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Abstract

We consider the evolution of a connected set on the plane carried by a space
periodic incompressible stochastic flow. While for almost every realizationof
the stochastic flow at timet most of the particles are at a distance of order

√
t

away from the origin, there is a measure zero set of points that escape toinfinity
at the linear rate. We study the set of points visited by the original set by time
t and show that such a set, when scaled down by the factor oft , has a limiting
nonrandom shape.c© 2004 Wiley Periodicals, Inc.

1 Introduction

This paper deals with the long-time behavior of a passive scalar carried by
an incompressible random flow. As has been demonstrated for a large class of
stochastic flows with zero mean, under some mixing conditions on the flow, the
displacement of a single particle is typically of order

√
t for large t . In [8] we

show that for almost every realization of the random flow, if one considers the
image of an open set under the action of the flow, then its spatial distribution,
scaled by the square root of time, converges weakly to a Gaussian distribution. On
the other hand, it has been shown in the work of Cranston, Scheutzow, Steinsaltz,
and Lisei [6, 7, 11, 14] that in any open set there are points that escape to infinity at
a linear rate. In [9] we show that linear escape points form a set of full Hausdorff
dimension. Denote the original set by�. One can think of� as an oil spill or a
pollutant, say, on the surface of the ocean. The evolution of the set under the action
of the flow will be denoted by�t .

We shall study the set of “poisoned” points, that is, those visited by the image
of � before timet

Wt(�) =
⋃

s≤t

�s .

As shown in [6, 7] the diameter of this set grows linearly in time almost surely. We
shall be interested in its limit shape (scaled byt).
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Consider a stochastic flow of diffeomorphisms onR
2 generated by a finite-

dimensional Brownian motion

(1.1) dxt =
d∑

k=1

Xk(xt) ◦ dθk(t) + X0(xt)dt

where X0, . . . , Xd are C∞ smooth, divergence free, periodic vector fields and
Eθ(t) = (θ1(t), . . . , θd(t)) is a standardRd-valued Brownian motion with filtra-
tion Ft . Let ft,ux be the solution at timeu of the stochastic flow (1.1) with the
initial dataxt = x.

We impose several assumptions on the vector fieldsX0, . . . , Xd, which are
stated in the next section (cf. [8]). All those, except the assumption of zero drift,
arenondegeneracy assumptionsand are satisfied for a generic set of vector fields
X0, . . . , Xd.

The main result of this paper is the following:

THEOREM 1.1 (Shape Theorem)Let the original set� be bounded and contain
a continuous curve with positive diameter. Under AssumptionsA throughE from
Section1.1 on the vector fields, there is a compact, convex, nonrandom setB,
independent of�, such that for anyε > 0 almost surely

(1.2) (1 − ε)tB ⊂ Wt(�) ⊂ (1 + ε)tB

for all sufficiently large t.

In [8] we prove that for a uniform initial measure on a curve, the image of the
measure under the flow is asymptotically Gaussian. In Section 3 we use a result
of this type, together with subadditivity arguments, to obtain a linear lower bound
on the expected time for the image of the curve to reach a faraway point. We then
show that this bound in turn implies the lower bound in (1.2) for the setWt .

The key element in the proof of the upper bound of (1.2) forWt is to show
that the setWt for larget is almost independent of the original set (which, as will
be demonstrated, can be taken to be a curve). In order to prove this, we show
that given two bounded curvesγ andγ ′, we can almost surely find a contour that
containsγ ′ inside and that consists of a finite number of integer shifts ofγt , and a
finite number of stable manifolds of the stochastic flow (1.1) (whose length tends
to zero as they evolve with the flow). In this way we see that if a point is visited by
the image ofγ ′, then its small neighborhood is earlier visited by the image ofγ .

In Section 4 we describe the construction of the contour and provide the proof
of the upper bound of (1.2). Section 2 contains necessary preliminaries.Some
more technical estimates are collected in appendices.

1.1 Nondegeneracy Assumptions
In this section we formulate a set of assumptions on the vector fields

X0, . . . , Xd that, in particular, imply the central limit theorem for measures car-
ried by the flow (1.1) (see [8]). Such estimates are used in the proof of theshape
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theorem. Recall thatX0, . . . , Xd are assumed to be periodic and divergence free.
We shall assume that the period for all of the vector fields is equal to one.

Assumption A:Strong Hörmander condition for xt . For allx ∈ R
2 we have

Lie(X1, . . . , Xd)(x) = R
2 ,

where Lie(X1, . . . , Xd)(x) is the linear span of all possible Lie brackets of all
orders formed out ofX1, . . . , Xd at x. See Section 2.3 for consequences of the
strong Hörmander condition forxt .

Denote the diagonal inT2 × T
2 by

1 = {(x1, x2) ∈ R
2 × R

2 : x1 = x2 (mod 1)} .

Assumption B:Strong Hörmander condition for the two-point motion. The
generator of the two-point motion{(x1

t , x2
t ) : t > 0} is nondegenerate away from

the diagonal1, meaning that the Lie brackets made out of(X1(x1), X1(x2)),

. . . , (Xd(x1), Xd(x2)) generateR2 × R
2.

To formulate the next assumption we need additional notation. LetDxt :
Tx0R

2 → Txt R
2 be the linearization ofxt at t . We need the strong Hörmander

condition for the process{(xt , Dxt) : t > 0}. Denote byT Xk the derivative of the
vector fieldXk thought of as the map onTR

2 and bySR
2 = {v ∈ TR

2 : |v| = 1}
the unit tangent bundle onR2. If we denote byX̃k(v) the projection ofT Xk(v)

onto TvSR
2, then the stochastic flow (1.1) onR2 induces a stochastic flow on the

unit tangent bundleSR
2 defined by the following equation:

dx̃t =
d∑

k=1

X̃k(x̃t) ◦ dθk(t) + X̃0(x̃t)dt .

With this notation we have the following condition:

Assumption C:Strong Hörmander condition for(xt , Dxt). For allv ∈ SR
2 we

have

Lie(X̃1, . . . , X̃d)(v) = TvSR
2 .

Let L Xk Xk(x) denote the derivative ofXk alongXk at the pointx. Notice that
1
2

∑d
k=1 L Xk Xk + X0 is the deterministic component of the stochastic flow (1.1)

rewritten in Ito’s form. Conditions A through C guarantee that the flow (1.1) has
Lyapunov exponents and one of them is positive (see Section 2.5). We require that
the flow have no deterministic drift, which is expressed by the following condition:

Assumption D:Zero drift.

(1.3)
∫

T2

(
1

2

d∑

k=1

L Xk Xk + X0

)
(x)dx = 0 .
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We further require that

(1.4)
∫

T2

Xk(x)dx = 0 , k = 1, . . . , d.

The last assumption is concerned with the geometry of the stream lines for one
of the vector fieldsX1, . . . , Xd. Fix a coordinate system on the 2-torusT

2 = {x =
(x1, x2) mod 1}. Since the vector fields have zero mean and are divergence free,
there are periodicstreamfunctionsH1, . . . , Hd such thatXk(x) = (−H ′

x2
, H ′

x1
).

We require the following:

Assumption E:Morse condition on the critical points of H1. All of the critical
points ofH1 are nondegenerate.

Functions with this property are calledMorse functions. In Appendix E we
show that a generic function has this property.

2 Background

In this section we collect some background information used throughout the
paper.

2.1 Frostman Lemma

Given a probability measureν, let Ip(ν) denote itsp-energy

(2.1) Ip(ν) =
∫∫

R2×R2

dν(x) dν(y)

|x − y|p
.

Given a compact set� ∈ R
2, theq-Hausdorff measureHq(�) of it is defined as

follows: For anyε > 0 denote byUε the set of balls of radius at mostε covering
�. Denote byRε the set of radii of balls fromUε and let

(2.2) Hq(�) = lim inf
ε→0

inf
Uε

∑

r ∈Rε

r q ,

where the infimum is taken over allUε covers. We shall use the following fact from
fractal geometry.

LEMMA 2.1 [12, theorem 8.8 and inequalities on p. 109]Given positive q, p, m,
and l with q > p there exists a constant J= J(q, p, m, l ) such that if� ∈ R

2 is
a set withdiam(�) < l and the q-Hausdorff measure Hq(�) ≥ m, then there is a
measureν on� of p-energy Ip(ν) ≤ J.
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2.2 Markov-Martingale Bound

The following estimate will be repeatedly used in the paper.

LEMMA 2.2 Let {ξj }j ∈Z+ be a sequence of random variables such that

E(ξj +1 | ξ1 . . . ξj ) ≤ 0 ,

and that for any m the sequence{E|ξj |m}j is bounded by a constant Km. Then for
anyε > 0 there existsκ = κ(ε, m, Km) > 0 such that for each n∈ Z+ we have

P

{ n∑

j =1

ξj ≥ εn

}
≤ κn−m .

PROOF: Define a set of random variables{ζj } = {ξj − E(ξj | ξ1 · · · ξj −1)}j .
ThenMn = ∑n

j =1 ζj is a martingale whose quadratic variation is equal to〈M〉n =∑n
j =1 ζ 2

j . By the martingale inequality

EM2m
n ≤ CmE〈M〉m

n ≤ C′
mnm .

Therefore, by the Chebyshev inequality

P

{ n∑

j =1

ζj ≥ εn

}
≤ P

{
M2m

n ≥ (εn)2m
}

≤ κn−m .

Sinceξj ≤ ζj the result also holds for the original sequence{ξj }j . �

2.3 Positive Transition Density

Let vector fields{Xk}d
k=0 beC∞ smooth on a manifoldM , and suppose they sat-

isfy the strong Hörmander condition. Fort > 0 let pt(x, dy) be timet transition
probability for the processxt defined in (1.1). Then by the Hörmander hypoellip-
ticity principle

p(x, y, t) = dpt(x, y)

dy
is a smooth function. By [10, theorem II.3] ifM is compact then there exists a
positive continuous functionc(t), t > 0, such thatp(x, y, t) ≥ c(t). (See also [4,
corollary 3.1]).

2.4 Closeness to the Deterministic Control

Let the vector fieldsX = {Xk}d
k=1 be C∞ smooth onT

2, and suppose they
satisfy the strong Hörmander condition. DefineLk as follows. Let

L1 = {X1 · · · Xd}
be the linear span of the vector fields. IfLk−1 is already defined, letLk be the union
of Lk−1 with the set of Lie brackets

Lk = Lk−1 ∪ {[X, Y], X, Y ∈ Lk−1} .
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DenoteL = ⋃
k∈Z+ Lk. By X -simple controlwe mean a piecewiseC1 mapZ(t, x)

from [0,1] to vector fields onT2 such that on each pieceZ(t, x) = v(t)Y(x) for
some piecewise continuous functionv(t) on [0,1] andY ∈ L . If Z is a simple
control, let8(Z, t) denote the flow generated byẋ = Z(t, x).

The following is a slight generalization of [15]:

THEOREM 2.3 Let Z(t, x) be anX -simple control. Givenε > 0 there exist
δ1, δ2 > 0 such that for the stochastic flow(1.1)

P

{
sup

x∈T2,s∈[0,δ1]

∣∣∣∣ f0,sx − 8

(
Z,

s

δ1

)
x

∣∣∣∣ < ε

}
≥ δ2 .

The proof of this theorem is given in Appendix A.

2.5 Lyapunov Exponents

For measure-preserving stochastic flows with condition A, Lyapunov exponents
λ1 andλ2 exist by the multiplicative ergodic theorem. Since our vector fields are di-
vergence free, the sum of Lyapunov exponentsλ1+λ2 is zero (see, e.g.,[3, p. 191]).
Under conditions A through C the leading Lyapunov exponent is positive and al-
most surely does not depend on the initial vector. That is, there existsλ1 > 0 such
that for allx andv for almost all realizations of (1.1), we have

λ1 = lim
t→∞

1

t
log |d f0,t x(v)| ,

where f0,t x is the solution at timet of the stochastic flow (1.1) with the initial data
x0 = x.

To see thatλ1 is positive, we note that theorem 6.8 of [2] states that under
condition A the maximal Lyapunov exponentλ1 can be zero only if one of the
following two conditions is satisfied:

(a) there is a Riemannian metricd invariant with respect to allXk, or
(b) there is a direction fieldv(x) onT

2 invariant with respect to allXk.

However, (a) contradicts condition B. Indeed, (a) implies that all the Lie brackets
of {(Xk(x1), Xk(x2))}k are tangent to the leaves of the foliation

{(x1, x2) ∈ T
2 × T

2 : d(x1, x2) = const}
and don’t form the whole tangent space. On the other hand (b) contradicts condi-
tion C, since (b) implies that all the Lie brackets are tangent to the graph ofv. This
positivity of λ1 is crucial for our approach.

2.6 No Superlinear Growth

We now state the lemma, proven in [7], which shows thatγt cannot grow faster
than linearly.
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LEMMA 2.4 [7] Letγ be the initial curve and

Φt = sup
x0∈γ

sup
0≤s≤t

‖xs − x0‖ .

(i) There is a constant C such that almost surely

lim sup
t→∞

Φt

t
≤ C .

(ii) For any positive r andα, we have

sup
t≥1

E

(
exp

[
r Φ2

t

t2 max(1, ln(Φt/t))2+α

])
< ∞ .

Note that due to periodicity of the vector fieldsXk, both estimates are uniform
with respect toγ . Indeed, we could at first considerγ coinciding with the boundary
of the periodicity cell, from where the statement follows for allγ .

2.7 Central Limit Theorem
The next lemma, proven in section 5 of [8], describes the speed of propagation

of a measure carried by the flow. Recall (2.1).

LEMMA 2.5 [8] Letν be a probability measure supported inside the ball BR(0) ⊂
R

2 whose p energy is bounded for some p> 0, that is,

(2.3) Ip(ν) ≤ Cp < +∞ .

Let f(x) be a continuous, nonnegative function with compact support. Then there
exists a nondegenerate2 × 2 matrix D such that for anyρ, m > 0 there exists
T = T( f, p, Cp, R, ρ, m) such that for all t> T

(2.4) P

{∣∣∣∣
∫

R2

f

(
xt√

t

)
dν − f̄

∣∣∣∣ > ρ

}
≤ t−m ,

where f̄ denotes the integral of f with respect to the Gaussian measure with zero
mean and variance D.

PROOF: The last inequality of section 7 in [8] establishes (2.4) for functions of
the form f (x) = exp(i ξx). Also, lemma 12 of [8] shows that there existsK such
that for allm we have

P

{
ν

[(
xt√

t

)2

> K

]}
≤ Cmt−m .

Let R̃ = 2
√

sup| f |Kρ. Then with probability at least 1− Cmt−m we have
∫

|xt |>R̃

f

(
xt√

t

)
dν ≤ ρ

4
.

We can uniformly approximatef on the ballBR̃(0) by a trigonometric polyno-
mial, which implies the result. �
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We shall use the following important consequence of Lemma 2.5. We shall call
a curvelong if its diameter is bounded and greater than or equal to 1.

COROLLARY 2.6 Givenε > 0 and an integer m> 0 there exist Cm and T such
that if γ is a curve withdiam(γ ) ≥ ε then

P{γt is long for all t ≥ T} ≥ 1 − CmT−m .

PROOF: The condition diam(γ ) ≥ ε implies that the 1-Hausdorff measure
H1(γ ) ≥ ε. Hence by the Frostman lemma there is a constanta > 0, independent
of γ , and a measureν supported onγ such thatI1/2(ν) ≤ a. Take two nonnegative
functions f1 and f2 with disjoint, compact, nonempty supports. By Lemma 2.5 for
all m andN = Nm we have

P{γn ∩ √
n supp( f j ) 6= ∅ for all n ∈ N, n ≥ N} ≥ 1 − constN−m ,

that is, except for the set of small probability, diam(γn) ≥ const
√

n at integer
moments of time. On the other hand, by Lemma 2.4 for allm

P{there ist ∈ [n, n + 1] such thatR(γt , γn) ≥ n1/4} ≤ constn−m ,

whereR(γt , γn) = supy∈γt
infx∈γn dist(x, y). Combining the last two inequalities,

we obtain Corollary 2.6. �

3 Lower Bound

3.1 Linear Growth and an Estimate from Below

Let the initial set be a curveγ ⊂ R
2, and letA be a faraway point in the plane.

We shall estimate the tail of the probability distribution of the time it takes for the
curve to reach anR-neighborhood ofA in terms of the distance betweenγ and A
(the constantR will be selected later).

By Corollary 2.6 we may assume without loss of generality that the original
curve is long. Given a long curveγ and a pointA, we defineτ R(γ, A) to be the
first moment of time when the image ofγ reaches theR-neighborhood ofA, and
at the same time the image ofγ is long, that is

(3.1) τ R(γ, A) = inf{t > 0 : dist(γt , A) ≤ R, diam(γt) ≥ 1} .

PROPOSITION3.1 Consider a long curveγ ∈ R
2, and a point A∈ R

2. Let d =
max{1, dist(A, γ )}. There is a constant R> 0, and for any positive integer m
there is Cm > 0, independent ofγ , A, and d, for which

(3.2) P
{
τ R(γ, A) > Cmβ d

}
≤ Cmβ−m d−m for anyβ > 1 .

The proof of Proposition 3.1 will rely on Lemma 3.2 stated below.
ChooseA0 ∈ γ. Now, given a triplet(A0, γ0, t0), whereγ0 = γ is a long curve

in R
2, A0 is a point onγ , andt0 = 0 is the initial time, we define inductively the

sequence{(Aj , γj , tj )} as follows: Suppose that(Aj , γj , tj ) is defined so that

• γj is a connected interval of the image ofγj −1, i.e.,γj ⊂ ftj −1,tj γj −1,



A LIMIT SHAPE THEOREM 9

j

0
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2

j

j+1

j+1

γ

γ

A

A

A

A

A

FIGURE 3.1

• Aj ∈ γj , and
• γj is long.

Givenα ∈ (0, π
2 ) define the truncatedα-cone

(3.3) K j (α) = {x ∈ R
2 : dist(x, Aj ) ≥ 1 and6 (x Aj A) ≤ α} ,

where 6 (x Aj A) is the angle between the segments[Aj , x] and[Aj , A]. See Fig-
ure 3.1.

Let tj +1 be the first moment such that

• tj +1 − tj ≥ 1,
• diam( ftj ,tj +1γj ) ≥ 1, and
• ftj ,tj +1γj

⋂
K j (α) 6= ∅.

Let Aj +1 be an arbitrary point inγj (tj +1) ∩ K j (α), let BR(Aj +1) denote the
closedR-ball aroundAj +1, and letγj +1 be a long curve that satisfies

Aj +1 ∈ γj +1 ⊆ ftj ,tj +1γj ∩ B1(Aj +1) .
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LEMMA 3.2 Fix 0 < α < π
2 . For any positive integer m we have

E
(
(tj +1 − tj )

m
)

| Ftj ) < Cm .

PROOF: It is sufficient to prove thatE(tm
1 ) < Cm with Cm independent of the

original long curveγ0 and of the pointA. Without loss of generality we may
assume that the original curve is contained in a ball of radius 2 centered around
the origin. Note that there is a finite set of functions with compact supports such
that for any coneK0(α), defined in (3.3), with the vertex insideB2(0) there is a
function f from this set for whichr supp f ⊂ K0(α) for all r ≥ 1.

Sinceγ0 is long, the Frostman lemma (Section 2.1) implies that there exists a
probability measureν onγ0 whose1

2-energy is bounded; therefore Lemma 2.5 can
be applied. Corollary 2.6 implies that for larget and for each of the functions from
the finite set we have

P{γt ∩ {
√

t supp f } = ∅} ≤ t−m .

Since fort ≥ 1 for one of the functions we have that{√t supp f } ⊂ K0(α), we get
that fort ≥ T

P{γt ∩ K0(α) = ∅} ≤ t−m .

Corollary 2.6 implies that for larget

P{diam(γt) < 1} ≤ t−m .

Sincem is arbitrary, this implies the required result. �

PROOF OFPROPOSITION3.1: Letr j = dist(Aj , A). There exist positive con-
stantsR and K such that ifr0 > R, thenE(r1 − r0) ≤ −K . Indeed, due to
lemmas 2.4 and 3.2, the tail of the distribution of dist(A0, A1) decays faster than
any power, uniformly inA0, γ0. By selectingR large enough andK small enough,
we can assure that dist(A1, A) < dist(A0, A) − 2K with probability arbitrarily
close to 1. The contribution to the expectation from the complementary event is
estimated using the decay of the tail of the distribution of dist(A0, A1).

Let σ ∈ N be the first moment whenr j ≤ R, σ = minj {r j ≤ R}. Then

(3.4) Sj = rmin( j,σ ) + K min( j, σ )

is a supermartingale. Notice that by Lemmas 2.4 and 3.2 the sequenceξj = Sj −
Sj −1 satisfies the assumptions of Lemma 2.2 with the constantKm, andKm can be
chosen independently of the distanced. Therefore, there isκ > 0 such that

P

{
rmin( j,σ ) + K min( j, σ ) ≥ K j

2
+ d

}
≤ κ j −m for all j ≥ 1.

Take an arbitraryβ > 1 and let j0 = [2d
K β] + 1. Sincermin( j0,σ ) is nonnegative,

the event{σ ≥ j0} is contained in the event
{

rmin( j0,σ ) + K min( j0, σ ) ≥ K j0
2

+ d

}
.
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Thus,

P{σ ≥ j0} ≤ κ j −m
0 .

We conclude that for somẽCm > 0

(3.5) P{σ ≥ C̃mβd} ≤ C̃mβ−md−m for β, d > 1.

This inequality is different from (3.2) in that (3.5) provides an estimate for the
number of steps, rather than time, needed to reach anR-neighborhood ofA. By
Lemma 3.2 we can apply Lemma 2.2 withξn = tn+1 − tn − C for some positiveC
to obtain that for anym there existsκ such that

P{tn ≥ 2Cn} ≤ κn−m .

This, together with (3.5), implies the statement of the proposition. �

Let WR
t (γ ) be theR-neighborhood ofWt(γ ), that is, the set of points whose

R-neighborhood is visited by the image of the original set before timet ,

W
R
t (γ ) = {x ∈ R

2 : dist(x, γs) ≤ R for somes ≤ t} .

COROLLARY 3.3 There exist positive constants c and R such that almost surely
for t large enoughWR

t (γ ) contains the ball of radius ct centered at the origin, i.e.,
Bct(0) ⊂ WR

t (γ ) for large t.

PROOF: Consider a covering ofBct(0) by balls of radiusR/2. By Proposi-
tion 3.1 for each of the balls of radiusR/2, the probability that it is not visited
by the curve by timet decays faster than any power oft , provided thatc is small
enough andR is large enough. On the other hand, for eachc and R the num-
ber of balls needed to coverBct(0) grows liket2 times a constant. Therefore, the
probability that theR-neighborhood of some point inBct(0) is not visited by the
curve before timet decays faster than any power oft . The corollary follows by the
Borel-Cantelli lemma. �

From now on we fixR for which Proposition 3.1 and Corollary 3.3 hold.
Note that the bounds we obtained in the proof of Proposition 3.1 are uniform

over all long curves. Let us employ this fact in the following corollary. LetCR be
the family of long curves that lie completely insideB2R(0) (we may assume that
R > 1).

COROLLARY 3.4 The family of stopping times, defined in(3.1),
{

τ R(γ, tv)

t

}

t≥1,‖v‖=1,γ∈CR

is uniformly integrable.
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3.2 Stable Norm

We shall now use the asymptotics of the stopping timeτ R defined in (3.1) in
order to define the limiting shapeB ⊂ R

2. Recall thatτ R is the time it takes a
curve to reach theR-neighborhood of a faraway point. Consider

|v|R = sup
γ∈CR

Eτ R(γ, v) .

The stationarity of the underlying Brownian motion and the periodicity of the
vector fields imply that

Eτ 2R(γ, (t1 + t2)v) ≤ Eτ R(γ, t1v) + Eτ R(γ1, t2v) ,

whereγ1 ∈ CR is some integer translation of a part off0,τ (γ,t1v)γ . By Proposi-
tion 3.1

Eτ R(γ, (t1 + t2)v) ≤ Eτ 2R(γ, (t1 + t2)v) + C

for someC > 0. It follows that the function|tv|R + C is subadditive. Let

(3.6) ‖v‖R = lim
t→∞

|tv|R

t
.

Similarly, for 0≤ s ≤ 1,

|t (sv1 + (1 − s)v2)|R ≤ |tsv1|R + |t (1 − s)v2|R + C ,

so
‖sv1 + (1 − s)v2‖R ≤ s‖v1‖R + (1 − s)‖v2‖R .

Let B = {v ∈ R
2 : ‖v‖R ≤ 1}. By the remarks aboveB is convex. By Lemma 2.4

B has nonempty interior. By Corollary 3.4B is compact. It will be shown that the
norm‖v‖R and the setB are independent ofR.

LEMMA 3.5 For any curveγ ∈ CR, anyε > 0, and almost every realization of the
Brownian motionEθ(t) there exists T= T(γ, ε, Eθ(t)) > 0 such that(1 − ε)tB ⊂
WR

t (γ ) for t ≥ T .

PROOF: It suffices to show that for allv with ‖v‖R ≤ 1 and anym there isCm

such that

(3.7) P{τ R(γ, tv) ≥ (1 + ε)t} ≤ Cmt−m .

All the estimates below are uniform inv such that‖v‖R = 1. By the definition of
‖v‖R there existst0 such that

(3.8) Eτ R(γ, tv) ≤ t

(
1 + ε

3

)

for anyt ≥ t0 andγ ∈ CR. Define the stopping timeτ R
1 as

τ R
1 = inf{t > 0 : γt ∩ BR(t0v) 6= ∅; diam(γt) ≥ 1} .

Recall thatBR(t0v) is theR-ball centered att0v. Let γ (1) be a long part ofγτ R
1

contained inB2R(t0v) that has a nonempty intersection withBR(t0v). Similarly,



A LIMIT SHAPE THEOREM 13

we defineτ R
2 to be the first time followingτ R

1 when the image ofγ (1) is long and
intersectsBR(2t0v). Letγ (2) be a long part inside the imagefτ R

1 ,τ R
2
γ (1) of γ (1), and

so on. We have therefore constructed a sequence of stopping times suchthat

τ R(γ, nt0v) ≤
n∑

j =1

(
τ R

j − τ R
j −1

)
.

By (3.8), due to the periodicity of the underlying vector fields, for large enought0
we have

E(τ R
j − τ R

j −1) ≤ t0

(
1 + 2ε

3

)
.

Now the result follows by Lemma 2.2 and Proposition 3.1. �

Now we prove that Lemma 3.5 remains valid even when theR-neighborhood
of Wt(γ ) is replaced byWt(γ ) itself.

THEOREM 3.6 For anyγ ∈ CR and anyε > 0 we have almost surely(1− ε)tB ⊂
Wt(γ ) for large enough t.

This theorem is a consequence of Lemma 3.5 and the fact that when a long
curve reaches anR-neighborhood of a point, then the distribution of the time it
takes for the curve to sweep the entire neighborhood has a fast decreasing tail.
Thus Theorem 3.6 follows from the standard Borel-Cantelli arguments andthe
following sweeping lemma:

LEMMA 3.7 Letγ be a long curve such thatdist(γ, A) ≤ R. Let

σ = inf

{
t > 0 : BR(A) ⊂

⋃

s≤t

γs

}
.

Then for any m> 0 and some Cm that does not depend onγ we have

(3.9) P{σ > t} ≤ Cmt−m .

The proof of this lemma is the subject of Appendix B.

4 Upper Bound

4.1 Stable Manifold
We first recall some properties of stable manifolds. Recall thatft,ux be the

solution at timeu of the stochastic flow (1.1) with the initial dataxt = x. Recall
thatλ1 > 0 is a maximal Lyapunov exponent, as discussed in Section 2.5. Conse-
quentlyλ2 = −λ1 < 0. Let 0< λ̄1 < λ1. Then, by the stable manifold theorem
[5, sec. 2.2], for everyt and everyx almost surely the set

Ws(x, t) =
{
y ∈ R

2 : d( ft,uy, ft,ux) ≤ C(y)e−λ̄1(u−t) for someC(y) andu ≥ t
}

is a smooth curve passing throughx.
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4.2 Estimates in Probability

We first establish the asymptotics of the expectation ofτ R(γ, tv).

THEOREM 4.1 The limit

lim
t→∞

Eτ R(γ, tv)

t
= ‖v‖R

is uniform inγ ∈ CR, whereCR is defined before Corollary3.4.

The proof of Theorem 4.1 is based on the following proposition (proven after
the theorem). LetWs,L be a connected part of the stable manifoldWs(x, 0) of a
point x such that it satisfies supt≥0 diam( f0,t Ws,L) ≤ L.

PROPOSITION4.2 For any ε > 0 there is L = L(ε) such that for any two long
curvesγ1, γ2 ∈ C2R

P{there exists Ws,L connectingγ1 andγ2} > 1 − ε .

PROOF OF THEOREM 4.1: Denote by S the boundary of the square,
S = ∂[−2R, 2R]2. Sinceτ R(S, tv) ≤ τ R(γ, tv) for γ ∈ CR, by Corollary 3.4
the family of random variables

{
τ R(γ, tv) − τ R(S, tv)

t

}

t≥1,‖v‖=1,γ∈CR

is uniformly integrable. We shall demonstrate that for anyε > 0

(4.1) P

{
τ R(γ, tv) − τ R(S, tv)

t
> ε

}
→ 0 uniformly in‖v‖ = 1 , γ ∈ CR .

From the uniform integrability and (4.1), it then follows that

Eτ R(γ, tv) − Eτ R(S, tv)

t
→ 0 uniformly in‖v‖ = 1 , γ ∈ CR ,

which implies the statement of the theorem. It remains to prove (4.1).
Given ε > 0 we selectL = L(ε/3) according to Proposition 4.2. We setγ1

equal toγ andγ2 equal to a translation ofγ by a unit vector in either the horizontal
or vertical direction. In either case we can apply Proposition 4.2. Besides, due to
the periodicity of the flow, we can apply Proposition 4.2 to any integer translation
of the pair(γ1, γ2). We obtain that with probability not less than 1− 2ε/3 there
exists a contourŴ, which containsS and is contained in[−10R − L , 10R + L]2.
The contourŴ consists of a finite number of integer translations ofγ and a finite
number of integer translations of two stable manifoldsWs,L

1 andWs,L
2 . The former

manifold connectsγ with its horizontal translation, and the latter one connectsγ

with its vertical translation.
Since f0,tŴ consists of integer translations off0,tγ at most distance 30R + 3L

away from each other and stable manifolds have length no greater thanL, we have

τ 31R+4L(γ, tv) ≤ τ R(Ŵ, tv) .
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SinceŴ containsS, we have

P{Ŵ as above exists andτ R(Ŵ, tv) ≤ τ R(S, tv)} ≥ 1 − 2ε

3
.

By Proposition 3.1 for sufficiently larget we have

P{τ R(γ, tv) − τ 31R+3L(γ, tv) > εt} ≤ ε

3
.

Combining the last three inequalities, we obtain

P

{
τ R(γ, tv) − τ R(S, tv)

t
> ε

}
≤ ε ,

which implies (4.1). This completes the proof of Theorem 4.1. �

PROOF OFPROPOSITION4.2: We need to introduce some notation. Figure D.1
of Appendix D can be helpful here. Recall that we denote the stream function of
X1 by H1. The streamlines ofX1 are level sets ofH1. See Appendix E for prop-
erties of level sets of functions satisfying condition E. Any regular closedlevel set
γ0 of H1 on the torus has a neighborhood where we can define action-angle coor-
dinates(I , φ) ∈ [0, 1] × S

1 such that the dynamics under the flowX1 is described
by φ̇ = ω(I ), İ = 0. Let p be a maximum point ofH1. By assumption E a small
neighborhood ofp consists of closed level sets, so we can introduce action-angle
coordinates. LetU be the maximal neighborhood ofp where action-angle coor-
dinates can be introduced. Then∂U contains saddle critical points (or point) of
H1. Observe that all level sets inU are homotopic to a point (one such homotopy
is obtained by moving along the integral curves of∇H1). So the level sets lift to
closed level sets onR2. Abusing notation, we will denote the lifts ofU and∂U to
the plane by the same letters.

Let us fix a pointx ∈ ∂U , which is not a saddle point. Let us consider a cone
K x = {y : ‖y−x‖ ≤ a; (y−x, n) ≥ b‖y−x‖}, wheren is the unit inward normal
at x, anda, b > 0 are constants. LetK x

1 andK x
2 be the two sides of the cone, that

is, the points where(y − x, n) = b‖y − x‖, and letK x
3 be the remaining part of

the boundary of the cone, where‖y − x‖ = a.
Let Ws

a(x, t) be the connected component ofWs(x, t)∩ Ba(x) containingx. In
Appendix C we prove the following:

LEMMA 4.3 If a = a(ε) and b = b(ε) are small enough, and L0(ε) is large
enough, then each of the following events has probability at least1 − ε/10:

A1 =
{
Ws

a(x, 0) ∩ ∂K x ⊆ {x} ∪ K x
3 , Ws

a(x, 0) ∩ K x
3 6= ∅

}
,

A2 =
{

sup
u≥0

diam( f0,uWs
a(x, 0)) ≤ L0(ε)

}
.

(4.2)

Due to stationarity int of the flow, we also have

(4.3) P{Ai
t} ≥ 1 − ε

10
, i = 1, 2,
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where

A1
t =

{
Ws

a(x, t) ∩ ∂K x ⊆ {x} ∪ K x
3 , Ws

a(x, t) ∩ K x
3 6= ∅

}

A2
t =

{
sup
u≥t

diam( ft,uWs
a(x, t)) ≤ L0(ε)

}
.

In Appendix D we prove the following statement:

LEMMA 4.4 There is T(ε) > 0 such that for any pair of curvesγ1, γ2 ∈ C2R with
probability at least1 − ε/10 there is t ≤ T(ε) such that both f0,tγ1 and f0,tγ2

contain connected subsetsγ1 and γ2, respectively, which belong to the cone Kx

and such that

γi ∩ K x
1 6= ∅ and γi ∩ K x

2 6= ∅ , i = 1, 2.

Assume this lemma is proven. Due to (4.3), with probability at least 1− ε/2
there is somet ≤ T(ε) such thatf0,tγ1 and f0,tγ2 both intersect the same connected
setWs

a(x, t) and the eventsAi
t hold for i = 1, 2.

Note that the preimage underf0,t of Ws
a(x, t) is a part of a stable manifold.

SinceT(ε) is finite,

P
{

sup
0≤u≤t

diam( f0,u f −1
0,t Ws

a(x, t)) > L(ε)
}

≤ ε

2

for large enoughL(ε). If necessary, we can makeL(ε) yet larger to satisfyL(ε) ≥
L0(ε). Therefore, with probability at least 1− ε the curvesγ1 andγ2 are connected
by a part of a stable manifoldWs,L(ε) such that

sup
u≥0

diam( f0,uWs,L(ε)) ≤ L(ε) ,

which completes the proof of Proposition 4.2. �

COROLLARY 4.5 For any curveγ ∈ CR we havelimt→∞ τ R(γ, tv)/t = ‖v‖R in
probability.

PROOF: By Corollary 3.4 for any curveγ ∈ CR the family of measures onR
induced by{τ R(γ, tv)/t}t≥1 is tight. Letνγ be a limit distribution of this family.
On one hand, Lemma 3.5 implies that suppνγ ⊂ [0, ‖v‖R]. On the other hand, by
Theorem 4.1 we have

∫
s dνγ (s) = ‖v‖R. Thusνγ = δ‖v‖R. �

COROLLARY 4.6 For any curveγ ∈ CR and anyε > 0 we have

lim
t→∞

P
{
W

R
t (γ ) ⊂ (1 + ε)tB

}
= 1 .

PROOF: Let �t be the following event:

�t =
{
τ R(γ, tv) <

t

1 + ε
for somev with ‖v‖R = 1

}
.
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We need to showP{�t} → 0 ast → +∞. Take 0< δ ≪ ε. For eacht > 0 let
{vj } be aδ-net in∂B, and let�δ

t be the following event:

�δ
t =

{
τ R(γ, tvj ) <

t

1 + ε/2
for some j

}
.

Note thatP{�δ
t } → 0 by Corollary 4.5. If for somev with ‖v‖ = 1 at time

τ R(γ, tv) < t/(1 + ε) the curveγ gets totv, then the probability thatγ hits tvj

with vj one of the closest tov beforet/(1 + ε/2) is close to 1 by Proposition 3.1.
More exactly, for anym for sufficiently smallδ, we have

P{�δ
t | �t} ≥ 1 − Cmt−m.

Therefore,P{�t} → 0 ast → ∞, which is required. This completes the proof.�

4.3 Curve-to-Line Passage Time

As the reader will see in this section, we essentially use periodicity of the flow
(1.1). Given a curveγ and a linel in the plane, we defineτ R(γ, l ) to be the
stopping time when the image ofγ reaches theR-neighborhood ofl and the image
of γ is long. As in Section 3.2 we define

|l |R = sup
γ∈CR

Eτ R(γ, l )

and, provided that the following limit exists, we define

(4.4) ‖l‖R = lim
t→∞

|tl |R

t
.

The following results for‖l‖R can be proven exactly like the corresponding
results (formula (3.6) and Corollary 4.5) for‖v‖R.

LEMMA 4.7

(i) The limit in(4.4)exists and, therefore,‖l‖R is well-defined.
(ii) For anyγ ∈ CR we havelimt→∞ τ R(γ, tl )/t = ‖l‖R in probability.

The next lemma relates‖l‖R to the norm‖v‖R.

LEMMA 4.8 For any line l in the plane,

‖l‖R = inf
v∈l

‖v‖R .

PROOF: Corollary 4.6 along with Lemma 4.7(ii) implies that‖l‖R ≤
infv∈l ‖v‖R. From Lemmas 3.5 and 4.7(ii) it follows that‖l‖R ≥ infv∈l ‖v‖R,
which completes the proof. �

Provided that the following limit exists, we define:

‖l‖R
∗ = lim

t→∞
E(τ R(l ′, tl ))

t
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where l ′ is the line parallel tol passing through origin. Note thatτ R(l ′, tl ) is
defined as the first instance when the image ofl ′ reaches anR-neighborhood oftl ,
the same way asτ R(γ, tl ) was defined for a compactγ .

LEMMA 4.9 For any line l on the plane we have the equality

‖l‖R
∗ = ‖l‖R .

PROOF: Let us cover the linel ′ by the union of fundamental domains (unit
squares whose vertices have integer coordinates) in such a way that every square
has a nonempty intersection withl ′. Let 5 be the boundary of such a union of
fundamental domains. Since5 lies in between two integer shifts ofl ′ of distance
not greater than 2, Proposition 3.1 and the periodicity of the flow imply that as
t → ∞

E
τ R(l ′, tl ) − τ R(5, tl )

t
→ 0 .

Let S be the boundary of a fundamental domain that contains the origin. Again,
Proposition 3.1 and the periodicity of the flow imply

E
τ R(S, tl ) − τ R(5, tl )

t
→ 0 .

Subtracting one from the other, we get

E
τ R(l ′, tl ) − τ R(S, tl )

t
→ 0 .

Pass to the limit ast → ∞. Due to Lemma 4.7(i) we get the required statement.
�

4.4 Almost Sure Convergence

LEMMA 4.10 For any curveγ ∈ CR, anyε > 0, and almost every realization of
the Brownian motionEθ(t) there exists T= T(γ, ε, Eθ(t)) > 0 such thatWR

t (γ ) ⊂
(1 + ε)tB for t ≥ T .

PROOF: The proof is somewhat analogous to the proof of Corollary 4.6.
Choose small 0< δ ≪ ε and let{vj } be anδ-net on∂B. Let Bδ be the region
bounded by support lines ofB passing through{vj }. In other words, we consider
a polygon with side of length of orderδ superscribed aroundB. Sinceδ is small,
it suffices to prove that almost surelyWR

t (γ ) ⊂ (1 + ε/2)tBδ for larget. This in-
clusion follows from Lemma 4.8 if for each of the supporting linesl of B we show
that almost surely the following inequality holds for sufficiently larget :

(4.5) τ R(γ, tl ) ≥
(
1 − ε

4

)
t‖l‖R .

Let t∗ be such that

Eτ R(l ′, tl ) >
(
1 − ε

8

)
t‖l‖R for t ≥ t∗ ,
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wherel ′ is the line parallel tol passing through the origin. Then by Proposition 3.1
the set of random variablesξj = τ R(l ′, j t ∗l ) − τ R(l ′, ( j + 1)t∗l ) satisfies the
hypotheses of Lemma 2.2. Lemma 2.2 implies that

P

{
τ R(l ′, j t ∗l ) <

(
1 − ε

6

)
j t ∗‖l‖R

}

decays faster than any power ofj . Due to periodicity of the flow, this implies (4.5)
for any curveγ ∈ CR. �

PROOF OFTHEOREM 1.1: By Theorem 3.6 and Lemma 4.10 for any bounded
curveγ with positive diameter we almost surely have

(4.6) (1 − ε)tB ⊂ Wt(γ ) ⊂ (1 + ε)tB

for all sufficiently larget .
The setB was defined to be a unit ball in the norm‖ · ‖R. However,Wt(γ )

does not depend onR. Therefore,B does not depend onR. Inclusion (4.6) can
be applied to a closed curveγ1 containing a bounded set� inside, as well as to a
continuous curveγ2 contained inside�. Therefore, the statement of the theorem
follows from inclusions (4.6). �

Appendix A: Control Theorem

PROOF OFTHEOREM 2.3: We divide the proof into four steps:

• Step 1. Reduce the theorem for a generalX -simple control to a control
with constantv(t) ≡ 1.

• Step 2. Further reduce it to a control consisting of just one vector field,
e.g.,X1.

• Step 3. Change Wiener measureP on (θ1(t), . . . , θd(t)) ∈ R
d to an equiv-

alent oneP̃, which singles out the first component.
• Step 4. Show that under time rescalingP̃ converges to a measure concen-

trated on the space of continuous path whose lastd − 1 components are
identically zero.

A.1 Reduction to “Constant” Velocity

By definition it suffices to show that for any vector fieldY ∈ Lk, any piecewise
continuous functionv(t) on [0,1], and anyε > 0, there existδ1, δ2 > 0 such that
for Z(t, x) = v(t)Y(x)

(A.1) P

{
sup

x∈T2, s∈[0,δ1]

∣∣∣∣ f0,sx − 8

(
Z,

s

δ1

)
x

∣∣∣∣ < ε

}
≥ δ2 .

Sincev can be approximated by piecewise constant functions, we see by rescaling
that it is enough to establish (A.1) forv ≡ 1.
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A.2 Reduction from a General Control Z(t, x) = Y(x) to One Field
Control Z(x) = X1(x)

We prove (A.1) for the casek = 2. The general case can be proved using the
same method. LetY ∈ L2. Renumerating{Xk} if necessary, one can assume that
Y = X1, Y = X2, or Y = [X1, X2]. In the latter case,

8(Y, t) = lim
N→∞

{
8

(
X2,−

t

N

)
8

(
X1,−

t

N

)
8

(
X2,

t

N

)
8

(
X1,

t

N

)}N2

.

Again rescaling the time, we see that it suffices to prove (A.1) in the casev ≡ 1
andY = X1 or X2. It suffices to prove that for anyε > 0 there existδ1, δ2 > 0
such that

(A.2) P

{
sup

x∈T2, s∈[0,δ1]

∣∣∣∣ f0,sx − 8

(
X1,

s

δ1

)
x

∣∣∣∣ < ε

}
≥ δ2 .

A.3 Shift of the Wiener Measure
Let w1(t) = θ1(t) − t/δ1. Then (1.1) becomes

dxt = X0(xt)dt + 1

δ1
X1(xt)dt + X1(xt) ◦ dw1(t) +

d∑

k=2

Xk(xt) ◦ dθk(t) .

Sinceθ1 → w1 is absolutely continuous inC[0, δ1] with the Jacobian explicitly
given by the Girsanov formula, to prove (A.2) it suffices to show that foranyε > 0
there existδ1, δ

′
2 > 0 such that

(A.3) P̃

{
sup

x∈T2, s∈[0,δ1]

∣∣∣∣ f0,sx − 8

(
X1,

s

δ1

)
x

∣∣∣∣ < ε

}
≥ δ′

2 ,

whereP̃ is the Wiener measure on(w1, θ2, . . . , θd). Renamew1 to θ1 again, and let
A1 be the event that the solutions of

dxt = 1

δ1
X1(xt)dt + X0(xt)dt +

d∑

k=1

Xk(xt) ◦ dθk(t)

areε-close to the solutions ofdxt = (1/δ1)X1(xt)dt for t ∈ [0, δ1]. Thus we need
to show that for everyε > 0 there existδ1, δ

′
2 > 0 such that

(A.4) P{A1} ≥ δ2.

A.4 Time Rescaling
After time changet = δ1τ , we can rewrite (A.4) as

(A.5) P{A2} ≥ δ′
2,

whereA2 is the event that the solutions of

(A.6) dxτ = X1(xτ )dτ + δ1X0(xτ )dτ +
√

δ1

d∑

k=1

Xk(xτ ) ◦ dθk(τ )
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areε-close to the solutions of

(A.7) dxτ = X1(xτ )dτ

for t ∈ [0, 1]. However, asδ1 → 0 the solutions of (A.6) converge weakly to the
solutions of (A.7). So given positiveε andδ′

2, we see that (A.5) holds if we choose
δ1 sufficiently small. �

Appendix B: Proof of Sweeping Lemma 3.7

PROOF: We divide the proof into six steps. Here is a brief outline of the proof.

• Step 1. Reduce the problem of sweeping theR-ball BR(A) to the problem
of sweeping a little squareU ⊂ BR(A).

• Step 2. Define a little squareU .
• Step 3. Reduce the problem of sweeping a little squareU with large prob-

ability to a problem of sweeping the little squareU in a fixed time with
positive probability. Proof of the latter step is decomposed into two stages.

• Step 4 (or Stage 1). Take a bigger squareC ⊃ U and using the strong
Hörmander condition show that with positive probability the image of a
long curve in a unit time connects∂C with ∂U .

• Step 5 (or Stage 2). Using Theorem 2.3, reduce sweeping of a little boxU
to a control problem.

• Step 6. Construct a sweeping control.

B.1 From Sweeping the BallBR(A) to Sweeping a Little SquareU =

U(B)

SinceBR(A) is compact, it is enough to establish a local version of (3.9). In
other words, it suffices to show that for any pointB ∈ BR(A) there exists a neigh-
borhoodU = U (B) such that if

σU = inf

{
t > 0 : U ⊂

⋃

s≤t

γs

}
,

then for allm there is a constantCm such that ifγ satisfies the assumptions of
Lemma 3.7, then

(B.1) P {σU > t} ≤ Cmt−m .

B.2 Definition of a Little Square U = U(B)

Before giving the proof of (B.1), let us describe the choice ofU (B). By the
strong Hörmander condition, given a pointB there are vector fieldsY1, Y2 ∈ L that
are transversal atB. We can choose coordinatesz = (z1, z2) nearB so thatB is at
the origin,

Y1 = ∂

∂z1
, Y2 = a(z1, z2)

∂

∂z2
, a(0, 0) = 1 .
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By shrinking the coordinate neighborhood if necessary, we can assumethat 0.99 <

a < 1.01. By rescaling the coordinates, we can assume that

Range(z) = [−20, 20]2 .

Let U = z−1([−1, 1]2).

B.3 From Large to Positive Probability
Now we prove (B.1) forU defined in B.2. Select a pointA0 ∈ γ such that

dist(A0, A) ≤ R. Let tjn be those of the stopping timestj (defined in Section 3.1)
that satisfy dist(γtjn , A) ≤ R. From Proposition 3.1 it follows that for anym > 0

(B.2) E(tjn − tjn−1)
m < Cm

for someCm. We claim that there existsθ > 0 such that

(B.3) P{σU < tjn | σU ≥ tjn−1} ≥ θ .

Formula (B.3) implies that

P{σU < tjn} ≥ 1 − θn.

By Lemma 2.2 there exists a constantC such that for allm there isC̄m with the
property

P{tjn > Cn} ≤ C̄mn−m .

Since the last two inequalities imply (B.1), it remains to prove (B.3).
By definition tjn − tjn−1 ≥ 1. Hence (B.3) follows from the following estimate:

there existsθ > 0 such that for any long curveγ such that dist(γ, A) ≤ R, we
have

(B.4) P

{
U ⊂

⋃

s≤1

γs

}
≥ θ .

B.4 Stage 1 of Sweeping a Little SquareU (Getting Close)
We shall now prove (B.4). Let

C(B) = z−1([−5, 5]2) .

Thus U ⊂ C(B). Take two pointsx′, x′′ ∈ γ such that dist(x′, B) ≤ R,
dist(x′, x′′) = 1

2. By the strong Hörmander condition for the two-point motion
there existsp0 > 0 such that

P{ f0,1/2x′ ∈ U, f0,1/2x′′ 6∈ C(B)} ≥ p0 .

Let γ̂ be the piece ofγ1/2 joining x′
1/2 to x′′

1/2. Let γ̄ be a minimal subcurve of̂γ
lying insideC(B) and joining the boundary ofC(B) with U (B) (minimality means
that no proper subcurve of̄γ has these properties). By minimalitȳγ

⋂
∂C(B) is

one point, which we cally.

∂C(B) consists of four segments corresponding to the four sides of the square.
To fix our notation, assume thaty ∈ z−1({−5} × [−5, 5]). Other cases are similar.
Let γ̃ be the minimal subcurve joiningy to z({−1} × [−5, 5]) (see Figure B.1). In
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y
U

C(B)
γ̃

γ̄

FIGURE B.1. Definition ofγ̃ .

order to prove (B.4), it suffices to prove the following: There existsθ > 0 such
that if γ̃ is any curve joiningz({−5} × [−5, 5]) to z({−1} × [−5, 5]), then

(B.5) P

{
U ⊂

1/2⋃

s=0

γ̃s

}
≥ θ .

B.5 Stage 2: Sweeping a Little Square and Reduction to a Control
Problem

Recall the definition ofX -simple controlZ(t, x) before Theorem 2.3. We
shall construct aX -simple controlZ(t, x) with the property that for any family
{9(s, x)}1

s=0 of continuous maps of the plane such that

(B.6) |z(9(s, x)) − z(8(Z, s)x)| <
1

2
, we have U ⊂

⋃

x∈γ̃

1⋃

s=0

9(s, x) .

Then Theorem 2.3 would imply (B.5).
Choose some parametrizationγ̃ = γ̃ (u), u ∈ [0, 1]. Let

ξ(s, u) = 8(Z, s)γ̃ (u) , ζ(s, u) = 9(s, γ̃ (u)) .

We want to construct a control such that

(B.7) U ⊂
1⋃

s=2/3

1⋃

u=0

ζ(s, u)

for each9 satisfying (B.6). LetŴ denote the boundary of[2
3, 1] × [0, 1]. To show

(B.7) we exhibit a control such that for all̃B ∈ U the index

(B.8) ind(ζ(Ŵ), B̃) = 1 .



24 D. DOLGOPYAT, V. KALOSHIN, AND L. KORALOV

ξ(Ŵ)U

Û

FIGURE B.2. Proof of Lemma 3.7.ξ(Ŵ) consists of two almost trans-
lates ofγ̃ and two almost vertical segments.

To obtain (B.8) for eachζ such that

(B.9) |z(ζ ) − z(ξ)| <
1

2
,

we constructZ such that

(B.10) ind(ξ(Ŵ), B̃) = 1 and dist(z(ξ(Ŵ)), z(U )) ≥ 1

(see Figure B.2). Note that (B.10) implies that anyζ satisfying (B.9) is homotopic
to ξ in R

2 − B̃ and so (B.8) holds.

B.6 Construction of a Sweeping Control

It remains to construct a control satisfying (B.10). LetÛ = z−1[−2, 2]2. Let

Z(t, ·) =





−24Y2( · ), 0 ≤ t < 1
3,

9Y1( · ), 1
3 ≤ t < 2

3,

45Y2( · ), 2
3 ≤ t ≤ 1.

We claim thatZ(t, x) has the required properties. Letξ(s, u) = (a(s, u), b(s, u)).

Since−5 ≤ b(0, u) ≤ 5, it follows that−5−8×1.01 ≤ b(2/3, u) ≤ 5−8×0.99.
The second inequality shows thatξ(2/3, u) lies belowÛ . Similar computations
show thatξ(1, u) lies aboveÛ , ξ(s, 0) lies to the left ofÛ , andξ(s, 1) lies to the
right of Û . This proves (B.10). �

Appendix C: Stable Manifolds and Cones

Here we prove Lemma 4.3 about local properties of stable manifolds. In this
sectionP denotes the measure on solutions of (1.1) whenx0 is chosen according to
the invariant measure on the torus andPx denotes the measure on solutions of (1.1)
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wherex0 = x. We need to prove that for anyε > 0 there exista(ε), b(ε), andL(ε)

such that

P{Aj (a, b, L)} > 1 − ε

10
, j = 1, 2,

whereAj are defined by (4.2). We divide the proof into four steps.

• Step 1. Define geometric quantities of stable manifolds.
• Step 2. Establish probabilistic estimates for these geometric quantities.
• Step 3. State sufficient conditions for events in Lemma 4.3 to hold in terms

of these quantities.
• Step 4. Reformulate these sufficient conditions and prove them.

C.1 Geometric Characteristics of Stable Manifolds

Givenx, let

r (x, t) = sup
{
r > 0 : Ws(x, t) ∩ ∂ Br (x) 6= ∅

}
.†

Recall thatWs
r (x, t) denotes a connected component ofWs

r (x, t) ∩ Br (x). Given
r > 0, letκ(x, r, t) be the maximal curvature ofWs

r (x, t) and

L(x, r, t) = sup
u≥t

diam ft,uWs
r (x, t) .

By stationarity the distributions ofr (x, t), κ(x, r, t), andL(x, r, t) do not de-
pend ont. We writer (x), κ(x, r ), andL(x, r ) for r (x, 0), κ(x, r, 0), andL(x, r, 0).

By the stable manifold theorem,r is positive and bothκ and L are finite almost
surely. Therefore, for anyr, ε0 > 0 there exist positiver0, κ0, andL0 such that

P{r (x) ≥ r0} ≥ 1 − ε0 ,

P{κ(x, r ) ≤ κ0} ≥ 1 − ε0 ,

P{L(x, r ) ≤ L0} ≥ 1 − ε0 .

In the next step of the proof, we use the strong Hörmander condition to conclude
that these constants can be chosen independently ofx.

C.2 Probabilistic Estimates on Geometric Characteristics
of Stable Manifolds

LEMMA C.1 For any r, ε0 > 0 there exist positive r1, κ1, and L1 such that for each
point x ∈ R

2 we have

Px{r (x) ≥ r1} ≥ 1 − ε0 ,

Px{κ(x, r ) ≤ κ1} ≥ 1 − ε0 ,

Px{L(x, r ) ≤ L1} ≥ 1 − ε0 .

† It can be shown thatr (x, t) = +∞ almost surely but we shall not use this fact.
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PROOF: We prove the first statement only. Proofs of the other statements are
similar.

By the strong Hörmander condition, which guarantees that the time one tran-
sition density for the process is a smooth positive function, and by the Markov
property there is aC such that the following holds:

For any measurable set̃� on the space of the realizations of the flow with
P{�̃} > 1− ε0 we have thatPx{h1�̃} ≥ 1− Cε0, where h1 is the time one shift on
the space of the realizations of the flow.

Let r̃ be such that
P{r (y, 1) ≥ r̃ } ≥ 1 − ε0

2C
(herey is considered to be uniformly distributed on the torus). Then for anyx we
have

Px{r (x1, 1) ≥ r̃ } ≥ 1 − ε0

2
.

Since f0,1 is a diffeomorphism, there existsN such that

(C.1) P{‖ f0,1‖C1 ≤ N} ≥ 1 − ε0

2
.

However, if
‖ f0,1‖C1 ≤ N ,

then f −1
0,1 cannot decrease lengths by more than a factor ofN (since f0,1 can in-

crease lengths by at most a factor ofN.) Hence our claim follows with
r1 = r̃ /N. �

Lemma C.1 implies the second part of (4.2). Now we proceed to establish the
first part of (4.2).

C.3 Sufficient Geometric Conditions for the First Event of (4.2)
Recall thatK x(a, b, n) is the cone appearing in the first event of (4.2). We

claim that for anyr, κ andα < π
2 there exista andb such that if

6 (Ws(x), n) ≤ α ,(C.2a)

κ(x, r ) ≤ κ ,(C.2b)

r (x) ≥ r ,(C.2c)

then the first event of (4.2) holds.
To establish the claim, consider coordinate systemz1, z2 such thatx is at the

origin andn coincides with thez1-axis. Letv1, v2 be the coordinates of the unit tan-
gent vector toWs(x) pointing insideK x and letσ be the arc length parametrization
of Ws(x). Then by (C.2a)

v1 ≥ cos(α) , |v2| ≤ sin(α) ,

and so by (C.2b)

dz1

dσ
≥ cos(α) − κσ ,

∣∣∣∣
dz2

dσ

∣∣∣∣ ≤ sin(α) + κσ .
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Hence

z1 ≥ cos(α)σ − κσ 2

2
, |z2| ≤ sin(α)σ + κσ 2

2
.

Therefore we can choosea, b so thatz1 reachesa beforez1/
√

z2
1 + z2

2 reachesb.

This implies that the half ofWs
a(x) lying insideK x crossesK x

3 but avoidsK x
1 and

K x
2 . Similarly, the second part ofWs

a(x) lies in−K x and so never crossesK x. This
proves the claim.

Note that Lemma C.1 implies that (C.2b) and (C.2c) hold with probability ar-
bitrarily close to 1 for appropriater andκ. It remains to show that by increasingα

we can make the probability of (C.2a) arbitrarily close to 1.

C.4 Sufficient Condition for (C.2a) and Proof

Let Es(x) denote the stable direction atx. In view of the above claim, in order
to establish (4.2), it remains to show that for anyε0 there isα < π/2 such that for
anyx we have

(C.3) P{6 (Es(x), n) ≤ α} ≥ 1 − ε0 .

More generally, we shall show that there exists a constantC̄ such that for all(x, v)

and allε there existsβ such that

(C.4) P{6 (Es(x), v) < β} ≤ ε0 .

Applying (C.4) withv orthogonal ton we obtain (C.3).
To establish (C.4), observe that by the strong Hörmander condition there exists

a unique invariant measurẽµ on the unit tangent bundleST
2, and this measure has

a smooth density. Let

B(β, ε) = {(x, v) : P{6 (Es(x), v) < β} > ε} .

Note that for fixedx the cardinality of the largest 2β-separated set inside{v :
(x, v) ∈ B(β, ε)} is less than 1/ε. Thus

µ̃(B(β, ε)) ≤ const
β

ε
.

Thus
P{(x1, d f0,1v) ∈ B(β1, ε)} → 0 asβ1 → 0 .

Hence we can findβ1 such that

P
{

6 (T Ws(x1, 1), d f0,1v) < β1
}

<
ε0

2
.

To conclude, we need the following elementary fact: GivenQ ∈ SL2(R), consider
its action on the projective lineQ(v) = Qv/‖Qv‖. Then the derivative of this
action is given byDQ(v)v′ = PQv(Qv′)/‖Qv‖, where PQv is the orthogonal
projection in the direction ofQv. In particular,

(C.5) ‖DQ‖ < ‖Q‖2 .
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p

Uh1,h2

K x

x

∂U

FIGURE D.1

By (C.5) there exists an absolute constantC such that if

6
(
T Ws(x1, 1), d f0,1v

)
≥ β1 then 6 (Es(x), v) ≥ β1

C‖d f −1
0,1 ‖2

.

TakeN such that

P{‖d f −1|| ≥ N} ≤ ε0

2
.

Then (C.4) follows withβ = β1/(C N2). This completes the proof.

Appendix D: The Cone K x and the Images of the Curvesγ1 and γ2

In this appendix we prove Lemma 4.4. Recall the notation used in the proof of
Proposition 4.2 (see Figure D.1).

As in the proof of Lemma 3.7, it is sufficient to prove the following statement:
there areθ > 0 andT > 0 such that

P
{
γi ∩ K x

1 6= ∅, γi ∩ K x
2 6= ∅, i = 1, 2

}
≥ θ

for anyγ1, γ2 ∈ C2R for somet ≤ T . Without loss of generality, we may assume
that H1(x) = 0 whenx ∈ ∂U and thatH1(x) > 0 for x ∈ U . Let Uh1,h2 =
{x : x ∈ U, h1 ≤ H1(x) ≤ h2}. Note that forh1 andh2 small enough,Uh1,h2

is homeomorphic to an annulus. Since the time it takes a solution ofdyt/dt =
X1(yt), y0 = x, to make one rotation along the stream line tends to infinity when
dist(x, ∂U ) → 0, for sufficiently smallh1 andh2 we can introduce the angle-action
coordinates inUh1,h2 such that the dynamics under the flowX1 is described by

φ̇ = ω(I ) , İ = 0 , φ ∈ [0, 2π] , I ∈ [h1, h2] ,

with the property that

(D.1) ω(h2) > ω(h1) .
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We say that a curve fully crossesUh1,h2 if it is contained in the closure ofUh1,h2

and its endpoints belong to{H1 = h1} and{H1 = h2}, respectively. For a curve
γ in Uh1,h2, we define its winding numberw(γ ) as the change of theφ-coordinate
over the curve. In this notation|w(K x

1 )|, |w(K x
2 )| ≤ 1. Thus, if|w(γ )| ≥ 2, then

γ crosses bothK x
1 and K x

2 . Also, for anyv ∈ R and any curveγ fully crossing
Uh1,h2, we have

w(8(vX1, 1)γ ) − w(γ ) = v(ω(h2) − ω(h1)) ,

where8(vX1, t) is the flow generated bẏx = vX1(x).

Therefore, due to (D.1), there existsv > 0 such that for anyγ fully crossing
Uh1,h2, at least two of the three curves

(D.2) 8(vX1, 1)γ , 8(2vX1, 1)γ , 8(3vX1, 1)γ

have winding numbers larger than 2 in absolute value, and therefore crossbothK x
1

andK x
2 . The same is true for any curves sufficiently close to those in (D.2).

Therefore, by Theorem 2.3 we conclude that with positive probability forevery
pair of curves̃γ1 andγ̃2, both of which fully crossUh1,h2, the timeδ1 images of the
curves under the action of the stochastic flow (1.1) cross bothK x

1 andK x
2 .

It remains to prove the following:

LEMMA D.1 There exist positive c1 and T such that for allγ1, γ2 ∈ C2R we have

P{A} ≥ c1 ,

whereA is the event that for some t< T both f0,tγ1 and f0,tγ2 contain subcurves
that fully cross Uh1,h2.

PROOF: Similarly to the way it was done in the proof of Proposition 3.1 for
one curve, it is easy to show that there is a sequence of stopping timesτj such that
τj +1 − τj ≥ 1, E(τj +1 − τj )

m ≤ Cm, and each of the curvesγi (τj ) is long and
intersectsBR(0). TakeAi j ∈ γi (τj ) such that

dist
(
A1 j + Z

2, A2 j + Z
2
)

≥ 1

10
.

Let Ub andUin f be the bounded and the unbounded components ofR
2 − Uh1,h2,

respectively. By the strong Hörmander condition

(D.3) P{ fτj ,τj +1/2Ai j ∈ Ub, i = 1, 2} ≥ c2 .

By Corollary 2.6 we can chooseN ∈ N such that

(D.4) P{diam(γi (t)) > diam(U ) for all t > N, i = 1, 2} ≥ 1 − c2

3
.

Then (D.3) and (D.4) imply that

P{γi (τN+1/2) fully crossUh1,h2} ≥ c2

3
.
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ChooseT such that

P

{
τN + 1

2
≤ T

}
≤ c2

6
.

Then Lemma D.1 follows withc1 = c2/6. �

Appendix E: Morse Functions on the Two-Dimensional Torus

In this appendix we present some basic facts about so-called Morse functions
on the two-dimensional torusT2. An excellent account about Morse functions
is Milnor’s book [13]. Let H : T

2 → R be aC∞ smooth function onT2, let
C∞(T2) be the space of such functions withC∞ topology, andx = (x1, x2) ∈ T

2

be a standard coordinate system. A pointx ∈ T
2 is calledcritical if the gradient

of H vanishes atx, i.e., ∇H(x) = (∂x1 H(x), ∂x2 H(x)) = 0. A function H is
called aMorsefunction if all its critical points are nondegenerate, i.e., the Hessian
matrix∂2

xi xj
H(x) has full rank. It follows from the definition that critical points are

isolated. Each critical point is either a local minimum (respectively, maximum) or
a saddle point. In particular, we have that each Morse function has only finitely
many critical points.

LEMMA E.1 There is an open and dense set of Morse functions in C∞(T2). In
other words, a generic function is Morse.

PROOF: As we shall see, this lemma follows by the transversality theorem.
To each smooth mapH : T

2 → R one associates a so-called 2-jetj 2H =
(H,∇H, ∂2

xi xj
H) : T

2 → R × R
2 × R

4}. Now consider condition6 = {x :
∇H(x) = 0 and rank∂2

xi xj
H(x) < 2}. This condition consists of three indepen-

dent equations or, equivalently, it has codimension 3, which is greater than the
dimension ofT2. By the transversality theorem [1], the property that the image
of j 2H does not intersect6 is open and dense. But ifj 2H misses6, thenH is
Morse. �

A different way to prove this lemma is in [13, sec. 5].
An image of a critical point underH is called acritical value. All the other

values in the imageH(T2) are calledregular. It follows from the theorem on
implicit functions that the preimage (or level set)La = H−1(a) ⊂ T

2 of regular
valuea is a smooth curve. Since each Morse function has only finitely many critical
points, it has only finitely many critical values.

LEMMA E.2 Let a be a regular value of a C∞ smooth Morse function. Then for
small ε > 0 and any|a′ − a| < ε, level sets La′ = H−1(a′) are smooth curves.
Moreover, each connected component of H−1([a − ε, a + ε]) is diffeomorphic to a
cylinder(φ, I ) ∈ [0, 1] × T with level sets La′ being circles{I = Ia′}.
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PROOF: Since critical points are isolated, for each regular valuea all nearby
valuesa′ are regular. By the implicit function theorem for thesea′ level sets,{L ′

a}a′

are smooth curves and depend smoothly ona′. Therefore, we could choose local
coordinates inH−1([a − ε, a + ε]) so that one coordinate parametrizes the value
of H and the other parametrizes the length of the corresponding level curves.�

Notice that ifX is a vector field onT2 andH is its stream function, then trajec-
tories ofX belong to level sets ofH . Therefore, if in this lemma we choose time
parametrization on level curves (circles), then we getaction-angle coordinates.
Namely, the vector fieldX in the new coordinate system becomesφ̇ = ω(I ), İ =
0 for some smooth functionω(I ).

LEMMA E.3 Let U be the maximal open set containing H−1([a − ε, a + ε]) ⊂
U ⊂ T

2 where action-angle coordinates can be defined. Then the boundary∂U
contains a saddle.

PROOF: By maximality∂U must contain critical points. If all those points were
maxima and minima, then the closureŪ would be diffeomorphic to the 2-sphere,
a contradiction. The result follows. �
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