containing ω in the denominator by (R̄

√
ε)−1. The result follows. �

Corollary C.4. The map of step (1) is in T0.

Proof. Similarly to Lemma C.3 we obtain that the inverse of this map
is in T so the result follows from Lemma C.1. �

Lemma C.5. The map of step (2) is in T0.

Proof. Write our equations as

(C.5) İ = U, Ḣ = V, θ̇ = W.

Then we have

I2 = Î(I1, H1, θ1, τ)

H2 = Ĥ(I1, H1, θ1, τ)

θ2 = θ̂(I1, H1, θ1, τ)

where τ is the hit time and (Î , Ĥ, θ̂) denotes the time τ map of (C.5)
and θ1 is a function of I1 and H1. Thus

∂H2

∂H1

=
∂Ĥ

∂H1

+
∂Ĥ

∂θ1

∂θ1
∂H1

+ V
∂τ

∂H1

.

At τ = 0 we get
∂H2

∂H1
= 1 + V

∂τ

∂H1
.

Since θ2 is constant we get

(C.6) 0 =
∂θ2
∂H1

=
∂θ̂

∂H1

+
∂θ̂

∂θ1

∂θ1
∂H1

+W
∂τ

∂H1
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=
∂θ1
∂H1

+W
∂τ

∂H1
.

Therefore
∂τ

∂H1
= −

∂θ1
∂H1

W
=

1

W
(

L− gG
R̄2

)

where the last equality follows similarly to (C.4). Therefore

∂H2

∂H1
= 1 +

V

W
(

L− gG
R̄2

) .

Likewise

∂H2

∂I1
=

V

W





L′θ − g ∂G
∂I

R̄2

L− gG
R̄2



 ,

∂I2
∂H1

=
U

W
(

L− gG
R̄2

) ,

∂I2
∂I1

= 1 +
U

W





L′θ − g ∂G
∂I

R̄2

L− gG
R̄2



 .

Observe that

(C.7) U =
∑

m

√
ε
m+1

rmα̃
(m)
1 +

∑

m

√
ε
m+2

rmα̃
(m)
2 ,

(C.8) V =
∑

m

√
ε
m+1

rm+1γ̃
(m)
1 +

∑

m

√
ε
m+1

rmγ̃
(m)
2

where α̃
(m)
1 and γ̃

(m)
1 have zero mean in θ and W = r+

√
εη. This proves

the first derivative estimates.
Next, let us show how to bound ∂2I2

∂H2
1
, other derivative bounds being

similar. We begin with the identity

∂I2
∂H1

=
∂Î

∂H1
+
∂Î

∂θ1

∂θ1
∂H1

+ U
∂τ

∂H1
.

Differentiating once more with respect to H1 and discarding the terms
vanishing at τ = 0 we get

∂2I2
∂H2

1

=
∂

∂τ

(

∂Î

∂H1

)

∂τ

∂H1
+
∂

∂τ

(

∂Î

∂θ1

)

∂τ

∂H1

∂θ1
∂H1

+

(

∂U

∂I

∂I2
∂H1

+
∂U

∂H

∂H2

∂H1

)

∂τ

∂H1
+U

∂2τ

∂H2
1

(C.9)

=
∂U

∂H

∂τ

∂H1
+
∂U

∂θ

∂τ

∂H1

∂θ1
∂H1

+

(

∂U

∂I

∂I2
∂H1

+
∂U

∂H

∂H2

∂H1

)

∂τ

∂H1
+ U

∂2τ

∂H2
1

.



REPULSION FROM RESONANCES. 69

Observe that to compute the differential of U with respect to (I,H, θ)
variables we can compute the differential of U with respect to (I, r, θ)
variables and then replace

δr =
δH +

(

∂G
∂I

+ L′θ
)

δI + (g + L)δθ

r
.

From this it is easy to see that all terms in (C.9) except possibly the

last one are O(ε3/4). It remains to bound ∂2τ
∂H2

1
. Differentiating (C.6) we

obtain

0 =
∂

∂τ

(

∂θ̂

∂H1

)

∂τ

∂H1
+

∂

∂τ

(

∂θ̂

∂θ1

)

∂τ

∂H1

∂θ1
∂H1

+
∂θ̂

∂θ1

∂2θ1
∂H2

1

+

(

∂W

∂I

∂I2
∂H1

+
∂W

∂H

∂H2

∂H1

)

∂τ

∂H1
+W

∂2τ

∂H2

=
∂W

∂H

∂τ

∂H1
+
∂W

∂θ

∂τ

∂H1

∂θ1
∂H1

+
∂2θ1
∂H2

1

+

(

∂W

∂I

∂I2
∂H1

+
∂W

∂H

∂H2

∂H1

)

∂τ

∂H1
+W

∂2τ

∂H2
.

It follows that ∂2τ
∂H2

1
= O(1/r) completing the estimate of ∂2I2

∂H2
1
. �

Corollary C.6. The map of step (6) is in T0.

Proof. This follows from Lemmas C.1 and C.5. �

Lemma C.7. The map of step (3) is in T+

⋂T0.

Proof. From (C.7), (C.8) we get

(C.10)
dI

dθ
=
∑

m

√
ε
m+1

rm−1α
(m)
1 +

∑

m

√
ε
m+2

rm−1α
(m)
2

(C.11)
dH

dθ
=
∑

m

√
ε
m+1

rmγ
(m)
1 +

∑

m

√
ε
m+1

rm−1γ
(m)
2

where α
(m)
1 and γ

(m)
1 have zero mean in θ. Observe that

(C.12) δr =
δH +

(

L′θ + ∂G
∂I

)

δI

r
.

Hence the variational equation takes form

d

dθ
δH = AδH +BδI,

d

dθ
δI = CδH +DδI,

where

A = O(
√
ε), B = O(

√
ε), C = O(ε+

√
ε

r3
), D = O(

√
ε).
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Let Q be the fundamental solution of

(C.13)
dQ

dθ
=

(

A B
0 D

)

Q.

Then Q = O(1), Q−1 = O(1). Substituting

(

δH
δI

)

= QZ we obtain

(C.14)
dZ

dθ
= Q−1

(

0 0
C̄ 0

)

QZ = O
(

ε+

√
ε

r3

)

.

It follows that (δH, δI) = (X̂, Ŷ ) + O(
√
ε) where (X̂, Ŷ ) is a solution

of (C.13). But those solutions are of the form

(C.15)

(

O(1)δH(0) + O(1)δÎ(0)

O(1)δÎ(0)

)

.

This proves the first derivative estimates required for T+. For T0 esti-
mates observe that time changes on the interval of size o(1/

√
ε) so the

integral of (C.14) becomes o(
√
ε) instead of O(

√
ε) and (C.15) becomes

(

1 + o(1) o(1)
0 1 + o(1)

)

.

To estimate the second derivatives we begin with ( ∂
∂I

)2. We have

(C.16)
d

dθ

(

δ2H
δ2I

)

=

(

A B
C D

)(

δ2H
δ2I

)

+

[

∂

∂I

(

A B
C D

)](

δH
δI

)

δI +

[

∂

∂H

(

A B
C D

)](

δH
δI

)

δH.

Let M be the solution of

dM

dθ
=

(

A B
C D

)

M

then

(C.17) M = O(1)

Now arguing as before using (C.17) we get (δ2H, δ2I) = O(1). The

same argument applies to ∂
∂I

∂
∂H

and ( ∂
∂H

)2. However for ∂2I
∂H2 we want

stronger bounds O(
√
ε) for T+ and o(

√
ε) for T0. To this end observe

that by the first derivative bounds M and M−1 have entries
(

O(1) O(1)
O(

√
ε) O(1)

)
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Observe that if we multiply the RHS of (C.16) by M−1 then the second
row is

(C.18) O(ε) + O(
√
ε/r3).

Now the bounds of δ2I follows easily (for T0 we use again the fact that
time changes on the interval of size o(1/

√
ε)). �

Corollary C.8. The map of step (5) is in T+

⋂ T0.

Lemma C.9. The map of step (4) satisfies the following.
(a) For fixed R we have (I4, E4) = (E3, I3)+O(

√
ε) where ’O’ bound

holds in C2 topology.
(b) As R → ∞

∂I4
∂H3

∼ √
ε
∂σ

∂H
(H3),

∂2I4
∂H2

3

∼ √
ε
∂2σ

∂H2
(H3).

Proof. Part (a) follows from the theorem on differentiability of solutions
of ODEs with respect to parameters. To establish part (b) we prove
three statements
(i) For fixed R we have

∂I4
∂H3

∼ √
ε
∂σR
∂H

(H3),
∂2I4
∂H2

3

∼ √
ε
∂2σR
∂H2

(H3).

where σR stands for integral (2.13) taken between the limits s− and s+

where r(s∓) = ∓R.
(ii) As R → ∞

∂σR
∂H

→ ∂σ

∂H
,

∂2σR
∂H2

→ ∂2σ

∂H2
,

that is we can interchange differentiation and R → ∞ limit.
(iii) If R1 and R2 are sufficiently large then

1√
ε

∂I4
∂H3

(R1) ∼
1√
ε

∂I4
∂H3

(R2),
1√
ε

∂2I4
∂H2

3

(R1) ∼
1√
ε

∂2I4
∂H2

3

(R2).

To establish (i) change variables in (2.5): Î = I−I4√
ε
. Then

Î ′ = ᾱ(I4 +
√
εÎ,

√
εr, θ, ε)

and we also replace I by I4 +
√
εÎ in the RHS of (2.5). Now as ε → 0

the equation (2.5) converges to

θ′ = r, r′ = L+ g, Î ′ = α1(I4, 0, θ)

so the result follows by differentiable dependence of solutions on pa-
rameters.
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To get (ii) rewrite the expression for σ using θ as the time variable

(see (2.14)). Since r = ±
√

2(H +G+ Lθ) we need to estimate the
H-derivatives of

σ(I,H) =

∫ θ(R2)

θ(R1)

α1(I, 0, θ)
√

2(H +G+ Lθ)
dθ

where θ(R) = (H+G− R2

2
)/L. Now the first (second) derivative of the

integrand decays as θ−3/2 (θ−5/2) so
∣

∣

∣

∣

∂

∂H
(σ − σR)

∣

∣

∣

∣

≤ Const

θ−1/2
(∼ Const

R
)

∣

∣

∣

∣

∂2

∂H2
(σ − σR)

∣

∣

∣

∣

≤ Const

θ−3/2
(∼ Const

R3
)

Thus (ii) follows. The proof of (iii) is similar to the proof of Lemma
C.7. (b) is proven. �

Proof of Proposition B.1. Combining Lemma C.1–Lemma C.9 we get
that the map (J0, H0) → (J7, H7) is in T . This gives the inequalities
claimed in Proposition B.1. To get the asymptotic formulas observe
that each of ∂J7

∂J0
, ∂H7

∂H0
, ∂J7

∂H0
is a sum of monomials in matrix elements

computed at steps (1)-(7). Since the composition is in T we know that
each monomial of ∂J7

∂J0
and ∂H7

∂H0
is O(1) and monomial of ∂J7

∂H0
is O(

√
ε).

To avoid an extra o(1) factor coming from T0 the factors should stay
on the diagonal except for step (4) since all off-diagonal terms in steps
(1)–(3) and (5)–(7) have the extra o(1) factors. Thus

∂J7

∂J0

∼ ∂I1
∂J0

∂I2
∂I1

∂I3
∂I2

∂I4
∂I3

∂I5
∂I4

∂I6
∂I5

∂J7

∂I6
,

∂H7

∂H0

∼
6
∏

j=0

∂Hj+1

∂Hj

,

∂J7

∂H0
∼ ∂H1

∂H0

∂H2

∂H1

∂H3

∂H2

∂I4
∂H3

∂I5
∂I4

∂I6
∂I5

∂J7

∂I6
.

Together with (A.1) this proves the results about the first derivatives.
A similar reasoning gives

∂2J7

∂H2
0

∼ ∂J7

∂I6

∂I6
∂I5

∂I5
∂I4

∂2I4
∂H2

3

(

∂H3

∂H2

∂H2

∂H1

∂H1

∂H0

)2

.

�
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Appendix D. Derivatives of the outer map.

In order to analyze the map of step (9) we first consider a more
general setting of equations

(D.1) ẋ = a1(x, θ) + a2(x) + εa3(x, θ, ε)

(D.2) θ̇ =
ω(x)

ε
+ η(x, θ, ε)

where a1 has zero mean in θ. Introduce the improved variables y =
x − ε

ω
A1 where ∂A1

∂θ
= a1. We want to study time t maps in a region

where |ω| > cε1/4. Let (y, θ) denote the original variables and (ȳ, θ̄)
denote the final variables.

Lemma D.1. (a) We have

∂ȳ

∂y
= O(1),

∂ȳ

∂θ
= O(ε),

∂θ̄

∂y
= O(1/ε),

∂θ̄

∂θ
= O(1).

∂2ȳ2

∂y2
= O(ε−3/4),

∂2ȳ2

∂y∂θ
= O(ε1/4),

∂2ȳ2

∂θ2
= O(ε5/4).

∂2θ2

∂y2
= O(ε−7/4),

∂2θ̄2

∂y∂θ
= O(ε−3/4),

∂2θ̄2

∂θ2
= O(ε1/4).

(b) If x is a pair (I, φ) from the equation (2.1) then

∂θ̄

∂J
∼ 1

ε

∂w

∂I
,

∂θ̄

∂ψ
= o

(

1

ε

)

,
∂J̄

∂J
= 1 + o(1),

∂J̄

∂ψ
= o(1).

Proof. (a) We have

ẏ = a2(x) + ε

[

a3 −
∂

∂x

(

A1

ω

)]

.

Denote q = a3 − ∂
∂x

(

A1

ω

)

. Then the variational equation takes form

δ̇y =

(

∂a2

∂x
+ ε

∂q

∂x

)

δx+ ε
∂q

∂θ
δθ,

δ̇θ =

(

1

ε

∂ω

∂x
+
∂η

∂x

)

δx+
∂η

∂θ
δθ.

Observe that

δy =

(

1 − ε
∂

∂x

(

A1

ω

))

δx− εa1

ω
δθ

so that

(D.3) δx =

(

1 − ε
∂

∂x

(

A1

ω

))−1
(

δy +
εa1

ω
δθ
)

.
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Introducing Z = εδθ we get

δ̇y =
∂a2

∂x
δy +

(

∂a2

∂x

a1

ω
+
∂q

∂θ

)

Z +HOT,

Ż =
∂ω

∂x
δy +

[

∂η

∂θ
+
∂ω

∂x

a1

ω

]

Z +HOT.

Consider

Ỹ = δy − ε

ω

[

∂a2

∂x

A1

ω
+ q

]

Z, Z̃ =

(

1 − ε

ω

[

η +
∂ω

∂x

A1

ω

])

Z

We obtain an equation

(D.4)
d

dt

(

Ỹ

Z̃

)

= R
(

Ỹ

Z̃

)

.

where R = O(1 + ε
ω4 ) where ω4 appears in the denominator due to

the differentiation with respect to x (recall that due to (D.4) δx =
δy + Z

ω
+ HOT ). Hence to establish the statement about the first

derivatives it is enough to show that
∫

|R|dt = O(1).

But indeed

(D.5)

∫

ε

ω4
dt =

∫

ε2

ω5
dθ

= O
(

1√
ε

∫

dθ

θ5/2

)

= O
(

(√
εθ3/2

)−1
)

= O
( ε

ω3

)

= O(ε1/4).

Since the solution to the variational equation are obtained from the

solutions of (D.4) by conjugation by

(

1 0
0 ε

)

the result follows.

Let us now estimate ( ∂
∂θ

)2. The second variational equation takes
form

˙δ2y =

(

∂a2

∂x
+ ε

∂q

∂x

)

δ2x+ ε
∂q

∂θ
δ2θ

+
∂

∂x

(

∂a2

∂x
+ ε

∂q

∂x

)

(δx)2 + 2ε
∂2q

∂x∂θ
(δx)(δθ) + ε

∂2q

∂θ2
(δθ)2,

˙δ2θ =

(

1

ε

∂ω

∂x
+
∂η

∂x

)

δ2x+
∂η

∂θ
δ2θ

+
∂

∂x

(

1

ε

∂ω

∂x
+
∂η

∂x

)

(δx)2 + 2
∂2η

∂x∂θ
(δx)(δθ) + 2

∂2η

∂θ2
(δθ)2
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where δx is related to δy by (D.3) and δ2x is related to δ2y by

δ2y =

(

1 − ε
∂

∂x

(

A1

ω

))

δ2x− εa1

ω
δ2θ

−ε
(

∂

∂x

)2(
A1

ω

)

(δx)2 − 2ε
∂

∂x

(a1

ω

)

(δx)(δθ) − ε

ω

∂a1

∂θ
(δθ)2.

Substituting X = εδ2θ and keeping in mind that δy = O(ε) by the
first derivative estimate we obtain an inhomogenous system whose fun-
damental solution is uniformly bounded and the inhomogenous terms

are O( ε
2

ω4 ) except for ε
[

1
ω
∂a2
∂x

∂a1
∂θ

+ ∂2q
∂θ2

]

(δθ)2 in the first equation and

ε ∂
∂θ

(

∂η
∂θ

+ ∂ω
∂x

a1
ω

)

(δθ)2 in the second equation. Introducing

Ŷ = δ2y− ε2

[

a1

ω

∂a2

∂x
+
∂q

∂θ

]

(δθ)2

ω
, X̂ = X − ε2

(

∂η

∂θ
+
∂ω

∂x

a1

ω

)

(δθ)2

ω

we get

dŶ

dt
= O

(

ε2

ω4

)

,
dX̂

dt
= O

(

ε2

ω4

)

.

By (D.5) Ŷ = O(ε5/4), Ŷ = O(ε5/4). Observe that Ŷ − δ2y = O(ε5/4)

due to 1
ω
∂q
∂θ

term and X̂−X = O(ε3/2) due to 1
ω2 term. This proves the

estimate for ( ∂
∂θ

)2. Now if we replace ∂
∂θ

by ∂
∂y

the estimates are similar

except that each replacement increases the RHS by a factor of ε−1 due
to the first derivative estimates. This completes the proof of (a).

Next, (D.4) reads in the setting of (b) as follows (we put

δy = (YJ , Yψ))

ẎJ = . . .

Ẏψ =
∂p

∂I
YJ + . . .

Ż =
∂ω

∂I
YJ +

∂ω

∂φ
Yψ + . . .

where . . . denote lower order terms. Hence

YJ(t) ∼ YJ(0), Yψ(t) = Yψ(0) + s
∂p

∂I
YJ(0),

Z(t) ∼ Z(0) +

[
∫ t

0

∂ω

∂I
ds+

∫ t

0

∂p

∂I

∂ω

∂φ
sds

]

YJ(0) +

[
∫ t

0

∂ω

∂φ
ds

]

Yψ(0).

In terms of our original variables this says δJ(t) ∼ δJ(0),

(D.6) δθ(t) − δθ(0)
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∼ 1

ε

([
∫ t

0

∂ω

∂I
ds+

∫ t

0

∂p

∂I
s
∂ω

∂φ
ds

]

δJ(0) +

[
∫ t

0

∂ω

∂φ
ds

]

δψ(0)

)

.

We need to apply this formula with t being the time it takes to pass
from one resonance to the next. Observe that the integrals in (D.6)
can be approximated by the corresponding integrals for the averaged

system (2.3). But in this case ds = dφ̄
p(Ī)

. Hence

∫ t

0

∂ω

∂φ
(Ī(s), φ̄(s))ds =

1

p(Ī)

∫ φ+

φ−

∂ω

∂φ
(Ī , φ̄)dφ̄ = 0

since

(D.7) ω(φ−) = ω(φ+) = 0.

Similarly integrating by parts and using (D.7) we get

∂p

∂I
(Ī)

∫ t

0

s
∂ω

∂φ
(Ī(s), φ̄(s))ds = −

∂p
∂I

p2

∫ φ+

φ−

ω(Ī, φ̄)dφ̄.

Finally the first term in (D.6) can be rewritten as

1

p

∫ φ+

φ−

ω(Ī, φ̄)dφ

so we get

δθ(t) − δθ(0) ∼ 1

ε

(

∫ φ+

φ−

∂ω
∂I
p− ω ∂p

∂I

p2
dφ

)

δJ(0) =
1

ε

∂w

∂I
δJ(0)

as claimed. �

Lemma D.2. The map of step (10) satisfies

∂J10

∂J9
= 1 + O

(√
ε
)

,
∂J10

∂ψ9
= O

(√
ε
)

,
∂J10

∂θ9
= O

(

ε3/2
)

,

∂θ10
∂y9

= O
(

ε−3/4
)

,
∂θ10
∂θ9

= 1 + O
(

ε1/4
)

.

∂2J10

∂y2
9

= O
(

ε−1/4
)

,
∂2J10

∂y9∂θ9
= O

(

ε3/4
)

,
∂2J10

∂θ2
9

= O
(

ε3/2
)

.

∂2θ10
∂y2

9

= O
(

ε−3/2
)

,
∂2θ10
∂y9∂θ9

= O
(

ε−1/2
)

,
∂2θ10
∂θ2

9

= O
(

ε1/4
)

.

Proof. We have

J10 = Ĵ(y9, θ9, τ), θ10 = θ̂(y9, θ9, τ)
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where τ is the hit time and Ĵ and θ̂ are the components of time τ map
of our system which we denote by

(D.8) J̇ = U(y, θ), θ̇ = V (y, θ).

Observe that

(D.9) U = O
(√

ε
)

, V = O
(

ε−3/4
)

.

(D.8) gives

(D.10)
∂J10

∂y9
=
∂Ĵ

∂y9
+ U

∂τ

∂y9
,

∂J10

∂θ9
=
∂Ĵ

∂θ9
+ U

∂τ

∂θ9
.

(D.11)
∂θ10
∂y9

=
∂θ̂

∂y9
+ V

∂τ

∂y9
,

∂θ10
∂θ9

=
∂θ̂

∂θ9
+ V

∂τ

∂θ9
.

To find the partial derivatives of τ let S = ω +
√
εG
R̄

+
√
εR̄. Then

dS

dt
=
∂ω

∂I
α1 +

∂ω

∂φ
(p+ β1) +

gω

R̄
√
ε

+ o(1) = L(I) +
Sg√
εR̄

+ o(1).

On S2 we have S = 0 and so its partial derivatives vanish as well. Thus

∂S

∂y9
+
dS

dt

∂τ

∂y9
= 0

and so
∂τ

∂y9

= −
∂S
∂y9

L(I) + Sg√
εR̄

+ o(1)
.

Likewise
∂τ

∂θ9
= −

∂S
∂θ9

L+ Sg√
εR̄

+ o(1)
.

A direct computation gives ∂S
∂y9

= O(1). We also claim that on S2

(D.12)
∂S

∂θ9
= O(ε).

Indeed

dS =

(

∂ω

∂I
+ O(ε3/4)

)

δI +

(

∂ω

∂φ
+ O(ε3/4)

)

δφ+
εg

R̄
δθ.

Recalling the definitions of J, ψ and g we get we see that

δI = δJ +
εα1

ω
δθ +HOT, δφ = δψ +

εβ1

ω
δθ +HOT

and hence

(D.13)
∂S

∂θ9
= εg

(

1

ω
+

1√
εR̄

)

+ O (ε) .
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On S2 the first term equals to − εgG
R̄2ω

= O(ε5/4) proving (D.12). Now
the first derivative estimates follow easily from (D.10) and (D.11).

To obtain the second derivative estimates we differentiate (D.10) and
(D.11) once more. We have

(D.14)
∂

∂θ9
=
∂θ10
∂θ9

∂

∂θ10
+
∂y10

∂θ9

∂

∂y10

(D.15)
∂

∂y9
=
∂θ10
∂y9

∂

∂θ10
+
∂y10

∂y9

∂

∂y10

Therefore ∂
∂θ9

does not worsen the first derivative estimates while taking
∂
∂y9

we loose ε−3/4 due to the first term in (D.15). �

Lemma D.3. We have

δJ10 ∼ δJ8 + o(1)δφ8 + O(ε)δθ8,

δθ10 ∼
1

ε

∂w

∂I
δI8 + o

(

1

ε

)

δφ8 + O(1)δθ8.

∂2J10

∂y2
8

= O
(

ε−3/4
)

,
∂2J10

∂y8∂θ8
= O

(

ε1/4
)

,
∂2J10

∂θ2
8

= O
(

ε5/4
)

.

∂2θ10
∂y2

8

= O
(

ε−7/4
)

,
∂2θ10
∂y8∂θ8

= O
(

ε−3/4
)

,
∂2θ10
∂θ2

8

= O
(

ε1/4
)

.

Proof. This follows from Lemmas D.1 and D.2 by direct computation.
�

Lemma D.4. The composition (J8, θ8) → (J10, θ10) satisfies

dJ10

dJ8
= 1+o (1) ,

dJ10

dθ8
= O (ε) ,

dθ10
dJ8

=
1

ε

∂w

∂I
+o
(

ε−1
)

,
dθ10
dθ8

= O (1) .

d2J10

dJ2
8

= O
(

ε−3/4
)

,
d2J10

dJ8dθ8
= O

(

ε1/4
)

,
d2J10

dθ2
8

= O (ε) .

d2θ10
dJ2

8

= O
(

ε−7/4
)

,
d2θ10
dJ8dθ8

= O
(

ε−3/4
)

,
d2θ10
dθ2

8

= O (1) .

Proof. The difference with lemma D.3 is that now ψ8 is a function of
J8 and θ8 so

d

dθ8
=

∂

∂θ8
+
∂ψ8

∂θ8

∂

∂ψ8

,
d

dJ8

=
∂

∂J8

+
∂ψ8

∂J8

∂

∂ψ8

.

The same computations as in Lemmas C.3 and D.2 give

(D.16)
∂ψ8

∂J8
= O(1),

∂2ψ8

∂J2
8

= O(1).
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Let S̃ = ω −√
εR̄−

√
εG
R̄
. Arguing as in (D.13) we get

(D.17)
∂ψ8

∂θ8
= −

∂S̃
∂θ8

∂S̃
∂ψ8

=
εg
(

1
ω
− 1√

εR̄

)

+ O(ε)

∂S̃
∂ψ8

= O(ε),

∂2ψ8

∂θ8∂J8
= O(

√
ε) due to ε d

dJ8
(1/ω) term, and ∂2ψ8

∂θ28
= O(ε). (D.16) and

(D.17) immediately imply the estimates for the first derivatives. Next,

d2θ10
dθ2

8

=
∂2θ10
∂θ2

8

+ 2
∂ψ8

∂θ8

∂2θ10
∂θ8∂ψ8

+

(

∂ψ8

∂θ8

)2
∂2θ10
∂ψ2

8

+
∂2ψ8

∂θ2
8

∂θ10
∂ψ8

= O(1),

d2J10

dθ2
8

=
∂2J10

∂θ2
8

+ 2
∂ψ8

∂θ8

∂2J10

∂θ8∂ψ8

+

(

∂ψ8

∂θ8

)2
∂2J10

∂ψ2
8

+
∂2ψ8

∂θ2
8

∂J10

∂ψ8

= O(ε)

the leading term in both cases being the last one. Other derivatives

are easier since now ∂2ψ8

∂∗∂∗
∂∗
∂ψ8

does not spoil the main term. �

Lemma D.5. The map of step (11) satisfies

δJ11 = δJ10,

the second derivatives of J11 vanish,

∂H11

∂θ10
= L̄+ O(ε1/4),

∂H11

∂J10

= O(ε−3/4),

∂2H11

∂θ2
10

= O(ε1/4),
∂2H11

∂θ10∂J10
= O(ε−1/4),

∂2H11

∂J2
10

= O(ε−1).

Proof. We have

H =
ω2

2ε
− Lθ −G.

Direct differentiation implies all first derivative estimates except for
∂H
∂θ
. To obtain this last estimate we rewrite using (2.10)

ω2(I, φ) = ω2(J, ψ) + 2εG+ O(ε5/4).

Thus

H =
ω2(J, ψ)

2ε
− Lθ + O(ε1/4).

Now the rest of the proof proceeds as in Lemma C.3. �

Lemma D.6.

∂H11

∂θ8
= O(1),

∂H11

∂J8

=
L̄

ε

(

∂w

∂I
+ o(1)

)

,
∂J11

∂θ8
= O(ε),

∂J11

∂J8

∼ 1.

∂2H11

∂J2
8

= O
(

ε−7/4
)

,
∂2H11

∂θ8∂J8
= O

(

ε−3/4
)

,
∂2H11

∂θ2
8

= O (1) ,
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∂2J11

∂J2
8

= O
(

ε−3/4
)

,
∂2J11

∂θ8∂J8

= O
(

ε1/4
)

,
∂2J11

∂θ2
8

= O (ε) .

Proof. Direct computation. �

Lemma D.7. The map of step (8) satisfies

δJ8 = δJ7,

the second derivatives of J8 vanish,

∂θ8
∂H7

= O(1),
∂θ8
∂J7

= O
(

ε−3/4
)

.

∂2θ8
∂H2

7

= O
(

ε1/4
)

,
∂2θ8

∂H7∂J7

= O
(

1√
ε

)

,
∂2θ8
∂J2

7

=
(

ε−5/4
)

.

Proof. Similarly to Lemma D.5 we obtain

∂H7

∂θ8
= L+ O(ε1/4),

∂H7

∂J8
= O(ε−3/4),

∂2H7

∂θ2
8

= O(ε1/4),
∂2H7

∂θ8∂J8
= O(ε−1/4),

∂2H7

∂J2
8

= O(ε−1).

Next
∂θ8
∂H7

=

(

∂H7

∂θ8

)−1

= O(1),

∂θ8
∂J7

= −
∂H7

∂J8

∂H7

∂θ8

= O(ε−3/4).

Now the result follows by direct computation using the formulas for
derivatives of the inverse mapping.

�

Proof of Proposition B.2. The result follows from Lemmas D.6 and D.7
by direct computation. �

Appendix E. Dynamics near the separatrix.

E.1. Normal form. In this section we describe the dynamics near the
separatrix of the inner map.

Lemma E.1. There exist functions x(r, θ, I, ε), y(r, θ, I, ε), such that
in coordinates (x, y, I) the following holds

(E.1)
ẋ = a(x, y, I, ε)
ẏ = b(x, y, I, ε)

İ =
√
εc(x, y, I, ε)
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where

(E.2) a(0, y, I, ε) = b(x, 0, I, ε) = 0,

(E.3)
∂a

∂x
(x, y, I, 0) +

∂b

∂y
(x, y, I, 0) = 0

and

(E.4) a(x, 0, I, ε) = λ1(I, ε)x, b(0, y, I, ε) = −λ2(I, ε)y,

Denote λ(I) = λ1(I, 0) = λ2(I, 0). Due to assumption (D) there
exists λ0 such that λ(I) > λ0.

Proof. We first consider the case where I is fixed and ε = 0. In this
case equations (E.2)–(E.4) mean that

(i) the origin is fixed;
(ii) the stable manifold of the origin has coordinates {y = 0} and

the unstable manifold of the origin has coordinates {x = 0};
(iii) The flow restricted to the invariant manifolds is linear;
(iv) The area from Ω := drdθ equals to dxdy.
To satisfy this conditions we first choose an arbitrary coordinate

system (x̄, ȳ) satisfying (i) and (ii). This is possible since the invariant
manifolds are smooth ([29, Theorem 4.1(d)]).

Next we further change coordinates x̂ = x̂(x̄), ŷ = ŷ(ȳ), to satisfy
(iii). To fix our ideas consider the unstable manifold. The flow re-
stricted to it has form ˙̄y = ḡ(ȳ) for some function ḡ. We need our
change to satisfy dŷ

dȳ
g(ȳ) = λ(I)ŷ that is

ln ŷ

λ(I)
= C +

∫ ȳ

y∗

ds

ḡ(s)
.

Using the fact that
1

ḡ(s)
=

1

λ(I)s
+ g∗(s)

where g∗ is a smooth function we get ŷ = ȳeG
∗(ȳ) where G∗ is a smooth

function near the origin (in fact, G∗ is a rescaled antiderivative of g∗).
Now we need one last change (x̂, ŷ) → (x, y) to satisfy (iv). In

coordinates (x̂, ŷ) we have Ω = z(x̂, ŷ)dx̂dŷ for some function z. We
obtain the point with coordinates (x, y) by starting from the point
with coordinate (0, y) (recall that our coordinates has been already
defined on the unstable manifold of the fixed point) and moving for
time x along the flowlines of the vectorfield (X,Y). We need to satisfy
the following conditions

divΩ(X,Y) = 0 and (X,Y)(0, x) = (1, 0).
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We take X = 1 and then obtain Y solving

∂Y

∂y
+ Y

∂z

∂y
+
∂z

∂x
= 0, Y(0, x) = 0.

Next we claim that our coordinates depend smoothly on I. First we
not that the manifolds {x = 0} and {y = 0} are smooth. For ex-
ample, {y = 0} is normally hyperbolic (in fact transversally we have
just contraction so the claim follows from the smoothness of normally
hyperbolic manifolds [29, Theorem 4.1(d)]). Now the smoothness of
x(r, θ, I, 0) and y(r, θ, I, 0) follows from the fact that the solutions of
ODEs depend smoothly on initial conditions.

Next we have that the manifolds {x = 0}, {y = 0} and {x = y = 0}
are normally hyperbolic and by [29, Theorem 4.1(f)] these structures
survive for small non-zero ε. In fact the set of points (r, θ, I,

√
ε) such

that {x = 0} is also normally hyperbolic for the equation (2.5) supple-
mented by ε̇ = 0, and so it is smooth. Arguing as in ε = 0 we obtain
that the functions (r, θ, I,

√
ε) → (x, y) are smooth (again we need to

introduce an additional coordinate change in order to satisfy (E.4)).
Since (x, y) are smooth we obtain (E.1) with smooth a, b and c. �

E.2. Some consequences of volume preservation. Consider the
Poincare map between the sections {y = δ} and {x = δ} for small δ.
In order to study its derivatives we decompose this map into two parts

(1) Hit of {x = δ};
(2) Landing to {x = δ}.

Motivated by Proposition 6.2* we assume that

(E.5) x0 >

√

ε

| ln ε| .

The following estimates will be helpful in our analysis. Let Z denote
the set Z = {x = 0 or y = 0}. Denote π : R

3 → Z denote the map

π(x, y, I) =

{

x if x < y

y if x ≥ y
.

Lemma E.2. Let t1 < t2 be an intervals such that x(t) < δ, y(t) < δ

for all t1 < t < t2. Let p(t) = π((x(t), y(t), z(t)). There exist functions
A,B : [0, δ] × Z → R such that

(a)
∫ t2
t1
x(t)dt < Constx(t2);

(b)
∫ t2
t1
y(t)dt < Consty(t1);
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(c) Let z(t) = x(t)y(t). Then for t2 ≪ 1√
ε

∣

∣

∣

∣

z(t)

z(0)
− 1

∣

∣

∣

∣

≤ Const
[√
ε+ z(0)

]

τ

(d) x(t) ∼ A(x(0), π(t))eλ(I0)tx(0);
(e) y(t) ∼ B(x(0), π(t))e−λ(I0)ty(0).

Proof. We have a(x, y, I, ε) = xã(x, y, I, ε), b(x, y, I, ε) = xb̃(x, y, I, ε)

and if x(t) < δ, y(t) < δ then ã > λ0/2, b̃ < −λ0/2. It follows that for
t < t2

(E.6) x(t) < x(t2) exp(λ0(t−t2)/2), y(t) < y(t1) exp(−λ0(t−t1)/2).

This implies (a) and (b). Next

ż = ẋy + xẏ = ay + bx.

We have

a(x, y) = a(0, y) +
∂a

∂x
(0, y)x+

1

2

∂2a

∂x2
(ξx, y)x2 for some ξ < 1.

By (E.3) and (E.4)

∂a

∂x
(0, y) = −∂b

∂y
(x, 0) = λ(I) + O(

√
ε).

Therefore
a(x, y) = λ(I)x+ O(

√
εx) + O(x2y).

Likewise
b(x, y) = −λ(I)y + O(

√
εy) + O(xy2).

Thus
ż = z ×O(

√
ε+ z)

Now (c) follows easily.
Next from the equation ẋ = ãx we conclude that

x(t) = x(0) exp

(
∫ t

0

ã(x(s), y(s), I(s), ε)ds

)

= x(0) exp(λ(I0)t) exp

(
∫ t

0

[ã(x(s), y(s), I(s), ε)− ã(0, 0, I0, 0)] ds

)

.

To estimate the last integral we split

ã(x(s), y(s), I(s), ε)− ã(0, 0, I0, 0) =

[ã(x(s), y(s), I(s), ε)− ã(x(s), y(s), I0, 0)]+[ã(x(s), y(s), I0, 0) − ã(0, 0, I0, 0)] .

The first term here is O(
√
εt). To estimate the integral of the second

term we split it into three parts. Fix t∗ > 0. Then on the interval
[t−t∗, t] y is exponentially small while x(t) is well approximated by the
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solution of ˙̄x = a(x̄, 0, I0, 0) with the boundary condition x̄(t) = x(t).
Denoting p(s, t) = (x̄(s), 0, I0, 0) we have
∫ t

t−t∗
[ã(x(s), y(s), I0, 0) − ã(0, 0, I0, 0)] ds ∼

∫ t

t−t∗
[ã(p(s, t)) − ã(0, 0, I0, 0)] ds.

Likewise
∫ t∗

0

[ã(x(s), y(s), I0, 0) − ã(0, 0, I0, 0)] ds ∼
∫ t∗

0

[ã(p(s, 0)) − ã(0, 0, I0, 0)] ds.

Here p(s, 0) = (x̄(s), ȳ(s), I0, 0) where x̄, ȳ denotes the solution of

˙̄x = a(x̄, ȳ, I0, 0) ˙̄y = b(x̄, ȳ, I0, 0)

with initial condition x̄(0) = δ, ȳ(0) = y(0).
Finally due to parts (a), (b) and (E.6)

∣

∣

∣

∣

∫ t−t∗

t∗
[ã(x(s), y(s), I0, 0) − ã(0, 0, I0, 0)] ds

∣

∣

∣

∣

≤ Const

∫ t−t∗

t∗
[x(s) + y(s)] ds ≤ Const [x(t− t∗) + y(t∗)] ≤ Constδe−λ0t∗/2.

Now (d) and (e) follow easily. �

Lemma E.3. Suppose that (δx, δy, δI)(0) = O(1). Then

(a) ||(δx, δy)|| = O
(

δ

y(t)

)

.

(b) ||δI(t) − δI(0)|| ≤ Const
√
εδ

y(t)
.

(c) Denote

∆ = bδx− aδy.

Then for all t ∈ [0, τ ]

∆(t) − ∆(0) = O(
√
ετ + x2

0)τ.

Proof. Write the variational equation as

d

dt





δx
δy
δI



 = R





δx
δy
δI



 .

Then by the argument of Lemma E.2
∫ t

0

||R(s)||ds = λt+ O(1).

Combining this with Lemma E.2(e) gives part (a). Plugging the esti-
mate of part (a) into the equation for δI proves part (b).
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To prove part (c) write

(E.7) ∆̇ =

(

∂a

∂x
+
∂b

∂y

)

∆ +
√
εc

(

∂b

∂I
− ∂a

∂I

)

δI +

(

∂a

∂I
b− ∂b

∂I
a

)

δI.

The first term is O(
√
ε∆) due to (E.3), the second term is O(

√
ετ) by

part (b) and (E.5). The contribution of the last term will be split into
two parts according to the bound on |δI(t)| provided by part (b).

Let Σ(t) be the surface spanned by the trajectories starting from

{0 ≤ x ≤ x0, y = δ, I = I0}

and terminating at x = x(t). Let γ(t) = ∂Σ(t). Consider the contribu-
tion of

δI(0)

∫ t

0

(

∂a

∂I
b− ∂b

∂I
a

)

(s)ds.

The second factor here equals to

(E.8)

∮

γ(t)

(

∂a

∂I
dy − ∂b

∂I
dx

)

+ e(t)

where the error term e(t) can be estimated as follows.

e(t) =

∫ x0

0

∂b

∂I
(x, δ)dx+

∫ y(t)

0

∂a

∂I
(x(t), y)dy

= λ(I)(x0y0 − x(t)y(t)) + O(
√
ε+ x2

0) = O(
√
ε+ x2

0)τ

by Lemma E.2(c). The main term in (E.8) equals

∮

γ(t)

(

∂a

∂I
dy − ∂b

∂I
dx

)

=

∫∫

Σ(t)

∂

∂I

(

∂b

∂y
+
∂a

∂x

)

dxdy = O(
√
ε).

Next by (E.2)
(

∂a

∂I
b− ∂b

∂I
a

)

≤ Constx(t)y(t)

so by Lemma E.2 the contribution of

∫ t

0

( √
ε

y(s)

)(

∂a

∂I
b− ∂b

∂I
a

)

(s)ds

is O(
√
ε). Now the result follows easily. �
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E.3. Analysis of passages near the origin. We are now ready to
estimate first derivatives of the map of step (1).

Lemma E.4.

∂x1

∂x0

∼ δ

x0

,

∣

∣

∣

∣

∂y1

∂x0

∣

∣

∣

∣

≤ Constδ,

∣

∣

∣

∣

∂I1
∂x0

∣

∣

∣

∣

≤ Constδ
√
ε

x0

,

∂x1

∂y0
= O(1),

∂y1

∂y0
= O (x0) ,

∂I1
∂y0

= O(
√
ε).

∂x1

∂I0
= O(τ 2),

∂y1

∂I0
= O

(√
εττ + x0τ

)

,
∂I1
∂I0

− 1 = O(
√
ετ 2).

Proof. Substituting the identity

(E.9) δx =
aδy + ∆(t)

b

into the equation for δy we get

(E.10) δ̇y =

(

∂b
∂x
a

b
+
∂b

∂y

)

δy + ∆̃(t)

where

∆̃(t) =
∂b
∂x

∆(t)

b
+
∂b

∂I
δI.

Let Ξ(s, t) denote the fundamental solution of the homogeneous equa-
tion

Ξ̇ =

(

∂b
∂x
a

b
+
∂b

∂y

)

Ξ, Ξ(s, s) = 1.

Observe that on {x = y = 0} the expression in parenthesis equals to
−λ(I0) +O(

√
ε) (due to (E.2) and (E.3)). Therefore arguing as in the

proof of Lemma E.2 we see that

C1e
−λ(I0)(t−s) ≤ Ξ(s, t) ≤ C2e

−λ(I0)(t−s).

In particular
∫ t

0

Ξ(s, t)ds = O(1).

We have

δy(t) = Ξ(0, t)δy(0) +

∫ t

0

Ξ(s, t)∆̃(s)ds.

Since

∆(t) = ∆(0) + O((
√
ετ + x2

0)τ),
∂b
∂x

b
= O(1)
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We have
∫ t

0

Ξ(s, t)∆(s)ds = O(∆(0) + (
√
ετ + x2

0)τ).

Since
∂b

∂I
(s)Ξ(s, t) = O

(

e−λ(I0)t
)

,
∂b
∂I

(s)

y(s)
= O(1)

we have
∫ t

0

Ξ(s, t)
∂b

∂I
(s)δI0ds = O(x0τδI0),

∫ t

0

Ξ(s, t)
∂b

∂I
(s)

√
ε

x(s)
ds = O(

√
ε).

Therefore
δy1 = O

(

∆(0) + (
√
ετ + x2

0)τ + x0τδI0
)

.

The estimates for δx1 are now obtained from (E.9). In particular

∂x1

∂x0
=

∆(0)

b1
+O

(

δ
2

x0

)

=
b0
b1

+O
(

δ
2

x0

)

=
y0

y1
+O

(

δ
2

x0

)

=
x1

x0
+O

(

δ
2

x0

)

=
δ

x0
+ O

(

δ
2

x0

)

.

To get the estimates for δI1 we plug the bounds for δx and δy into the
equation

δ̇I =
√
ε
∂c

∂x
δx+

√
ε
∂c

∂y
δy +

√
ε
∂c

∂I
δI

and observe that the main contribution comes from the first term and
that

∫ t

0
|δx|(s)ds = O(|δx| (t)). This gives the required estimates for x0-

and I0-derivatives. However for y0 derivatives we get slightly weaker
bounds

∂y1

∂y0
= O(x0 +

√
εττ),

∂x1

∂y0
= O

(

1 +

√
εττ

x0

)

= O(τ 2)

(E.11) δI = O(
√
ετ 2).

Substituting (E.11) into (E.7) we get

(E.12) ∆(t) = ∆0 + O(
√
εx0t

3 + εt3).

Substituting (E.11) and (E.12) into (E.10) we get

∂y1

∂y0
= O(x0).

Now the bounds for other y0-derivatives follow easily. �

Next, we estimate the second derivatives.
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Lemma E.5.

∂2x1

∂x2
0

= O
(

1

x0

)

,
∂2y1

∂x2
0

= O
(

1

x0

)

,
∂2I1
∂x2

0

= O
(√

ε

x2
0

)

.

∂2x1

∂x0∂I0
= O

(

1

x0

)

,
∂2y1

∂x0∂I0
= O

(

1

x0

)

,
∂2I1
∂x0∂I0

= O
(√

ε

x0

)

.

∂2x1

∂I2
0

= O
(

1

x0

)

,
∂2y1

∂I2
0

= O
(

τ 2
)

,
∂2I1
∂I2

0

= O
(√

ε

x0

)

.

Proof. We will show how to estimate ∂2

∂x2
0
. Other derivatives are similar.

Consider the second variational equation

d

dt





δ2x
δ2y
δ2I



 = R





δ2x
δ2y
δ2I



+ Q

where Q denotes the quadratic part. Using Lemma E.4 and the fact
that due to (E.4)

∂2a

∂x2
= O(y),

∂2b

∂x2
= O(y)

we get the following bounds for the components of Q
Qx(s) = O

(

eλ(I0)s
)

, Qy(s) = O
(

eλ(I0)s
)

, QI(s) = O
(√

εe2λ(I0)s
)

.

On the other hand if Γ(s, t) denote the fundamental solution of Γ̇ = RΓ
then by the estimates of Lemma E.4 we have

Γ(s, t) = O









eλ(I0)(t−s) 1 (t− s)2

1 e−λ(I0)(t−s) e−λ(I0)(t−s)(t− s) +
√
ε(t− s)3/2

√
εeλ(I0)(t−s) √

ε 1







 .

This implies the bounds for ∂2

∂x2
0

derivatives. �

Lemma E.6. The map of step (2) satisfies

∂y2

∂x1

= − b

a
,

∂y2

∂y1

= 1,
∂y2

∂I1
= 0,

∂I2
∂x1

= −√
ε
c

a
,

∂I2
∂I1

= 1,
∂I2
∂y1

= 0,

∂2y2

∂x2
1

= O(y2+y
√
ε),

∂2y2

∂x1∂y1
= O(1),

∂2y2

∂x1∂I1
= O(y),

∂2I2
∂x1∂∗1

= O(
√
ε)

and the other second derivatives are zero.
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Proof. Let X(x, y, I, τ), Y (x, y, I, τ), I(x, y, I, τ) denote the solutions
of (E.1) with initial conditions

(E.13) (X, Y, I)(x, y, I, 0) = (x, y, I).

Then

y2 = Y (x1, y1, I1, τ) I2 = I(x1, y1, I1, τ)

where

(E.14) X(x1, y1, I1, τ) = δ.

Differentiating (E.14) and using (E.13) together with its x-derivative
we get

∂X

∂x
+ a(δ, Y, I)

∂τ

∂x
= 0,

∂a

∂x

∂τ

∂x
+
∂a

∂y
b

(

∂τ

∂x

)2

+
√
ε
∂a

∂I
c

(

∂τ

∂x

)2

+ a
∂2τ

∂x2
= 0.

Therefore
∂τ

∂x
= −1

a
,

∂2τ

∂x2
=

1

a2

∂a

∂x
− 1

a3

(

∂a

∂y
b+

√
ε
∂a

∂I
c

)

.

Now
∂Y

∂x1

=
∂Y

∂x
+ b(δ, Y, I, τ)∂τ

∂x
= − b

a
,

∂2Y

∂x2
1

=
∂b

∂x

∂τ

∂x
+
∂b

∂y
b

(

∂τ

∂x

)2

+
√
ε
∂b

∂I
c

(

∂τ

∂x

)2

+ b
∂2τ

∂x2

Using (E.2) the last expression is

−1

a

∂b

∂x
+

b

a2

(

∂b

∂y
+
∂a

∂x

)

+ O(y2 + y
√
ε)

By (E.3) the second term is O(y
√
ε). To estimate the first term observe

that

∂b

∂x
(x2, y2, I2) =

∂b

∂x
(x2, 0, I2) +

∂2b

∂x∂y
(x2, 0, I2)y1 + O(y2)

=
∂b

∂x
(x2, 0, I2) −

∂2a

∂2x
(x2, 0, I2)y1 + O(y2).

The first term here vanishes due to (E.2) while the second term is
O(y2

1 +
√
εy1) due to (E.4).

The estimates for other derivatives are similar but easier because
there is no need to use (E.3) and (E.4). �
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Lemma E.7. We have

∂y2

∂x0
=

|b(x0, y0, I0, 0)|
a(x1, y1, I1, 0)

+O
((√

ετ + x2
0

)

τ
)

,
∂y2

∂I0
= O

((√
ετ + x2

0

)

τ
)

,

∂I2
∂x0

∼ −
√
εc

∂a
∂x0
x0

,
∂I2
∂I0

= 1 + O(
√
ετ 2),

∂2y2

∂x2
0

= O
(

1

x0

)

,
∂2y2

∂x0∂I0
= O

(

1

x0

)

,
∂2y2

∂I2
0

= O(τ 2),

∂2I2
∂x2

0

= O
(√

ε

x2
0

)

,
∂2I2
∂x0∂I0

= O
(√

ετ 2

x0

)

,
∂2I2
∂I2

0

= O
(√

ε

x0

)

.

Proof. The inequalities are obtained by direct computation. To get the
asymptotics of ∂y2

∂x0
observe that

∂y2

∂x0

=
∂y2

∂x1

∂x1

∂x0

+
∂y2

∂y1

∂y1

∂x0

+
∂y2

∂I1

∂I1
∂x0

=
∂y1

∂x0

−
(

b

a

)

(x1, y1, I1, ε)
∂x1

∂x0

= − ∆1

a(x1, y1, I1, ε)
=

|b(x0, y0, I0, ε)|
a(x1, y1, I1, ε)

+ O
((√

ετ + x2
0

)

τ
)

where the last equality follows from Lemma E.3.
To get the asymptotics of ∂I2

∂x0
observe that

∂I2
∂x0

=
∂I2
∂x1

∂x1

∂x0
+
∂I2
∂y1

∂y1

∂x0
+
∂I2
∂I1

∂I1
∂x0

=
∂I2
∂x1

∂x1

∂x0
+
∂I2
∂I1

∂I1
∂x0

=
∂I2
∂x1

∂x1

∂x0
+O

(√
εδ

x0

)

.

Now by Lemmas E.4 and E.6

∂I2
∂x1

∂x1

∂x0
∼ −√

ε
c

a

δ

x0
.

Since a ∼ δ
∂a
∂x

the result follows. �

The above formulas describe the transition between (I, x) and (I, y)
coordinates. We now return to (I, E) coordinates. Due to the smooth-
ness of (x, y, I) near the separatrix we have

(E.15) H =
√
εκ(I) + q(I)xy +HOT

Thus on {y = δ} the following bound hold

∂H

∂x
= q(I)y +HOT = δq(I) +HOT and

∂H

∂I
∼ ∂q

∂I
xδ +HOT.

It follows that the passage near the separatrix has the following deriva-
tives in (I,H) coordinates
(

1 0
O(δx0) δq(I)

)

(

1 − c
√
ε

∂a
∂x
x0

O ((
√
ετ + x2

0) τ)
b
a

)

(

1 0
O(x0)

1
δq(I)

)

+HOT
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(E.16) =

(

1 − c
√
ε

∂a
∂x
x0δq(I)

O(x0δ) b
a

)

.

Observe that if H0 ≫ √
ε then by (E.15) the term in the upper

corner equals to

−√
ε

c

λ(I)H0

(1 + o(1)).

In our setting this can be rewritten as

∂I2
∂H0

∼ −√
εα1(I, φ(I), θcr(I))
√

∣

∣

∂2U
∂θ2

(θcr(I), I))
∣

∣

.

Concerning the second derivatives Lemma E.7, (E.16) and Lemma C.1
imply that those bounds can have at most 1

d2
extra factor comparing

with maps in T .

E.4. Derivative bounds of Proposition 6.2. Here we prove Propo-
sition 6.2(a) and (b). For simplicity we consider orbits which pass only
once near the saddle. On figure 3 those orbits pass on the right of
the saddle point. There are also orbits passing twice near the sad-
dle. On figure 3 those orbits pass below and then above the saddle
point. The analysis of orbits experiencing two passages is similar to
one passage case but requires a slightly longer computations. Namely
we need to consider the composition of three maps: first passage of
the δ-neighborhood of the saddle, motion along the separatrix loop
and the second passage of δ-neighborhood of the saddles. Since such
compositions are studied in Appendix F we leave the proof of the two
passage case to the reader who may refer to section F.2 and in partic-
ular Lemma F.3 for details.

The proof of parts (a) and (b) of Proposition 6.2 for is the same as
for Proposition 6.1 except that now for orbits passing (once) near the
separatrix we split step (4) into three substeps:

(a) Landing to y = δ;
(b) Landing to x = δ

(c) Hit of r = R.
Now the jump of I inside the δ-neighborhood of the saddle can be

computed using (E.1). Namely if t∓ are the beginning and the end of
the passage then

∆Isaddle =
√
ε

∫ t+

t−

c(I(s), φ(s), θ(s))ds.
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Now near the saddle we have c(I(s), φ(s), θ(s)) = c(I, φj(I), θjk(I) +
o(1), so

∆Isaddle =
√
εc(I, φj(I), θjk(I)(t+ − t−)(1 + o(1)).

Now the jump outside the δ-neighborhood is at most Const
√
εt̄ where t̄

is the largest time spent on step (4) by an orbit avoiding δ neighborhood
of the saddles. Now if δ is fixed and d→ 0 we get t̄ ≤ Const(δ) whereas
t+−t− → ∞. Letting δ → 0 sufficiently slowly we obtain equation (6.3)
Proposition 6.2(a).

To get the bounds for derivatives observe that the maps of steps
(4a) and (4c) are in T0 (see Lemmas C.1, C.7 and E.6). Therefore if
the map of step (4b) were in T the estimates of the Proposition 6.1
would remain valid. However because of the step (4b) the estimates are
actually worse. Namely for the first derivative we loose a factor of O(1

d
)

and for the second derivative we loose a factor of O( 1
d2

). Now to obtain
the first derivative estimates we need to multiply the estimates of steps
(1)–(11). Since bounds for all factors stay as before except for extra
(1
d
) factor at step (4) we loose at most (1

d
). Similarly then computing

the second derivative step (4) contributes either the second derivative
or the first derivative squared. In the first case we loose at most lnm d

d2

for some number m, in the second case we loose at most 1
d2
. Finally to

get (6.4) we argue as in the proof of Proposition B.1 examining each
monomial of ∂J7

∂H0
. Again there is only one monomial which is better

than o(
√
ε/d). Thus

∂J7

∂H0
∼ ∂J7

∂I6

∂I6
∂I5

∂I5
∂I4c

∂I4c
∂I4b

∂I4b
∂H4a

∂H4a

∂H3

∂H3

∂H2

∂H2

∂H1

∂H1

∂H0
∼ −√

ε
c

λd
(1+o(1)).

Combining this with

∂H11

∂H0
∼ ∂H11

∂J7

∂J7

PH0
∼ 1

ε

∂w

∂I

∂J7

∂H0

we obtain (6.4).

E.5. Measure bounds of Proposition 6.2. Here we prove Proposi-
tion 6.2(c) and (d).

To get (c) observe that the maps of steps (1)-(3) are in T0 so their
compositions are in T0. Thus using the notation of the previous section
we have

∂H4a

∂H0

=
∂H4a

∂H3

∂H3

∂H0

+
∂H4a

∂I3

∂I3
∂H0

= 1+o(1)+O(
√
ε)o(1/

√
ε) = 1+o(1).
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Next, since the composition of the maps of steps (1)-(4a) is in T we
have that the image of γ satisfies
(E.17)

dI4a
dH4a

=
∂I4a

∂H0
+ ∂I4a

∂I0
g′(H0)

∂E4a

∂H0
+ ∂H4a

∂I0
g′(H0)

=
O(

√
ε)

1 + o(1) + O( 1√
ε
)O(ε1/2+δ)

= O(
√
ε).

So this image is transversal to the lineH = Const. Thus the set {d ≤ ξ}
has measure comparable to the measure of the set {H4a ≤ ξ}. This
proves (c).

A

B
C

D

O

Using (2.11) we see that (d) reduces to

H
(jk)
+ −H

(jk)
− =

√
εMjk(I) + o(

√
ε).

Let A and B be the images of H
(jk)
− and H

(jk)
+ respectively under the

map of steps (1)–(4a). By the foregoing discussion

H
(jk)
+ −H

(jk)
−

H(B) −H(A)
= 1 + o(1)

so we need to estimate the denominator.
Let CD be the component of the orbit of A outside the δ neighbor-

hood of the saddle. Fig. 7 projects everything into I = Const plane
ignoring the fact that the orbits of B and D hit Nε at different points
OB and OD. Now using the smooth dependence of stable and unstable
manifolds on parameters we get

(E.18) |H(B) −H(OB)| ≤ Constδ
√
ε,
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(E.19) |I(B) − I(OB)| ≤ Constδ
√
ε,

(E.20) |H(D) −H(OD)| ≤ Constδ
√
ε,

(E.21) |I(D) − I(OD)| ≤ Constδ
√
ε,

Next

H(D)−H(C) =
√
ε

∫

[

r2β̄(I, 0, θ, 0) − (L(I) + g(I, θ))η̄(I, 0, θ, 0) +
∂Ĥ

∂I
ᾱ(I, 0, θ, 0)

]

dt

where the integral is taken along the orbit from C to D. Thus

(E.22) H(D) −H(C) =
√
ε
[

Mδ

jk(I) + ∆δ,ε

]

where Mδ

jk(I) denotes the integral (2.16) over the part of Γ which lies
outside δ-neighborhood of O and ∆δ,ε → 0 as ε→ 0. Also since it takes
time O(| ln δ|) to go from C to D we have

I(D) − I(C) = O(| ln δ|√ε).
Thus by (E.21)

(E.23) I(OD) − I(C) = O(| ln δ|√ε).
Let OA and OC be the points on Nε having the same I coordinate as A
and C respectively. Using that Nε and its derivatives depend smoothly
on

√
ε and remembering that H is zero on N by our choice of Kjk(I)

we get

(E.24) |H(OC)−H(OD)| ≤ Const
√
ε|I(OC)−I(OD)| ≤ Constε| ln δ|.

Next we claim that

(E.25) H(A) −H(OA) = H(C) −H(OC) + O(δ
√
ε).

Indeed if bothH(A)−H(OA) andH(C)−H(OC) are less than δ
√
ε then

there is nothing to prove. Otherwise the result follows from Lemma
E.2(c) (applied to either system (E.1) or its time reversal).

Combining (E.18), (E.22), (E.24) and (E.25) we get

(E.26) H(B) −H(A) − [H(OB) −H(OA)] =
√
ε
[

Mδ

jk(I) + ∆δ,ε

]

+ O(δ
√
ε).

On the other hand we have

|I(OA) − I(OB)| = |I(A) − I(OB)| ≤ |I(A) − I(B)| + |I(B) − I(OB)|
≤ Const

[√
ε|H(A) −H(B)| + δ

√
ε
]

where the last inequality uses (E.17) and (E.19). Thus

H(OA) −H(OB) ≤ Const
[√
ε|H(A) −H(B)| + δ

√
ε
]

.
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Combining this with (E.26) we get

H(B) −H(A) =
√
ε
[

Mδ

jk(I) + ∆δ,ε

]

+ O(δ
√
ε).

Letting ε and δ to 0 at appropriate speed we obtain the statement
required.

Appendix F. Captured points.

F.1. Dividing the trajectory. Our task is to establish (3.8)–(3.9)
rigorously. To this end we divide the captured trajectory into three
parts: entrance part, middle part and exit part. The middle part will
be defined by the condition that |H| ≥ ε1/4−δ. For the middle part
the standard averaging theory of Appendix D can be applied. On
the other hand, for the entrance and the exit parts the orbit passes
near the saddle point several times and for each passage the results of
Appendix E can be used.

Since our goal is to prove Proposition 6.2* we only consider the orbits

which do not come closer that
√

ε
| ln ε| to the saddle point.

Lemma F.1. (a) The entrance map satisfies the following estimates.

|H1| = ε1/4−δ + O(
√
ε), I1 − I0 ∼

ε1/4−δc(0, 0, I0)
(

1
4
− δ
)

Mij(I0)λ(I0)
|ln ε| .

∂H1

∂H0

∼ 1,
∂I1
∂I0

∼ 1,
∂H1

∂I0
= o(εδ),

∂I1
∂H0

∼ c(0, 0, I0)(1/4 + δ) |ln ε|
Mij(I0)λ(I0)

.

∂2(H1, I1)

∂(H0, I0)2
= O

(

ε−(3/4+2δ)
)

.

(b) The middle map satisfies the following.

I2 = s(I1) + o(1), |H2| = ε1/4−δ + O(
√
ε).

The first derivatives of (H2, I2) with respect to (H1, I1) are given by
(3.8)-(3.9) (with (H0, I0) replaced by (H1, I1) and (Hf , If) by (H2, I2)).
The second derivatives are O(ε−1/4).

(c) The exit map satisfies the following estimates.

|H3| = O(
√
ε), I3 − I2 ∼

ε1/4−δc(0, 0, If)
(

1
4
− δ
)

Mij(If )λ(If)
|ln ε| .

∂H3

∂H2

∼ 1,
∂I3
∂I2

∼ 1,
∂H3

∂I2
= o(εδ),

∂I3
∂H2

∼ c(0, 0, If)(1/4 + δ) |ln ε|
Mij(If )λ(If)

.

∂2(H3, I3)

∂(H2, I2)2
= O

(

ε−(3/4+2δ)
)

.
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The next result is obtained from Lemma F.1 by a direct computation.

Corollary F.2. The derivatives of the map (I0, H0) → (I3, H3) satisfy
(3.8)-(3.9) with (Hf , If) replaced by (H3, I3) and lnH0, lnHf replaced
by ln ε

2
.

The second derivatives are O(ε−(3/4+3δ)).

Corollary F.2 implies the following modification of Proposition B.1.
Proposition B.1∗. The inner map for the captured orbits satisfies

the following estimates.

∂J7

∂H0

∼ −C∗c(J0)c(Jf)

4M(Jf )
ln2 ε,

where C∗ is defined by (3.7) and c(J) is defined by equation (3.6).

∂J7

∂J0

= O
(

ln2 ε√
ε

)

,

∂H7

∂H0

= O
(

ln2 ε√
ε

)

,
∂H7

∂J0

= O
(

ln2 ε

ε

)

The second derivatives bounds are worse than the bounds of Propo-
sition B.1 by a factor of ε−(5/4+3δ).

Proof. To get the information about the first derivatives we directly
multiply the bounds
(F.1)
(

O (1) O (
√
ε)

O
(

1√
ε

)

O (1)

)

(

O (| ln ε|) O
(

ln2 ε
)

O (1) O (| ln ε|)

)

(

O (1) O (
√
ε)

O
(

1√
ε

)

O (1)

)

(the middle term is given by Corollary F.2 while two other terms come
from Appendix C). To get the asymptotics of ∂J7

∂H0
we observe that the

bound for top right corner of the product (F.1) comes from products of
the top left corner of the first matrix, the top right corner of the second
matrix and the bottom right corner of the third matrix. Therefore the
result follows from (3.8) and the fact that the maps of steps 1–3 and
5–7 of Appendix C as well as the maps of steps (4a), (4c) of Section
E.4 are in T0.

To obtain the bounds for the second derivatives we observe that
comparing to the proof of Proposition B.1 only the terms of step 4

are different. Now the terms containing ∂2(I4,H4)
∂2(I3,H3)

get worse by a factor

O(ε−(5/4+3δ)) and the terms containing (∂(I4,H4)
∂(I3,H3)

)2 get worse by a factor

of O(ε−1 ln4 ε). �
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F.2. Entrance phase. We consider the iterates of the first return map
to {y = δ}. The first return map satisfies the following estimates.

Lemma F.3. The first return map satisfies the following estimates.

(a) |Hn+1|−|Hn| ∼
√
εMij(I), In+1−In ∼ √

εα1(In, φ(In), θcr(In))
| lnxn|
λ(In)

.

(b)
∂xn+1

∂xn
=
bn+1

bn
+ O

((√
ε+ x2

n

)

τ
)

,
∂xn+1

∂In
= O

((√
ε+ x2

n

)

τ
)

,

∂In+1

∂In
= 1 + O

(√
ετ 2
)

,
∂In+1

∂xn
∼ −

√
εα1(I, φ(I), θcr(I))

λ(I)xn
where bn denotes b(xn, δ, In, 0).

(c)
∂2xn+1

∂x2
n

= O
(

1

xn

)

,
∂2xn+1

∂xn∂In
= O

(

1

xn

)

,
∂2xn+1

∂I2
n

= O(τ 2),

∂2In+1

∂x2
n

= O
(√

ε

x2
n

)

,
∂2In+1

∂xn∂In
= O

(√
ετ 2

xn

)

,
∂2In+1

∂x2
n

= O
(√

ε

xn

)

.

Proof. (a) The formula for the change of H is proven similarly to Sec-
tion E.5. To establish the formula for the change of I observe that

I(t2) − I(t1) = O(
√
ε|t2 − t1|).

The orbit spends most of the time near (0, 0, In) where İ ∼ √
εc(0, 0, In).

Also by Lemma E.2(d) the passage time satisfies τ ∼ | lnxn|
λ(In)

.

(b),(c) We represent our map as a composition of two maps: landing
to {x = δ} and landing to {y = δ}. The first map was analyzed
in Section E.1. The second map can be treated using the standard
perturbation theory. Thus its derivative is O(

√
ε) perturbation of ε = 0

map which is
(

a
b

0
0 1

)

.

(The derivation of the first column is similar to but much easier than
the results of Section E.1.) Concerning the second derivatives, the
derivatives of x are O(1) and the derivatives of I are O(

√
ε). Now the

result follows easily. �

Lemma F.4. Let (x̃, Ĩ) be the last point in the entrance zone. Then

(a) |H̃| = ε1/4−δ+O(
√
ε), Ĩ−I0 ∼

ε1/4−δα1(I0, φ(I0), θcr(I0))
(

1
4
− δ
)

Mij(I0)λ(I0)
| ln ε|.

(b)
∂x̃

∂x0

∼ 1,
∂Ĩ

∂I0
∼ 1,

∂x̃

∂I0
= o(1),
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∂Ĩ

∂x0
∼ − ᾱ(I0, φ(I0), θcr(I0))δ(1/4 + δ)q(I0) ln ε

λ(I0)Mij(I0)
.

(c) The second derivatives are O
(

ε−(3/4+2δ)
)

.

Proof. Part (a) immediately follows from Lemma F.3.
To establish part (b) we first show by induction that if K1, K2, K3

and K4 are sufficiently large then
∣

∣

∣

∣

∂xn
∂x0

− bn
b0

∣

∣

∣

∣

≤ K1

[√
ε n+ εn3

]

(lnn+| ln ε|)2,

∣

∣

∣

∣

∂xn
∂I0

∣

∣

∣

∣

≤ K2

[√
ε n + εn3

]

(lnn+| ln ε|)2,

∣

∣

∣

∣

∂In
∂I0

− 1

∣

∣

∣

∣

≤ K3

[√
ε n+ εn3

]

(lnn+ | ln ε|)2,

∣

∣

∣

∣

∂In
∂x0

∣

∣

∣

∣

≤ K4 lnn.

This readily gives the estimates of part (b) except that for the asymp-

totics of ∂Ĩ
∂x0
. However the above bounds imply that for n > 0

∂In+1

∂x0
− ∂In
∂x0

∼ −α1(I0, φ(I0), θcr(I0))
√
ε

λ(I0)xn
.

By (E.15) and Lemma F.3(a)

xn ∼ −nMij(I0)

δq(I0)

√
ε.

Since the number of steps is O(ε−(1/4+δ)) we get

(F.2)
∂Ĩ

∂x0

∼ α1(I0, φ(I0), θcr(I0))δ(1/4 + δ)q(I0)

Mij(I0)λ(I0)
| ln ε|.

Now part (b) follows easily.
Moreover a similar argument shows that for any n

∥

∥

∥

∥

∥

∂(x̃, Ĩ)

∂(xn, In)

∥

∥

∥

∥

∥

≤ K| ln ε|.

Now part (c) follows from Lemma F.3(c). �

Combining Lemma F.4 with (E.15) proves part (a) of Lemma F.1.
Part (c) of Lemma F.1 follows from part (a) by time reversal.

Observe that (F.2) can be rewritten as

∂Ĩ

∂H0
∼ c(I0)(1/4 + δ)

Mij(I0)
| ln ε|

where c is defined by (3.6). This matches the asymptotics predicted
by (3.8).
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F.3. Middle phase. We need to study equations of the form

θ̇ = r +
√
εP, ṙ = −∂U

∂θ
+
√
εQ, İ =

√
εR.

It will be convenient to change the time to ensure that the orbits do
not hang near the saddle for a long time. Accordingly introduce a new
time variable s by

(F.3) ds =

√

r2 +

(

∂U

∂θ

)2

dt.

Next we rewrite our system in action-angle coordinates. Namely define
ψ by the equation

∂ψ

∂r
= −

√

r2 +
(

∂U
∂θ

)2

T (H)
(

∂U
∂θ

+
√
εQ
)

where T (H) is the normalization factor

T (H) = −
∮

√

r2 +
(

∂U
∂θ

)2

(

∂U
∂θ

−√
εQ
) dr

and the integration is over the energy level.
This leads to the system

ψ′ = 1, H ′ =
√
εX̃(H, I, ψ), I ′ =

√
εỸ (H, I, ψ).

Observe that X̃ and Ỹ are nonsingular away from the set H̃ = 0.
Indeed the only other possible singularity set is the set S of elliptic rest
points. However by assumption (H) the entrance-exit map is defined for
all I ∈ G. Also by assumptions (J)–(K) the only way the solution of the
inner averaged system (3.3) can accumulate on S is if it approaches a
fixed point. But by assumption (H) no orbit starting from G converges
to a fixed point on S. So all the solutions are uniformly bounded away
from S. Next we get the asymptotics of X̃ and Ỹ near the singularities.

Lemma F.5.

X̃ = O(1), Ỹ = O
(

1
√

|H|

)

,

∂p+q+lX̃

∂Hp∂Iq∂ψl
= O

(

|H|−(p+ q+l
2

)| lnq |H||
)

,

∂p+q+lỸ

∂Hp∂Iq∂ψl
= O

(

|H|−(p+ q+l+1
2

)| lnq |H||
)

,
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∮

∣

∣

∣

∣

∣

∂p+q+lX̃

∂Hp∂Iq∂ψl

∣

∣

∣

∣

∣

ds = O
(

|H|−(p+ q+l−1
2

)| lnq |H||
)

,

∮

∣

∣

∣

∣

∣

∂p+q+lỸ

∂Hp∂Iq∂ψl

∣

∣

∣

∣

∣

ds = O
(

|H|−(p+ q+l
2

)| lnq |H||
)

.

where the integration is over the energy level.

The proof of Lemma F.5 is given in Section F.4.

Lemma F.6. The first return map satisfies the following.

(a) Hn+1 −Hn ∼ √
εX, In+1 − In ∼ √

εY.

(b)
∂Hn+1

∂Hn
− 1 ∼ √

ε
∂X

∂H
,

∂Hn+1

∂In
∼ √

ε
∂X

∂I
,

∂In+1

∂Hn

− 1 ∼ √
ε
∂Y

∂H
,

∂In+1

∂In
∼ √

ε
∂Y

∂I
where X and Y are inner averaged vector fields (see (3.3)).

Proof. Both part (a) and part (b) are proven as in Appendix D. We
sketch part (b), part (a) is easier.

We introduce improved variables

ξ = δH −√
εZ1δH −√

εZ2δI, η = δH −√
εZ3δH −√

εZ4δI

where
∂Z1

∂ψ
=

(

∂X̃

∂H
− ∂X

∂H

)

,
∂Z2

∂ψ
=

(

∂X̃

∂I
− ∂X

∂I

)

,

∂Z3

∂ψ
=

(

∂Ỹ

∂H
− ∂Y

∂H

)

,
∂Z2

∂ψ
=

(

∂Ỹ

∂I
− ∂Y

∂I

)

.

Proceeding as in the proof of Lemma D.1 we see that the errors of
averaging are controlled by the following terms

∂Hn+1

∂Hn
: ε

∮

∣

∣

∣

∂2X̃
∂H2

∣

∣

∣
ds = O

(

ε|H|−3/2
)

= O
(

ε
5
8
+ 3δ

2

)

,

∂Hn+1

∂In
: ε

∮

∣

∣

∣

∂2X̃
∂I∂H

∣

∣

∣
ds = O (ε|H|−1| ln |H||) = O

(

ε
3
4
+δ| ln ε|

)

,

∂In+1

∂Hn
: ε

∮

∣

∣

∣

∂2Ỹ
∂H2

∣

∣

∣
ds = O (εH−2) = O

(

ε
1
2
+2δ
)

,

∂In+1

∂In
: ε

∮

∣

∣

∣

∂2Ỹ
∂I∂H

∣

∣

∣
ds = O

(

ε|H|−3/2| ln |H||
)

= O
(

ε
5
8
+ 3δ

2 | ln ε|
)

.

(The reason why ∂
∂I

∂
∂H

appears in the second and fourth lines instead of

a more dangerous
(

∂
∂H

)2
is because ∂2X̃

∂H2 and ∂2Ỹ
∂H2 come with the factor

δH and in the second and fourth lines we have |δH| = O(
√
ε).) �
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Lemma F.6 gives the bounds of Lemma F.1(b) related to the change
of I,H and their first derivatives. To obtain the bounds on the second
derivative we consider the variational equation for the second derivative

d

dt
(δ2I, δ2H) =

√
ε
∂(X, Y )

∂(I,H)
(δ2I, δ2H)+

√
ε
∂2(X, Y )

∂(I,H)2
((δI, δH), (δI, δH)).

This is a linear inhomogeneous equation where the inhomogeneous part
is O(|H|−2

√
ε| ln4 ε|) (see Lemma 3.1), the fundamental solution of the

corresponding linear system is O(ln2 ε) and |H| grows as
√
εt near the

entrance phase and has a similar decay near the exit phase. Now the
estimates on the second derivatives follows easily.

F.4. Estimates of the derivatives. We begin with the following gen-
eral result.

Lemma F.7. (a) Let

Φ(I,H) =

∫ s∗

√
H

f(s, I,H)√
s2 −H

ds

where f is a smooth bounded function. Then for p ≥ 0

∂pΦ

∂Ip
=

1

2

∂pf

∂Ip
f(0, I, 0)| lnH| + O(1)

and for q > 0

∂p+qΦ

∂Ip∂Hq
=

1

2

∂pf

∂Ip
f(0, I, 0)

(−1)qq!

Hq
+ O

(

1

Hq−1

)

.

(b) If f(0, I, 0) ≡ 0 then

∂pΦ

∂Ip
=

∫ s∗

0

∂pf
∂Ip (s, I, 0)√
s2 −H

+ O(H| lnH|),

∂p+1Φ

∂Ip∂H = −1

2

∂p+1f

∂pI∂H (0, I, 0) lnH + O(1)

and for q ≥ 2

∂p+1Φ

∂Ip∂Hq
= −1

2

(−1)q−1(q − 1)!

Hq−1

∂p+1f

∂pI∂H(0, I, 0) + O
(

1

Hq−2

)

.

(c) Let

Ψ(I,H) =

∫ s∗

√
H

f(s, I,H)√
s−H ds

Then Ψ is a smooth function.

Remark. In a typical application of this lemma we will have H = −H.
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Proof. (a) It is enough to estimate Φ and its H derivatives since the
differentiation with respect to I just replaces the integrand by its I
derivatives.

Write

f(s, I,H) = f(0, I,H) + s
∂f

∂s
(0, I,H) + s2f2(s, I,H)

and split Φ = Φ0 + Φ1 + Φ2 where Φi denotes the contribution of the
corresponding terms in the above formula. Then

Φ0 =

∫ s∗

√
H

f(0, I,H)√
s2 −H

ds =

∫ s∗/
√
H

1

f(0, I,H)√
u2 − 1

du

=

∫ s∗/
√
H

1

f(0, I,H)

u
du−

∫ s∗/
√
H

1

f(0, I,H)

u
√
u2 − 1(

√
u2 − 1 + u)

du

= f(0, I,H) ln
s∗√
H

+ O(1).

Also

(F.4)
∂Φ0

∂H =

∫ s∗/
√
H

1

∂f
∂H(0, I,H)√

u2 − 1
du− 1

2H
f(0, I,H)
√

1 − H
(s∗)2

.

Thus the main contribution comes from the second term which equals
to −f(0,I,0)

2H + O(1) while the first term is O(| lnH|).
(F.4) easily implies that

∂qΦ0

∂Hq
=
f(0, I, 0)

2

(−1)qq!

Hq
+ O

(

1

H(q−1)

)

so it remains to show that the contributions of Φ1 and Φ2 are of lower
order. We have

Φ1 =

∫ s∗

√
H

s∂f
∂s

(0, I,H)

s2 −H ds =
1

2

∂f

∂s
(0, I,H)

√

(s∗)2 −H.

To handle Φ2 we split

Φ2 =

∫ 2
√
H

√
H

s2f2(s, I,H)√
s2 −H

ds+

∫ s∗

2
√
H

s2f2(s, I,H)√
s2 −H

ds.

The first term here equals

Φ1(I,H) = H
∫ 2

1

u2f(u
√
H, I,H)√

u2 − 1
dz
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so it admits the Taylor expansion in powers of
√
H. To analyze the

second term we expand the denominator into a power series (with unit
radius of convergence)

∫ s∗

2
√
H

sf2(s, I,H)
√

1 − (H/s2)
ds =

∑

k

ωk

∫ s∗

2
√
H

f(s, I,H)Hk

s2k−1
ds

and notice that the last integral is

O
( H

(2k − 2)2k−2

)

so that Φ2 = O(H). A similar argument shows that

∂qΦ2

Hq
= O

(

H1−q) .

This completes the proof of part (a).
The proof of part (b) is similar except that the estimate of Φ0 is

different. Namely we have f(0, I,H) = Hf̃(I,H) for a smooth function

f̃ so we gain an extra factor of H compared to part (a).
(c) Introducing a new variable s−H instead of s we obtain

Ψ(I,H) =

∫ s∗

H

h(s−H, I,H)√
s−H ds

for a smooth function h. Now the change of variables u =
√
s−H

transforms

Ψ(I,H) = 2

∫

√
s∗−H

0

h(u2, I,H)du.

�

Proof of Lemma 3.1. We have

(F.5) Y (I,H) = 2

∮

ᾱ(I, 0, θ(s), 0)ds =
√

2

∫ θ2(H)

θ1(H)

ᾱ(I, 0, θ, 0)√
H − U

dθ.

Choose some θ∗ between θ1(0) and θ2(0) and split Y = Y1 + Y2 where
Y1 involves the integral from θ1 to θ∗ and Y1 involves the integral from
θ∗ to θ2. To estimate the first term observe that θjk is the maximum
of U and U(θjk(I), I) = 0. Therefore U(θ, I) = −(θ − θjk)

2V (I, θ)
for a positive function V. Accordingly the denominator of (F.5) takes
form

√

(θ − θjk)2V − |H|. Introducing a new variable s by θ−θjk = s√
V

reduces Y1 to the form of Lemma F.7(a). Similarly Y2 can be estimated
using Lemma F.7(c).

The estimates of X are similar except we use Lemma F.7(b) instead
of Lemma F.7(a) to handle the first integral. �
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Proof of Lemma F.5. The estimates for X̃ and Ỹ follow from the ex-
pressions for Ḣ, İ and (F.3). (Recall, see (2.17) that the

√
ε coefficient

of Ḣ vanishes near the origin).
To estimate the derivatives of X̃ and Ỹ we need to bound the deriva-

tives of the coordinate change (θ, r, I) → (H,ψ, I). We represent it as
a composition of two changes.

(1) (θ, r, I) → (H, r, I). Since H = r2

2
+ U we have

(F.6) δθ =
δH − rδr − ∂U

∂I
δI

∂U
∂θ

.

Observe that

(F.7)
∂U

∂θ
∼ (θ − θjk) and

(F.8) r ≤ Const|θ − θjk|
since r2 ≤ 2|U |.

(2) (H, r, I) → (H,ψ, I). We have

ψ = − 1

T (H, I)

∫ r

0

√

(∂U
∂θ

)2 + z2

∂U
∂θ

−√
εQ

(θ(z,H, I), I)dz

where θ(z,H, I) is defined by the condition

(F.9) U(θ, I) +
z2

2
= H.

By the same analysis as in Lemma F.7 we have

|T (H)| ≤ Const,
∂p+qT

∂pI∂qH
= O

(

H
1
2
−q
)

.

Next,

(F.10)
∂ψ

∂r
=

√

(∂U
∂θ

)2 + r2

T
(

∂U
∂θ

−√
εQ
) = O(1)

due to (F.7) and (F.8). Further, ∂ψ
∂H

= I + II + III + IV where

I = −
∂T
∂H

T 2
ψ = O(1/

√

|H|),

II = − 1

T

∫ r

0

z2 ∂2U
∂θ2

∂θ
∂H

√

(∂U
∂θ

)2 + z2(∂U
∂θ

−√
εQ)2

dz,
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III = −
√
ε

T

∫ r

0

Q∂U
∂θ

∂θ
∂H

√

(

∂U
∂θ

)2
+ z2

(

∂U
∂θ

−√
εQ
)2
dz,

IV = −
√
ε

T

∫ r

0

√

(∂U
∂θ

)2 + z2 ∂Q
∂θ

∂θ
∂H

(∂U
∂θ

−√
εQ)2

dz.

Differentiating (F.9) we get ∂θ
∂H

= 1/(∂U
∂θ

) so

(F.11) |II| ≤ Const

∫ r

0

z2

(∂U
∂θ

)4
dz ≤ Const

∫ r

0

z2

U2
dz

≤ Const

∫ r

0

z2

(|H| + z2

2
)2
dz ≤ Const

√

|H|
.

Similarly |III| ≤ Const
√
ε

H
≤ Const√

|H|
, |IV | ≤ Const

√

ε
|H| .

Likewise computing ∂ψ
∂I

reduces to estimating
∫ r

0

z2

(∂U
∂θ

)3

∂θ

∂I
dz.

Differentiating (F.9) we get

∂θ

∂I
=

−∂U
∂I

∂U
∂θ

= O(1)

since

0 =
∂U

∂θ
(θjk(I), I)

∂θjk
∂I

+
∂U

∂I
(θjk(I), I) =

∂U

∂I
(θjk(I), I)

and so
∣

∣

∣

∣

∂U

∂I

∣

∣

∣

∣

≤ Const|θ − θjk| ≤ Const

∣

∣

∣

∣

∂U

∂I

∣

∣

∣

∣

.

Thus
∣

∣

∣

∣

∂ψ

∂I

∣

∣

∣

∣

≤ Const

∫

z2dz

(z2/2 + |H|)3/2
≤ Const| ln |H||.

Accordingly

δψ = O(1)δr + O
(

1
√

|H|

)

δH + O(| ln |H||)δI.

Conversely by (F.10)

(F.12) δr = O(1)δψ + O
(

1
√

|H|

)

δH + O(| ln |H||)δI.
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Substituting this into (F.6) we get
(F.13)

δθ =
δH − ∂U

∂I
δI

∂U
∂θ

− r

(∂U
∂θ

)

[

O(1)δψ + O
(

1
√

|H|

)

δH + O(| ln |H||)δI
]

.

The derivatives of X̃ and Ỹ with respect to (H,ψ, I) are obtained
from the derivatives with respect to (θ, r, I) by substitution (F.12)–
(F.13). Taking ∂

∂r
and ∂

∂θ
brings an extra factor of (θ − θjk)

−1 (that

is an extra factor of O
(

1√
|H|

)

whereas the substitution (F.12)–(F.13)

contributes another factor O
(

1√
|H|

)

for H-derivatives and O(| ln |H||)
for I-derivatives. Integrals of (θ−θjk)−l are estimated as above (cf e.g.
(F.11)). The result follows. �

F.5. Proof of Proposition 6.2*.

Proof. Part (a) follows from the estimates of Lemma F.1. Parts (b)
and (c) are obtained similarly to the proof of Proposition 6.1 except
we use Proposition B.1* instead of Proposition B.1. For part (c) we let
δ̄ = 3δ and observe that even though the second derivative bounds of
Proposition B.1* are worse by the factor of ε−(5/4+δ̄) it only results in
O(ε−(1+δ̄)) diterioration of the second derivative bounds in Proposition

6.2* since ∂2(J7,H7)
∂(J0,H0)2

does not give the leading contribution in Proposition
6.1.

Part (d) follows since the orbits we consider make O
(

1√
ε

)

rotations

and the longest rotation takes time O(
√
ε| ln ε|). To obtain part (e)

we observe that the orbit can pass near the separatrix either during
the entrance into resonance or during the exit from it. The measure
of the former orbits is estimated similarly to Section E.5. To esti-
mate the measure of the orbits which come too close to the resonance
during the exit we observe that due to Corollary F.2 the image of
each captured component consists of O(| ln ε|) components (each com-
ponent consisting of the points making the same number of rotation
during the capture) and for each component the relative measure of

the points coming too close to the separatrix is O
(

1√
| ln ε|

)

(this is be-

cause in the notation of Corollary F.2 the map H0 → H3 has bounded
distortion). �

Appendix G. Examples.
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G.1. Example 1. Here we compute the parameters of the limiting
process for Example 1 of Section 4.

From (4.2) we have

L(I) = U ′(Z(I)).

The critical points are given by the equation

sin θcr = U ′(Z(I)).

We are interested in the saddle point corresponding to the maximum
of U so θcr = sin−1 U ′(Z(I)). The inner hamiltonian takes form

H = U ′(Z(I))θ + cos θ − [(U ′(Z(I))θcr + cos θcr] .

Since
∂θcr
∂I

=
U ′′

U ′ cos θcr
we have

H ′
√
ε

=
U ′′

U ′ (Z(I))
[

r2 − (θ − θcr)
]

sin θ.

Introduce functions

Λj,k(N,E) =

∮

rj sink θdt, Υ =

∮

θ sin θdt,

where the integration is over the energy E curve of the pendulum with
constant torque

(G.1) x′′ = N + sin θ.

Then the integral over the separatrix loop is computed as
∫∫

Ω

sin θdrdθ = Λ2,1(−U ′(Z(I)), 0),

whereas

M =
U ′′

U ′ (Z(I)) [−Λ2,1(−U ′(Z(I)), 0) + (Υ(−U ′(Z(I)), 0) − θcrΛ0,1(−U ′(Z(I), 0))] .

Finally the inner averaged equation used to compute the entrance-exit
function takes form

(G.2)
H ′ = U ′′

U ′
(Z(I)) [Λ2,1(−U ′(Z(I)), H)

− (Υ(−U ′(Z(I)), H) − θcrΛ0,1(−U ′(Z(I), H))] .
I ′ = Λ0,1(−U ′(Z(I)), H).

Thus denoting by τ(I) the period of the averaged system (4.1) we get
the following formulas for the limiting process
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• The limiting equation is

(G.3)
dI
dt

=
1

τ(I)

∑

j

Λ2,1(−U ′(Zj(I)), 0)

where the summation is over all points where U(Zj) = I.
• The killing intensity is

(G.4) λ(I) =
∑

j

λj(I)

where λj(I) =
(

U ′′(Zj(I))

U ′(Zj(I))τ(I)
[−Λ2,1(−U ′(Zj(I)), 0) + (Υ(−U ′(Zj(I)), 0) − θcrΛ0,1(−U ′(Zj(I), 0))]

)

+

.

• The entrance-exit function is computed using (G.2).

G.2. Example 2. Here we compute the limiting process for Example
2.

From (4.4) the inner hamiltonian is

H =
r2

2
∓ (Nθ − cos θ)

√

2I

N
± (Nθcr − cos θcr)

√

2I

N

where θcr is the same as in the Example 1. Thus we have

L(I) =
√

2NI.

Observe that there are four resonances corresponding to possible choices
of signs z and cosψ but only the sign of z cosψ is important. For ex-
ample, if z cosψ > 0 we get

H ′
√
ε

=
1√
2NI

(

r2(N + sin θ) + (Nθ − cos θ +Nθcr − cos θcr)

√

2I

N
sin θ

)

Using the equality

(Nθ − cos θ +Nθcr − cos θcr)

√

2I

N
=
r2

2
−H

we obtain
H ′
√
ε

=
Nr2 + 3

2
r2 sin θ −H sin θ√

2NI
.

Likewise in case z cosψ < 0 we obtain

H ′
√
ε

= −Nr
2 + 3

2
r2 sin θ −H sin θ√

2NI
.
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Next observe the change of variables θ̄ = π − θ transforms equation
(G.1) into

θ̄′′ = −θ′′ = −N − sin θ = −N − sin θ̄.

Accordingly the contributions of four resonances to the drift term can-
cel out and so the limiting equation is I ′ = 0. Next the change of time
t̃ = (2I/N)1/4t transform the unperturbed inner system into (G.1) and
the velocity becomes rescaled by r = r̃(2I/N)1/4 and the total energy

is rescaled by H̃ = H
√

N
2I
. Observe that the separatrix integrals corre-

sponding to z cosψ = ±1 have opposite signs so one of them is positive
and the other is negative. Thus the total contribution of the separatrix
integrals is

4
∑

j=1

(Mj(I))+

Lj(I)
=

|3Λ2,1(I) + 2NΛ2,0(I)|
(8N5I3)1/4

.

The inner averaged system used to compute the entrance-exit function
takes form

H̃ ′ = ±
(

2I

N

)1/4
1

2I

[

NΛ2,0(N, H̃) +
3

2
Λ2,1(N, H̃) − H̃Λ0,1(N, H̃)

]

,

I ′ = ∓
(

2I

N

)1/4

Λ0,1(N, H̃).

(Here we have used the variable H̃ = H
√

N
2I

rather than H to compute

inner averaged equation since it leads to simpler formulas while the
entrance–exit function is the same). After a further change of time the
inner averaged system takes form

(G.5) H̃ ′ = ±NΛ2,0(N, H̃) + 3
2
Λ2,1(N, H̃) − H̃Λ0,1(N, H̃)

2I
,

(G.6) I ′ = ∓Λ0,1(N, H̃).

(Here the sign is chosen so that H̃ is decreasing near (0, I0).)
Denote by τ̄(I) is the period of the averaged system (4.3). Then the

limiting process is a jump process with jump intensity

(G.7) λ(I) =
|3Λ2,1(I) + 2NΛ2,0(I)|

τ̄(I)(8N5I3)1/4
.

and the jump function computed using the inner averaged system
(G.5)–(G.6).
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Appendix H. Distortion bound.

Lemma H.1. Suppose that γ̃ is a subcurve with coordinates [E1, E2]
such that |Ē2 − Ē1| ≤ ∆. If

∣

∣

∣

∣

d2Ē

dE2

∣

∣

∣

∣

≤ L

(

dĒ

dE

)2

and
dĒ

dE
6= 0

then we have the following distortion bound: for all E3, E4 ∈ [E1, E2]
we have

(H.1) e−L∆ ≤ |E4 − E3||Ē2 − Ē1|
|Ē4 − Ē3||E2 − E1|

≤ eL∆

Proof. By the Intermediate Value Theorem

|E4 − E3||Ē2 − Ē1|
|Ē4 − Ē3||E2 − E1|

= |dĒ
dE

(E ′)/
dĒ

dE
(E ′′)|

for some E ′ ∈ [E1, E2], E
′′ ∈ [E3, E4]. On the other hand

∣

∣

∣

∣

d

dE
ln

(

dĒ

dE

)∣

∣

∣

∣

≤ L

∣

∣

∣

∣

dĒ

dE

∣

∣

∣

∣

Integrating we get

e−L|Ē′−Ē′′| ≤ |dĒ
dE

(E ′)/
dĒ

dE
(E ′′)| ≤ eL|Ē′−Ē′′|.

The lemma follows. �
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