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1. Statement of results. There is some disagreement about the meaning
of the phrase ’chaotic flow.’ However, there is no doubt that mixing Anosov
flows provide an example of such systems. Anosov systems were introduced
and extensively studied in the classical memoir of Anosov ([A]). Among other
things he proved the following fact known now as Anosov alternative for flows:
either every strong stable and strong unstable manifold is everywhere dense
or the flow gt is a suspension over an Anosov diffeomorphism by a constant
roof function. If the first alternative holds gt is mixing with respect to every
Gibbs measure (see [PP2]).
Therefore the natural question is to estimate the rate of mixing. This is
certainly one of the simplest questions concerning correlation decay in con-
tinuous time systems. Nevertheless the only results obtained until recently
dealt with the case when the system discussed had an additional algebraic
structure. The easier case of Anosov diffeomorphisms can be treated by the
methods of thermodynamic formalism of Sinai, Ruelle and Bowen ([B2]).
Namely one uses Markov partitions to construct an isomorphism between
the diffeomorphism and a subshift of a finite type and then proves that all
such subshifts are exponentially mixing. This method would succeed also for
flows if any suspension over a subshift of a finite type had exponentially de-
caying correlations. However already the simplest example–suspensions with
locally constant roof functions never have such a property ([R1]). One can
use the above observation to produce examples of Axiom A flows with arbi-
trary slow correlation decay. It became clear therefore that some additional
geometric properties should be taken into account. In a recent work Cher-
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nov ([Ch1], [Ch2]) has employed uniform non-integrability condition to get
subexponential estimate for correlation functions for geodesic flows on sur-
faces of variable negative curvature. His method relies on the the technique
of Markov approximation developed in [Ch1].
The aim of this paper is to combine geometric considerations of Chernov
with the thermodynamic formalism approach. The later method seems to be
more appropriate than Markov approximations since it gives simple enough
description of the resonances ([P], [R2]) and hence one can hope to obtain
the asymptotic expansion of the error term even though this problem seems
to be much more difficult than just obtaining upper bound. In fact in this
paper we show that under the condition introduced by Chernov correlations
do decay exponentially as was conjectured in [Ch2]. More precisely we prove
the following statement. Let F be a Hölder continuous potential and µ
the Gibbs measure for F. Denote ρA,B(t) =

∫

A(x)B(gtx) dµ(x), ρ̄A,B(t) =
ρA,B(t) − ∫

A(x) dµ(x)
∫

B(x) dµ(x).
Theorem 1. Let (M, gt) be a geodesic flow on the unit tangent bundle M
over a negatively curved C7 surface. Then for any Hölder continuous (of the
class Cα) potential F there exist constants C1, C2 such that for any pair of
C5 functions A(x) and B(x) |ρ̄A,B(t)| ≤ C1e

−C2t‖A‖5‖B‖5.
The most interesting examples of potentials are Sinai-Bowen-Ruelle potential
R(x) = ∂

∂t
|t=0 ln det(dgt|eu) which yields the Lesbegue measure and F ≡ 0

which corresponds to the measure of maximal entropy (see [M], [BMar], [PP1]
for applications of the later measure to geometric problems).
Our method can also be generalized to higher dimensions. In fact we use
only C1−smoothness of the Anosov splitting of geodesic flow in two dimen-
sions ([HP]) and Federer property of the conditionals of Gibbs measures (see
Section 7). Actually we prove the following statement.
Theorem 2. Let gt be a C5−Anosov flow on a compact manifold M. Assume
that stable and unstable foliations are of class C1 . Then for Sinai-Bowen-
Ruelle measure (F=R) there exist constants C1, C2 such that for any pair of
C5 functions A(x) and B(x) |ρ̄A,B(t)| ≤ C1e

−C2t‖A‖5‖B‖5.
Corollary 1. Under the conditions of theorems 1 or 2 given α̃ > 0 there
exist constants C1(α̃), C2(α̃) such that ∀A,B ∈ C α̃(M)

|ρ̄A,B(t)| ≤ C1(α̃)e−C2(α̃)t‖A‖α̃‖B‖α̃.
Proof: Take Ã, B̃ such that Ã, B̃ ∈ C5(M), ‖A − Ã‖0 ≤ e−α̃γt‖A‖α̃
‖B− B̃‖0 ≤ e−α̃γt‖B‖α̃, ‖A‖5 ≤ e5γt‖A‖0, ‖B‖5 ≤ e5γt‖B‖0. Then ρ̄A,B(t) =
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ρ̄Ã,B̃(t) + δ(t) where δ(t) ≤ Const e−α̃γt. From the other hand |ρ̄Ã,B̃(t)| ≤
C1‖A‖α̃‖B‖α̃e−C2te10γt. Taking γ = C2

10+α̃
we obtain that C2(α̃) = C2α̃

10+α̃
satis-

fies the requirement of the corollary.
Remark. The smoothness assumption on the flow gt are not optimal and
are made to simplify the exposition. It’s easy to see that Theorems 1 and
2 remain true if gt ∈ C2+ε. We conjecture, however, that the result should
hold for C1+ε flows.
We can also further weaken our assumptions and still get some consequences.
The smoothness assumption amounts to that the temporal distance function
ϕ(x, y) (see Section 5) is of class C1. (The temporal distance is used to
measure non-integrability of non-smooth distributions. Roughly speaking it
is obtained from the commutators by replacing infinitesimal increments by
finite ones.) For Anosov flows we know that ϕ(x, y) satisfies the intermediate
value theorem. Surprisingly enough this simple observation implies quite
rapid decay of correlations.
Theorem 3. Let gt be an arbitrary topologically mixing C∞ Anosov flow,
F be an arbitrary Holder continuous potential and A(x), B(x) be C∞(M)
functions. Then ρ̄A,B(t) is rapidly decreasing in the sense of Schwartz.
Note by contrast that in Ruelle’s counterexamples ϕ assumes only finite
number of values. We conjecture that Theorem 3 is true for any Axiom
A flow such that the range of ϕ has a positive Hausdorff dimension. This
would get us quite close to description of all Axiom A flows with slow decay
of correlations (see [D] for more discussion on this subject).
The plan of the paper is the following. In Sections 2-4 we recall how to
reduce our problem to the estimation of the spectral radii of a certain one-
parameter family of transfer-operators Lξ. This procedure is due to Pollicott
(see [P], [R2]) using earlier developments by Sinai, Bowen and Ruelle. Here
we describe briefly this reduction. We take the Laplace transform of the
correlation function and write it as a double integral over space and time.
So when the space variable is fixed the integration is over the flow orbit. We
now take a Markov section (that is some special cross section of the flow, see
Section 3 for precise definitions). Let σ̂ be the first return map and τ be the
first return time. We chop the orbits on the pieces between consecutive hits
of our Markov section. A simple calculation shows that the corresponding
part of the integral can be expressed in terms of the operators (Lξh)(x) =
eiξτ(x)h(σ̂x) (h is defined on the Markov section). The Markov property
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implies that these operators preserve the subspace of functions which are
constant along the local stable leaves of our cross section. The transfer
operator Lξ is just the adjoint of Lξ on this space restricted to the space
of the densities (with respect to conditionals of µF ). So it is clear the the
spectra of Lξ play an important role in our consideration. We study the
spectra in Sections 5-8. In Section 5 we introduce uniform non-integrability
condition (UNI) and explain that it is quite similar to certain non-degeneracy
condition in the theory of oscillatory integral operators. (It is often useful to
view transfer operators as integral operator with δ-type kernels.) In Section 6
we show what C1 smoothness of Anosov splitting is a natural weaker version
of (UNI). The proof of the main spectral bound is contained in Sections 7
and 8. Section 9 is devoted to the proof of Theorem 3. Most of the steps in
the proof are completely analogous to ones in the proofs of Theorems 1 and
2. In such cases we leave the proof to the reader. Four Appendixes contain
some more technical results. The calculations presented are pretty standard
but since the details are spread in many different places we decided for the
convenience of the reader to collect all the proofs at the end of the paper.
We do not claim, however that our proofs in the Appendixes are shortest
possible. The readers familiar with the subject should have no difficulty to
do all the calculations by themselves. The others may wish to look through
the Appendixes to get an idea of the proof and then try to fill the details
consulting the paper in case any problems arise.
2.Symbolic dynamics. As it was explained in the introduction we will use
Markov section to model our flow by some symbolic dynamical system. In
this section we recall basic facts about such systems and also introduce our
notations. For proofs and more information on the subject see [B2], [PP].
For a n× n matrix A whose entries are zeroes and ones we denote by ΣA =
{{ωi}+∞

i=−∞ : Aωiωi+1
= 1} the configuration space of a subshift of a finite

type. Sometimes we omit A and write Σ instead of ΣA. The shift σ acts on Σ
by (σω)i = ωi+1. The one-sided shift (Σ+

A, σ) is defined in the same way but
the index set where is the set of non-negative integers. For θ < 1 we consider
the distance dθb(ω

1, ω2) = θk where k = max{j : ω1
i = ω2

i for |i| ≤ j} (the
subscript b stands for ’base’). We write Cθ(Σ) for the space of dθb−Lipschitz
functions and C+

θ (Σ) for the subspace of functions depending only on the
future coordinates ω0, ω1 . . . ωn . . . . We can identify C+

θ (Σ) with Cθ(Σ
+). We

use the notation L(h) for the Lipschitz constant of h and hn(ω) =
n−1
∑

i=0
h(σiω).
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Functions f1 and f2 are called cohomologous (f1 ∼ f2) if there is a function
f3 such that f1(ω) = f2(ω) + f3(ω)− f3(σω). For any f ∈ Cθ(Σ) there exists
a function f̃ ∈ C+√

θ
(Σ) such that f ∼ f̃ . If ω̄, ω̃ are points in Σ and ω̄0 = ω̃0

we define their local product [ω̄, ω̃] by

[ω̄, ω̃]j =
{

ω̄j, j ≤ 0
ω̃j j ≥ 0

We assume that σ is topologically mixing (that is all entries of some power
of A are positive). The pressure functional is defined by

Pr(f) = sup
ν̃

∫

f(ω) dν̃ + hν̃(σ)

where the supremum is taken over the set of σ−invariant probability mea-
sures and hν̃(σ) is the measure theoretic entropy of σ with respect to ν̃. A
measure ν is called the equilibrium state or the Gibbs measure with the po-
tential f if

∫

f(ω) dν + hν(σ) = Pr(f). For Cθ(Σ) potentials Gibbs measures
exist and are unique. It is clear that cohomologous functions have the same
Gibbs measure. Take f ∈ C+

θ (Σ) and let ν be its Gibbs measure. To de-
scribe ν it is enough to specify its projection to Σ+. To this end consider the
transfer operator Lf : Cθ(Σ

+) → Cθ(Σ
+)

(Lfh)(ω) =
∑

σ$=ω

ef($)h($). (1)

Some useful properties of this operator are listed below. First of all the n-th
power of L is a transfer operator for σn

(Lnfh)(ω) =
∑

σn$=ω

efn($)h($).

The structure of the spectrum of the transfer operator is described by Ruelle-
Perron-Frobenius Theorem.
Proposition 1. (Ruelle). There exist a positive function ĥ ∈ Cθ(Σ

+)
and a measure ν̂ on Σ+ such that
a) Lf ĥ = ePr(f)ĥ;
b) L∗

f ν̂ = ePr(f)ν̂ L∗
f being the adjoint to Lf ;

c) there exist constants C3, ε1 such that for all h ∈ Cθ(Σ
+) for all n

‖e−nPr(f)Lnfh− ν̂(h)ĥ‖θ ≤ C3(1 − ε1)
n‖h‖θ.
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d) The measure ν = ĥν̂ is σ invariant, moreover it is the projection of f–
Gibbs measure on Σ+.
(A good estimate for ε1 was given in a recent paper by Liverani [L].)
Remark. It is clear from this statement that the constants C3, ε1 can be
chosen to depend continuously on f which we always assume in the sequel.
Lf is called normalized if Lf1 = ePr(f)1. We can always normalize L by

replacing f by f(ω)+ ln ĥ(ω)− ln ĥ(σω). In this case L∗ν = ePr(f)ν. Normal-
ized operators satisfy the following useful identity. Let w = w1w2 . . . wn be
an admissible word (that is Awiwi+1

= 1). The map $(ω) = wω is defined on
a subset of the space Σ+

A. On this subset the following equation holds:

dν($)

dν(ω)
= exp [fn($) − nPr(f)]. (2)

Let τ ∈ Cθ(Σ) be a positive function. Consider the space

Στ = Σ × R/{(ω, s) ∼ (σω, s+ τ(ω))}

with the distance dθ((ω1, s1), (ω
2, s2)) = dθb(ω

1, ω2) + |s1 − s2|θ. Elements of
Στ will be denoted by q. The suspension flow with the roof function τ is
defined by Gt(ω, s) = (ω, s+ t). The pressure and Gibbs measures for Gt are
defined in the same way as it was done for σ. These measures can be described
as follows. Let F (q) ∈ Cθ(Σ

τ ) and µ be the corresponding Gibbs measure.

Denote f(ω) =
τ(ω)
∫

0
F (ω, s)ds.Then dµ(q) = 1

ν(τ)
dν(ω)ds where ν is the Gibbs

measure with the potential f(ω)−PrG(F )τ(ω) and Prσ(f −PrG(F )τ) = 0.
For the study of Gt the so called complex Ruelle-Perron-Frobenius theorem
is handy (see Section 4).
Proposition 2. (Pollicott, Haydn, Ruelle) a) The spectral radius
r(Lf+iτ ) ≤ ePr(f) and r(Lf+isτ) = ePr(f) for some real s 6= 0 if and only if
Gt is not weak-mixing;
b) the specter of Lf+iτ in the annulus {θePr(f) < |z| ≤ ePr(f)} consists of
isolated eigenvalues of finite multiplicity;
c) the leading eigenvalue λ(s) of Lf+isτ is analytic near 0 and λ′(0) =
iλ(0)ν(τ) (ν being the Gibbs measure for f).
3. Anosov flows. In this section we provide a background about Anosov
flows and symbolic dynamics associated with them.
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Recall that a flow gt on a compact Riemann manifold M is called Anosov
if there exists a continuous dgt−invariant splitting of the tangent bundle
TM = Eu ⊕ E0 ⊕ Es such that
1) E0(x) is generated by the tangent vector to the flow;
2) There exist constants C4, C5 > 0 such that

∀v ∈ Es(x) ∀t > 0 : ‖dgtv‖ ≤ C4e
−C5t‖v‖

∀v ∈ Eu(x) ∀t > 0 : ‖dg−tv‖ ≤ C4e
−C5t‖v‖.

For Anosov flows there always exists an adapted metric for which C4 can be
taken to be 1 (possibly on the expense of replacing C5 by a smaller constant).
We will assume that our metric is the adapted one. The fields Eu and Es
are always integrable. The corresponding integral manifolds are called the
strong unstable manifold of x W su(x) and the strong stable manifold of x
W ss(x) respectively. Unstable manifold W u(x) and stable manifold W s(x)
of x are gt−orbits of W su(x) and W ss(x) respectively. The local versions of
these objects are sometimes useful. The local strong stable manifold W ss

loc(x)
is the set of points {y ∈ W ss(x) : ∀t > 0 dist(gtx, gty) ≤ ε}. W su

loc(x),W
s
loc(x)

and W u
loc(x) can be defined in a similar fashion. If ε is small enough one

can find a neighborhood O(diag) of the diagonal in M ×M such that for
(x, y) ∈ O the intersection W u

loc(x) ∩W ss
loc(x) consists of a single point which

is denoted [x, y]. A set Π is called parallelogram if it can be represented as
Π = {[x, y] : x ∈ U(Π), y ∈ S(Π)} where U(Π) ∈ W su

loc(x) and S(Π) ∈ W ss(x)
are admissible sets i. e. U(Π) = Cl(IntU(Π)), S(Π) = Cl(IntS(Π)) (the clo-
sure and the interior are taken in the induced topology of the corresponding
local manifolds). Π has the natural partition by local leaves of the unstable
(respectively strong stable) foliation. The element of this partition contain-
ing x will be denoted W u

Π(x) (respectively W s
Π(x)). We introduce a coordinate

system (u, s) on Π so that points of U(Π) have coordinates (u, 0), points of
S(Π) have coordinates (0, s) and (u, s) = [(u, 0), (0, s)].
Let P be a collection of parallelograms: P = {Πi}. Put Π =

⋃

i
Πi, U =

⋃

i
U(Πi) and W ∗

Π =
∨

i
W ∗

Πi
that is W ∗

Π(x) = W ∗
Πi

(x) if x ∈ Πi. P is called a

Markov section if the first return map σ̂ : Π → Π has the following properties:
σ̂(W s

Π(x)) ⊂ W s
Π(σ̂x) and σ̂−1(W u

Π(x)) ⊂ W u
Π(σ̂−1x). The existence of Markov

sections for Anosov flows was proven by Bowen and Ratner ([B1], [Rt]).
Markov sections allow us to construct a symbolic representation of our flow
as follows. If P is a Markov section consider the matrix A with the following
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entries

Aij =
{

1, if σ̂(IntΠi) ∩ IntΠj 6= ∅
0, otherwise

and let τ : Π → R+ be the first return time: σ̂x = gτ(x)x. The map ζ :

ΣA → Π given by ζ(ω) =
+∞
⋂

i=−∞
σ̂−iΠωi

which is well-defined due to the

Markovness of P is a surjective semiconjugacy between σ and σ̂. If gt is a
topologically mixing Anosov flow one can choose such a Markov section that
σ is topologically mixing. Write τ(ω) = τ(ζ(ω)) and let Gt : Στ → Στ be the
suspension flow with the roof function τ. We can extend ζ to a semiconjugacy
between Gt and gt by ζ(ω, s) = gt(ζ(ω)). Then ζ([ω̄, ω̃]) = [ζ(ω̄), ζ(ω̃)]. If
F ∈ Cα(M) consider F (q) = F (ζ(q)). F (q) belongs to the space Cθ(Σ

τ ) (the
constant θ < 1 depends on the Hölder exponent α). We will need the fact
that a measure µ on M is the Gibbs measure for F (x) iff its pullback on Στ

is the Gibbs measure for F (q).
4. The reduction to the main estimate. In this section we describe the
plan of the proof of theorem 1. All steps are pretty standard except step IV
which contains new estimates of certain oscillatory integrals depending on a
parameter running over the unit ball in some Banach space.
I) Correlation density. In this subsection we recall one useful expres-

sion for the Laplace transform ρ̂A,B(ξ) =
∞
∫

0
ρA,B(t)e−ξtdt of the correlation

function
ρA,B(t) =

∫

Στ

A(q)B(Gtq) dµF (q).

Starting from this point we write ξ = a + ib. The expression ’for small a
means ’there exist a0 > 0 such that for |a| ≤ a0.’ The phrase ’for large b
should be understood similarly.
Proposition 3. Let τ ∈ C+

θ (Σ), F ∈ Cθ2(Σ). Then there exist constants ε2,
C6, C7, K, and linear operators Qn(ξ),Rn(ξ) : Cθ(Σ

τ ) → C+
θ (Σ) such that

uniformly for small a and large b
a) ‖Qn(ξ)A‖0 ≤ C6(1 − ε2)

n‖A‖θ|b|, ‖Rn(ξ)A‖0 ≤ C6(1 − ε2)
n‖A‖θ|b|;

b) L(Qn(ξ)A) ≤ C7K
n‖A‖θ|b|2, L(Rn(ξ)A) ≤ C7K

n‖A‖θ|b|2;
c) ρ̂A,B(ξ) = ρ̂∗A,B(ξ)+

∞
∑

j,k=0

[

Lj+kf−(Pr(F )+ξ)τ

(

1 − Lf−(Pr(F )+ξ)τ

)−1 Qj(ξ)A
]

Rk(ξ)B dν (3)

8



where f ∼
τ(ω)
∫

0
F (ω, s) ds, Lf−Pr(F )τ1 = 1, L∗

f−Pr(F )τν = ν and
ρ̂∗

A,B

‖A‖0‖B‖0
is

uniformly bounded (for small a′s) (L? is defined by formula (1)).
This statement was essentially proven in [P] with further refinements given
in [R2] except both authors did not need estimates a) and b). For the con-
venience of the reader we reproduce their proof and check the above bounds
in Appendix 1. From Propositions 1-3 one sees in particular that ρ̂ has a
simple pole at 0. The residue is equal to µF (A)µF (B). (This is clear from
the fact that ρA,B(t) ∼ µF (A)µF (B) but it can also be verified directly using
the formulae for Q and R (see [P], [R2]).)
Now if (M, gt) is an Anosov flow and P = {Πi} is a Markov section we
can view Cα(M) and Cα(Π) as subspaces of Cθ(Σ

τ ) and Cθ(Σ) respectively.
Then Cα(U) is identified with a subspace of C+

θ (Σ) since if h(u, s) does not
depend on s, h(ζω) does not depend on {ωj}, j < 0 by the definition of ζ.
The transfer operator then acts as follows

(Lfh)(u) =
∑

σv=u

ef(v)h(v) (4)

where σ : U → U means the composition of the first return map σ̂ and the
canonical projection p : Π → U. If the Anosov splitting is C1 and f ∈ Cα(U)
then Lf preserves Cα(U). Moreover we have the following statement.
Proposition 4. Let F (q) in proposition 1 be of the form FM ◦ ζ, FM ∈
Cα(M) then Qn(ξ) and Rn(ξ) map Cα(M) to Cα(U) and there exist con-
stants C8, C9, ε3K̄ such that for small a′s
a) ‖Qn(ξ)A‖0 ≤ C8(1 − ε3)

n‖A‖α|b|, ‖Rn(ξ)A‖0 ≤ C8(1 − ε3)
n‖A‖α|b|;

b) G(Qn(ξ)A) ≤ C9K̄
n‖A‖α|b|2, G(Rn(ξ)A) ≤ C9K̄

n‖A‖α|b|2, G(h) being
the Holder constant for h.
Proposition 4 follows easily from the explicit expressions for Qn and Rn

presented in Appendix 1. Thus we are lead to study the spectra of Lab =
Lf−(Pr(F )+ξ)τ on the space of Holder functions. Now it may be worthwhile to
recall Ruelle-Perron-Frobenius theorem in this setting. Without the loss of
generality we may assume that ‖(σ′)−1‖ ≤ ε4 < 1.
Proposition 5. a) Let f ∈ Cα(U) and Lf be defined by formula (3) then

there exist a positive function ĥ ∈ Cα(U) and a measure ν̂ on U such that
i) Lf ĥ = ePr(f)ĥ;
ii) L∗

f ν̂ = ePr(f)ν̂;
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iii) There exist C10, ε5 such that ∀h ∈ Cα(U) ∀n

‖e−nPr(f)Lnfh− ν̂(h)ĥ‖α ≤ C10‖h‖αεn5 ;

iv) The measure ν = hν̂ is σ̂ invariant;
b) If gt is topologically mixing then for real s 6= 0 r(Lf+isτ) < ePr(f);
c) The specter of Lf+isτ in the annulus {εα4 ePr(f) < |z| ≤ ePr(f)} consists of
isolated eigenvalues of finite multiplicity.
II) Smoothing. (This is a technical step. The point is that we want to
prove Theorem 1 for F being only Holder continuous. The way we do it is the
following. We give a proof for F ∈ C1(M) and show at the same time that
all the constants in Theorem 1 depend continuously on F in Holder norm.
The reader who is only interested in the case F ∈ C1(M) can safely skip this
subsection and assume in that follows that f (b) ≡ f.) We have to study the
spectra of Lf−[Pr(F )+ξ]τ . This operator fails to preserve C1(U) if f 6∈ C1(U).
However the contribution of f to Lab is ’small’ comparing to the term bτ(u)
which has C1−norm of the order of |b|. Consider a smooth approximation of
f denoted by f (b) which is obtained from f by means of averaging over the
ball of radius 1√

|b|.
This function has the following properties

1) ‖f − f (b)‖0 ≤ G(f)( 1√
|b|

)α, G(f) being the Holder constant of f ;

2)‖f (b)‖1 ≤ C11

√

|b|.
3) f (b) → f in Cα′

(U), as b→ ∞ for any α′ < α.
Denote by λab the largest eigenvalue of Lf(b)−(Pr(F )+a)τ and let hab be the
corresponding eigenvector normalized by the condition sup

u
hab = 1. We now

estimate ∂
∂u
hab. We have

∂
∂u
hab(u)

λab
=
∑

σv=u

{

e[f
(b)−(Pr(F )+a)τ ](v) ∂h

∂v

∂v

∂u
+

∂

∂u

(

e[f
(b)−(Pr(F )+a)τ ](v)

)

h(v)

}

.

Since λab depends continuously on a and 1
|b| and λ00 = 1 we conclude that λab

is close to 1 for small a and large b. By compactness of the family {hab} in
Cα′

inf
U

|h(U)| is uniformly bounded from below and we prove the following

inequality.

Lemma 1. For small a and large b ‖ ∂
∂u

ln h‖ ≤ C12

√

|b|.
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III) Ionescu-Tulcea-Marinescu inequalities. As we already saw it is
more convenient to work with the normalized operator. Denote by

L̂abh(u) =
1

λabhab(u)

[

L̃ab(hhab)
]

(u) (5)

where
L̃ab = Lf(b)−(Pr(F )+a−ib)τ .

This is also transfer operator with the potential f (ab) + ibτ where

f (ab)(u) = f (b)(u) − (Pr(F ) + a) τ(u) + ln hab(u) − ln hab(σu) − lnλab.

We will compare L̂ab with the operator M̂ab defined by

(M̂abh)(u) =
∑

σv=u

ef
(ab)(v)h(v).

M̂ is a Markov operator, that is M̂1 = 1.
We recall some a priori estimates which ensure that for fixed a, b and h the
set {L̂nabh} is precompact in C0−topology.
Lemma 2. There exist constants C13, C14, C15, ε6 so that uniformly for small
a’s
a) |L̂nabh|(u) ≤ (M̂n

ab|h|)(u);
b)| ∂

∂u
((L̂nabh)(u))| ≤ C13

[

εn6(M̂n
ab|h′|(u)) + |b|(M̂ab|h|(u))

]

in particular

c) ‖L̂nabh‖ ≤ C13 [b‖h‖0 + εn6‖h′‖0].
d) Let h ∈ Cα′

(U), α′ < α then

‖Lnabh‖0 ≤ C14λ
n
ab‖h‖0

and
G(Lnabh) ≤ C15λ

n
ab

(

|b|‖h‖0 + εnα
′

4 G(h)
)

Proof: a) is trivial since we just estimate every term by its absolute value.
Let us prove b)

∣

∣

∣

∣

∣

∂

∂u
(L̂nabh)

∣

∣

∣

∣

∣

(u) =

∣

∣

∣

∣

∣

∑

σnv=u

e[f
(ab)
n +ibτn](v)

{

∂h

∂v

∂v

∂u
+ h

∂

∂u

(

f (ab)
n + ibτn

)

}∣

∣

∣

∣

∣

≤

εn4

(

M̂n
ab

∣

∣

∣

∣

∣

∂

∂u
h

∣

∣

∣

∣

∣

)

(u) +

(

|b| · ‖ ∂
∂u
τn(v)‖0 + ‖ ∂

∂u
f (ab)
n (v)‖0

)

(M̂n
a,b|h|)(u).

11



Hence b) follows from the following simple result
Lemma 3. Given f ∈ C1(U) there is a constant C16 independent on n such
that for any inverse branch v(u) of u = σnv we have

‖ ∂
∂u
hn(v)‖0 ≤ C16‖

∂h

∂v
(v)‖0.

Proof:
∂

∂u
hn(v) =

n
∑

j=1

∂

∂u
h(σ−ju) =

n
∑

j=1

∂h

∂σ−ju

∂σ−ju

∂u

and since ∂σ−ju
∂u

decays exponentially the claim is proven.
c) is immediate consequence of b). d) can be established by very similar
calculations.
IV) The main estimate. Lemma 2 tells us that if we introduce the norm

‖h‖(b) = max(‖h‖0,
‖h′‖0

|b| ) then ‖L̂nab‖(b) is uniformly bounded for all n and

large b’s. This estimate suggest that we have a chance to get uniform in |b|
bounds using this norm.
Lemma 4. There exist ε7, n0 such that if ‖h‖(b) ≤ 1 then

∫

|Ln0N
ab h|2dν ≤ (1 − ε7)

N

ν being the invariant measure for Lf−Pr(F )τ .
The proof of Lemma 4 is given in Sections 5-8.
Corollary 2. There exist constants C17, C18, β1 so that if ‖h‖(b) ≤ 1 then

|LC17 ln |b|
ab h|(u) ≤ C18

|b|β1
.

Proof:
∣

∣

∣L̂Nabh
∣

∣

∣ (u) =
∣

∣

∣L̂N−Ñ
ab (L̂Ñabh)

∣

∣

∣ (u) ≤ M̂N−Ñ
ab (

∣

∣

∣L̂Ñabh)
∣

∣

∣)(u) (Lemma 2)

=
(

M̂N−Ñ
a0

(

exp
[

(f (ab) − f (a0))N−Ñ ◦ σN−Ñ
] ∣

∣

∣L̂Ñabh
∣

∣

∣

))

(u) (defenition of M̂ab)

≤ M̂N−Ñ
a0

(

exp
[

2(f (ab) − f (a0)) ◦ σN−Ñ
])

(u)M̂N−Ñ
ab (|LÑabh|2)(u) (Couchy − Shwartz)

Now we apply Ruelle-Perron-Frobenius Theorem

M̂N−Ñ
ab (|L̂Ñabh|2)(u) ≤ ν(|L̂Ñabh|2) + C10‖LÑabh‖C1(U)ε

N−Ñ
5 ≤

12



(1 − ε8)
Ñ + C19ε

N−Ñ
5 |b| (6)

where the second term in the last inequality is estimated by Lemma 2. On
the other hand
(

M̂N−Ñ
a0

(

exp
[

(f (ab) − f (a0))N−Ñ ◦ σN−Ñ
]))

(u) = (Lf(a0)+2(f(ab)−f(a0))
1)(u) ≤

C20 exp[(N − Ñ)Pr(f (a0) + 2(f (ab) − f(a0)))].

Since Pr depends analytically on a, 1
|b| and Pr(f (a0)) = 0 the last expression

is bounded by C20 exp
[

(N − Ñ)C21(|a| + 1
|b|)
]

. Collecting all terms together
we obtain

|L̂Nabh|(u) ≤
{

C20 exp

[

(N − Ñ)C21(|a| +
1

|b|)
]

(

(1 − ε8)
Ñ + C10ε

N−Ñ
5

)

} 1
2

.

So if we choose Ñ = C22 ln |b| and C17 � C22 the RHS of the last inequality
has the required decay for small a and large b.
V) A priori bounds for ρ̂. Estimates of the previous step enable us to
get the following inequalities.
Corollary 3. Let α′ < α (where α is the Holder exponent for f), then for
small a and large b there exist constants C23, C24, β2 so that
a) ‖L̂C23 ln |b|

ab ‖α′ ≤ 1
|b|β2

;

b) ‖(1 − L̂ab)−1h‖0 ≤ C24 ln |b|‖h‖α′.
In case f ∈ C1(U), α′ = 1 Corollary 3 follows immediately from Lemma 2
and Corollary 2. The general case is treated by smoothing. See Appendix 2.
Corollary 4. Let A,B ∈ Cα′

(M) then ρ̂A,B(ξ) has an analytic continua-
tion to {|<ξ| ≤ a0, |=ξ| ≥ b0} and

|ρ̂A,B(ξ)| ≤ C25|=ξ|2 ln |=ξ|‖A‖α′‖B‖α′.

Corollary 4 is derived from Corollary 3 by direct but lengthy calculations.
For details consult Appendix 2.
VI) Integration by parts. We now come to the case when A and B are
smooth. Denote by ∂t the differentiation along the orbits of gt. Write ρA,B(t)
as

ρA,B(t) =
3
∑

j=0

(
∂

∂t
)jρ(0)

tj

j!
+

t
∫

0

(t− s)4

4!
ρA, ∂4

tB
(s) ds.

13



Laplace transform of the last term decays near the imaginary axis not slower
than C25 ln |ξ|

|ξ|4 and has a pole of the forth order at 0. Therefore the application
of the inversion formula for Laplace transform and the change of the contour
of the integration prove Theorems 1 and 2.
5. An example. In this section we demonstrate the idea of the proof of the
main estimate (Corollary 2) on the simplest example. Namely we consider
the case then (M, gt) is a geodesic flow on the unit tangent bundle over a
negatively curved surface and µF is the Lesbegue measure. In this case τ
and f are smooth (of class C1+γ [HP]) so f (b) = f, f (ab) = f (a). Also ν is
absolutely continuous so that dν = g(u) du.
The important role in our consideration is played by the axiom of the uniform
non-integrability (UNI) introduced by Chernov in [Ch2] where it was used
to prove subexponential decay of correlations in the above setting. Here we
recall this property. Let x, y ∈ M. Denote by pxy the natural projection of
W u

loc(x) to W u
loc(y) along the leaves of W ss. We can introduce on W u

loc(x) and
W u

loc(y) coordinate systems (u, t) in such a way that gt(u0, t0) = (u0, t0 + t),
the curves {t = t0} are leaves of the strong unstable foliation and u ◦ pxy =
pxy◦u. Let γ be the image of W su

loc(x). In our coordinate system γ is a graph of
a function t = T (u). Let u(y) be u−coordinate of y and u(x) be u−coordinate
of x. Define

ϕ(x, y) = T (u(y))− T (u(x)).

Denote by x1, y1 ∈ W u(y) the points with the coordinates x1 = (u(x), T (u(x))),
y1 = (u(y), T (u(y))). The condition (UNI) reads as follows

C26 <
ϕ(x, y)

|xx1||x1y1|
< C27. (UNI)

The importance of the function ϕ is clear from the following simple observa-
tion. Let γ1 be a curve in W u(x) given by the equation t = T1(u) and γ2 be
its image in W u(y). Assume that γ2 = {(u, t) : t = T2(u)}, then

ϕ(x, y) = T2(u(y)) − T2(u(x)) − T1(u(y)) + T1(u(x)). (7)

Another useful property of ϕ is the following. Let W1 and W2 be two pieces
of local unstable manifolds and p : W1 → W2 be the projection along strong
stable leaves. For u1, u2 ∈ W1 set Φ(u1, u2) = ϕ(u1, pu2) then

Φ(u1, u2) + Φ(u2, u3) = Φ(u1, u3). (8)
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We now show how to employ this condition for the study of the spectral
properties of our transfer operators. In the proof of corollary 1 we used
Lemma 4 only for N = C22 ln |b| with some constant C22. So it is enough to
prove the following bound.
Lemma 5. There exist constants C28, β3 such that for small a′s and large b′s
and any h with ‖h‖(b) ≤ 1 the following inequality holds

∫

∣

∣

∣(L̂C28 ln |b|
a,b h)(u)

∣

∣

∣

2
dν(u) ≤ 1

|b|β3
.

Before proving this statement let us point out the analogue with some esti-
mates in oscillatory integral theory. We can formally write

(L̂abh)(u) =
∫

g(a)(v)δ(u− σv)eibτ(v)h(v) dv

where g(a) is some real valued function. So let us recall a similar result from
the theory of oscillatory operators with smooth kernels. Let

(Kbh)(u) =
∫

k(u, v)eibT (u,v)h(v)dv.

Then under appropriate hypotheses, for example, if
∣

∣

∣

∣

∣

∂2

∂u∂v
T

∣

∣

∣

∣

∣

≥ c (9)

one can prove power decay of the spectral radius (see [St]). To this end one
considers the L2-norm

∫

|Kh|2(u) du =
∫ ∫

k̃(u, v)h(u)h(v) dudv

where the kernel k̃(u, v) is given by

k̃(u, v) =
∫

k(u, w)k(v, w)eib[T (u,w)−T (v,w)] dv.

Away from the diagonal one can estimate this expression integrating by parts
since by (9)

∣

∣

∣

∣

∣

∂

∂w
[T (u, w)− T (v, w)]

∣

∣

∣

∣

∣

≥ c|u− v| (10)
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We apply the same strategy here:

|L̂abh|2(u) =
∑

σv1=σv2=u

exp
(

f (a)(v1) + f (a)(v2) + ib[τ(v1) − τ(v2)]
)

h(v1)h(v2).

However, for the first power of L̂ab we can not gain much since even though
if we could show that off-diagonal terms can be neglected the diagonal con-
tribute by the amount independent on |b|. Therefore we have to consider
higher powers of L̂ab so that the pairs (v1, v2) become uniformly distributed
on U × U. Let us now give the formal proof.
Proof: U =

⋃

i
Ui It is enough to bound the integral over U1

∫

U1

∣

∣

∣L̂Na,bh
∣

∣

∣

2
dν(u) =

∑

v1,v2

∫

U1

exp
(

f
(a)
N (v1) + f

(a)
N (v2) + ib[τN (v1) − τN (v2)]

)

h(v1)h(v2)g(u)d(u),

where the sum is taken over all the branches (v1(u), v2(u)) of σ−N . Decompose
this sum into two parts. Define d(v1, v2) = inf

u
dist(σ̂N (v2(u)), σ̂N(v2(u)). Let

I1(δ) be the sum over all pairs (v1, v2) with d(v1, v2) < δ and I2(δ) be the
remaining part. Then

I1(δ) ≤
∑

d(v1,v2)<δ

∫

U1

ef
(a)
N

(v1)+f
(a)
N

(v2)g(u) du.

Lemma 6. There exist constants C29 and β4 such that

∑

d(v1,v2)<δ

∫

ef
(a)
N

(v1(u))+f
(a)
N

(v2(u))g(u) du ≤ C29δ
β4.

This lemma is proven in Appendix 3. Here we give heuristic arguments. We
know that σ̂ : Π → Π is exponentially mixing with respect to ν. So the sum
above up to exponentially small correction equals to the probability (with
respect to ν) that if points v1 and v2 are chosen independently the distance
between the projections of σ̂Nv1 and σ̂Nv2 to S(Π) are within distance δ from
each other.
To estimate I2(δ) we need the following elementary estimate from the real
analysis ([St]).
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Lemma 7. (Van der Corput lemma). Let

I =
∫

J

eibψ(u)r(u) du

where the integration is performed over a segment J. Assume that ψ ∈
C1+γ(J), ‖ψ‖1+γ ≤ c1, |ψ′(u)| ≥ c2, where 1

b
≤ c2 ≤ 1, ‖r‖0 ≤ ε and

‖r(u)‖1 ≤ εD then

|I| ≤ εConst(c1)

[

D + 1

|b|c2
+

1

|b|γc22

]

.

If γ = 2 the lemma follows from integration by parts. The general case
requires additional smoothing. See Appendix 4.
We now apply Lemma 7 to estimate

∫

exp
(

f
(a)
N (v1(u)) + f

(a)
N (v2) + ib[τN (v1) − τN (v2)]

)

h(v1)h(v2)g(u) du

if d(v1, v2) ≥ δ. Set ψ(u) = τN (v1(u)) − τN(v2)(u),

r(u) = exp
(

f
(a)
N (v1(u)) + f

(a)
N (v2)

)

h(v1)h(v2)g(u).

Then ε = sup
u
ef

(a)
N

(v1(u))+f
(a)
N

(v2(u)), c1 is uniformly bounded in N and

D = C30(1 + |b|)‖h‖(b)‖
dv

du
‖0 ≤ C30(1 + |b|εN4 )

by Lemma 3. We have to bound | ∂
∂u
ψ| from below. By (7)

[τN (v1(u1)) − τN (v1(u2))] − [τN(v2(u1)) − τN (v2(u2)]

= ϕ(σ̂Nv2(u2), σ̂
Nv1(u1)) (11)

and condition (UNI) implies that c2 ≥ C31δ (cf. (10)). Hence

∫

exp
(

f
(a)
N (v1(u)) + f

(a)
N (v2) + ib[τN (v1) − τN(v2)]

)

h(v1)h(v2)g(u) du ≤

C32 sup
u
ef

(a)
N

(v1(u))+f
(a)
N

(v2(u))

[

1 + |b|εN
|b|δ2

+
1

|b|γδ

]

.
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Take some u0 ∈ U1. By Lemma 3

sup
u
ef

(a)
N

(v1(u))+f
(a)
N

(v2(u)) ≤ C33e
f
(a)
N

(v1(u0))+f
(a)
N

(v2(u0)).

Now specify N = C28 ln |b|, δ = 1
|b|β5

, where β5 < min(γ, 1
2
). Then I1(δ) ≤ C34

|b|β6

and

I2(δ) ≤
C35

|b|β7
∑

(v1 ,v2)

ef
(a)
N

(v1(u0))+f
(a)
N

(v2(u0)).

the last sum equals





∑

σNv=u0

ef
(a)
N

(v)





2

= (M̂N
a 1)2 = 1

and Lemma 5 is proven.
6. Description of the inductive procedure. In this section we begin
with the proof of the main estimate without regularity assumptions of the
last section. Comparing with Section 5 there are two additional difficul-
ties to overcome. The first one is that where we had uniform estimate of
| ∂
∂u

(τN (v1(u))− τN(v2(u)))| for most pairs (v1, v2) (Lemma 6). Now we know
it only for some (v1, v2). More precisely let d = dimW (su).
Lemma 8. There exist ε9, N0 and vectorfields e1(u), e2(u) . . . ed(u) such that
‖ek(u)‖ > 1

2
and for any N ≥ N0 there are two branches v1(u) and v2(u) of

σ−N such that

ε9 ≤ |∂e1(τN(v1(u)) − τN(v2(u)))| ≤ 3ε9

and for k = 2 . . . d

|∂ek
(τN(v1(u)) − τN (v2(u)))| ≤

ε9

100
√
d
.

(Here 100 can be replaced by any constant grater than 2 and
√
d is the

diameter of the unit cube in Rd.) Of course it is lower bound which is of
primary interest here. The upper bound is added just for technical reasons.
Proof: ϕ is C1 function which is not identically zero on

⋃

i
(Πi × Πi). Take

some (x0, y0) such that ϕ(x0, y0) 6= 0. Denote U (N) = σ̂NU. As N → ∞ U (N)

fills Π densely. So we may assume that x0, y0 ∈ U (n0) for some n0. To fix our
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notation suppose that x0, y0 ∈ Π1. Let p1 : U1 → W u
Π1

(x0) and p2 : U1 →
W u

Π1
(y0) be the canonical isomorphisms. Let Φ(u1, u2) = ϕ(p1u1, p2u2). De-

note ū = p−1
2 y0. Since Φ(ū, ū) = 0 and Φ(p−1

1 x0, ū) 6= 0, ∂
∂u
ϕ(u, ū) is not iden-

tically zero. Hence there exist an open set U0 such that ‖ ∂
∂u

Φ(u, ū)‖ ≥ 2ε9 for
some ε9. Choose a coordinate system in z1, z2 . . . zd in U0 so that ∂

∂z1
Φ(·, ū) =

1, ∂
∂zk

Φ(·, ū) = 0, for k = 2 . . . d and ‖ ∂
∂zj

‖ ≥ 1
ε9
. Let ẽk(u) = ε9

∂
∂zk
. Take n1

so large that σn1U0 = U and set ek = dσn1 ẽk. Recall that W u
Π1

(x0) ∈ U (n0)

and W u
Π1

(y0) ∈ U (n0). Let ṽ1(u) and ṽ2(u) be corresponding branches of σ−n0 .
By (5) and (6) ∂

∂z1
[τn0(ṽ1(u))−τn0(ṽ2(u)] = 1, ∂

∂zk
[τn0(ṽ1(u))−τn0(ṽ2(u)] = 0,

for k = 2 . . . d. Denote V1 = ṽ1(U0), V2 = ṽ2(U0). To complete the proof we
need the following statement.
Lemma 9. There exist n2 such that for n > n2 there is a branch v(u) of σ−n

such that

‖ ∂
∂u
τn(v(u))‖ ≤ ε9

200
√
d
.

Proof: By the definition of ϕ

τn(v(u1)) − τn(v(u2)) = ϕ(σ̂nv(u1), puσ̂
nu2). (12)

∂
∂x
ϕ(x, y) depends continuously on y and vanish for y = x (since ϕ(x, y) = 0

for x ∈ W
(u)
loc (y)

⋃

W
(s)
loc (y)). For large n U (n) fills Π densely so we can pick up

v(u) such that σ̂nv(u) is very close to U and the statement follows by (12).
Let N0 = n0 + n1 + n2. There exist two branches v1(u) and v2(u) such
that σN−n0−n1v1 ⊂ V1, σ

N−n0−n1v2 ⊂ V2 and |∂ẽk
(τN−n0−n1(v1)| ≤ ε9

200
√
d
,

|∂ẽk
(τN−n0−n1(v2)| ≤ ε9

200
√
d
. Then

∂ek
[τN(v1) − τN(v2)] =

∂ek
[τN−n1(v1) − τN−n1(v2)] (since σ̂N−n1v1 ∈ W s

Π(v2))

= ∂ẽk
[τN−n1(v1) − τN−n1(v2)] =

∂ẽk

[

τn0(σ
N−n0−n1v1) − τn0(σ

N−n0−n1v2)
]

+∂ek
[τN−n0−n1(v1) − τN−n0−n1(v2)] .

The first term is always less than ε9
100

√
d

while the second one is 2ε9 or 0
depending on if k = 1 or k > 1.
The second problem is that if ν is not absolutely continuous there is no
integration by parts formula. Nonetheless we can still prove a weaker version
of van der Corput lemma and use it to obtain the following inequality.
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Lemma 10. There exist n̄, ε10 so that if ‖h‖(b) ≤ 1 then

∫

|L̂n̄abh|2 dν ≤ 1 − ε10. (13)

This lemma however does not suffice to obtain Corollary 1 because if we try
to repeat its proof using Lemma 10 instead of lemma 4 the term |b|(1−ε5)

N−Ñ

in (6) still force us take N of the order of ln |b| and this would lead only to
the bound

‖L̂Const ln |b|
ab ‖ ≤ 1 − ε

which is much less than we want. Therefore we have to iterate (13). For this
we need a local version of Lemma 10. Denote by KA the cone

KA = {h ∈ C1(U) : ‖ ∂
∂u

ln h‖ ≤ A}.

Lemma 10′. There exist n̄, ε10 and E such that if |h(u)| ≤ H(u) and
‖h′(u)‖ ≤ E|b|H(u) for some H ∈ KE|b| then

∫

|L̂n̄abh|2 dν ≤ (1 − ε10)
∫

H2 dν.

(Lemma 10 is just a particular case when H ≡ 1. So Lemma 10′ tells us that
Lemma 10 remains valid if we replace the constant function by a function
which looks like a constant on the scale 1

|b| .)

The only problem now is to find a suitable majorant for L̂kn̄ab h. Fortunately
it is provided in the proof of Lemma 10′.
Lemma 10′′. There exist ε, n̄, E so that for given b there is a finite number
N1(b),N2(b) . . .Nl(b)(b) of linear operators such that
a) Nj(b) preserves KE|b|;
b) For H ∈ KE|b|

∫

|NjH|2 dν ≤ (1 − ε10)
∫

H2 dν;

c) If |h(u)| ≤ H(u), ‖h′(u)‖ ≤ E|b|H(u) for some H ∈ KE|b| then there

exist j = j(h,H) such that |L̂n̄abh(u)| ≤ (Nj(H))(u) and ‖(L̂n̄abh)′(u)‖ ≤
E|b|(NjH)(u).
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Lemma 10′′ clearly implies Lemma 4. Indeed denote h(k) = L̂kn̄ab h. Let H (0) ≡
1 and set H (k+1) = Nj(h(k),H(k))H

(k). Then by induction h(k+1) ≤ H (k+1),

‖(h(k+1))′(u)‖ ≤ E|b|H (k+1)(u) and

ν(
(

H(k+1)
)2

) ≤ (1 − ε10)ν(|H (k)|2) ≤ (1 − ε10)
k+1.

Therefore
ν(|h(k+1)|2) ≤ ν(

(

H(k+1)
)2

) ≤ (1 − ε10)
k+1.

In Section 7 we define Nj. Lemma 10′′ is proven in Section 8.
7. Construction of N ′

js. Take a cutoff function ∆(x) : Rd → R such that
a) ∆(x) ≥ 0;
b) ∆(x) ≡ 0 for |x| ≥ 1;
c) ∆(x) = 1 for |x| ≤ 1

2
.

If R is a cube centered at x0 with side 2a let ∆R(x) = ∆(x−x0

a
). Recall U0,

z1, z2 . . . zd constructed in the proof of Lemma 8. Divide U0 into cubes

Z~l = { liε11

|b| ≤ zi ≤
(li + 1)ε11

|b| } (14)

where ε11 will be specified below. Denote Y 1
~l

= ṽ1(U0), Y
2
~l

= ṽ2(U0) where
ṽj(u) were defined in the proof of Lemma 8. Let J be some subcollection
of {Y 1

~l
}⋃{Y 2

~l
}. Write Y (J) =

⋃

J
Y i
~l
. Let v1(u) and v2(u) be two branches of

σ−n̄ constructed in Lemma 8. Define the function

mε,J(v) =











1, if v 6∈ v1(U)
⋃

v2(U)
1, if σn̄−n0−n1v 6∈ Y (J)
1 − ε∆Z~l

(σn̄−n0v), if σn̄−n0−n1v ∈ Y i
~l
⊂ Y (J)

.

Define N (J,ε12)
ab h = M̂n̄

ab(mε12,Jh). Precise conditions on J ’s, ε12, n̄, E will be
given below. First we choose E (Lemma 11). After that we choose n̄ and
then ε12 (in the proof of Lemma 13). Given E, n̄, ε12 the set of J ’s is specified

by Lemma 12. Below we give some properties of N (J,ε12)
ab .

Proposition 6. If n̄ is large enough N (J,ε12)
ab preserves KE|b|.

Proof: Direct calculation shows that the multiplication by mJ,ε12 maps

KE|b| to KC36E|b| and by Lemma 2 M̂n̄
ab : KC36E|b| → Kεn̄

4C36E|b|+C37
Take n̄ so

large that εn̄4C36E|b| + C37 < E|b|.
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Lemma 11. If E, n̄ are large enough then for any (h,H) such that H ∈ KE|b|
|h(u)| ≤ H(u) and ‖h′(u)‖ ≤ E|b|H(u) the following inequality holds

‖(L̂n̄abh)′(u)‖ ≤ E|b|(N (J,ε12)
ab H)(u).

Proof: By Lemma 2

‖(L̂n̄abh)′(u)‖ ≤ (C13ε
n̄
4E + 1)|b|(M̂n̄

abH)(u) ≤ (C13ε
n̄
4E + 1)|b|

(1 − ε12)
(N (J,ε12)

ab H)(u).

Choose E, n̄ so large that
(C13ε

n̄
4E+1)

(1−ε12)
≤ E.

Before proceeding further recall another property of ν.
Definition. A measure µ on a metric space (X, ρ) is called Federer measure
if given N there exist a constant CN such that for all x, r µ(B(x,Nr)) ≤
CNµ(B(x, r)).
Proposition 7. ν is a Federer measure.
Under the conditions of theorem 2 (ν is SBR-measure) this is immediate
corollary of absolute continuity. The proof under the conditions of theorem
1 (d = 1) is provided in Appendix 3.
Definition. A set Y is called (r,N)-dense in X if the intersection of any
ball B(x,Nr) with Y contains a ball of radius r.
Corollary 6. Given E,N there exist a constant ε = ε(E,N) such that if
W is (N, r)-dense in U and H ∈ KE

r
then

∫

W

H2 dν ≥ ε
∫

U

H2 dν.

We say that J is dense if for any ~l there is a cube Y i
~l′
∈ J such that σn0Y i

~l′

is adjacent to Z~l.
Lemma 12. Given E, ε12, n̄ there exist ε10 such that if J is dense, H ∈ KE|b|
then ∫

(N (J,ε12)
ab H)2 dν ≤ (1 − ε10)

∫

H2 dν.

Proof:

(N (J,ε12)
ab H)2(u) = (M̂n̄

ab(mJ,ε12H))2(u) ≤ (M̂n̄
abm

2
J,ε12

)(u)(M̂n̄
abH

2)(u).
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For fixed n̄ there exist ε13 such that ifmJ,ε12(v1(u)) = 1−ε12 ormJ,ε12(v2(u)) =

1− ε12 then (M̂n̄
abmJ,ε12) ≤ (1− ε13). Let W be set of such u’s. If J is dense

then W is ( 1
ε214
, ε14|b| )-dense for some ε14. Hence

ν(N (J,ε12)
ab H)2 ≤ ν(M̂n̄

abH
2) − ε13

∫

W

(M̂n̄
abH

2) dν ≤ (1 − ε15ε13)ν(M̂n̄
abH

2)

by Corollary 6 and Proposition 6. Now

M̂n̄
abh = M̂n̄

a0(e
(f(ab)−f(a0))n̄◦σn̄

h) ≤ C38(|a| +
1

|b|)M̂
n̄
a0h

where C38 depends only on n̄. Hence

ν(M̂n̄
abH

2) ≤ (1 − ε13ε15)

(

1 + C38(|a| +
1

|b|)
)

ν(M̂n̄
a0((H

(k))2) ≤

(1 − ε13ε15)

(

1 + C38(|a| +
1

|b|)
)

ν
(

(H(k))2
)

.

If a is small enough and b is large enough the above factor is less than 1.
8. End of the proof of lemma 10′′. It remains to show that if |h| ≤ H,
‖h′‖ ≤ E|b|H for H ∈ KE|b| then for ε12 small enough there exist dense J so
that

|L̂n̄abh|(u) ≤ (N (J,ε12)
ab H)(u).

Let

γ(1)
ε (u) =

|e(f(ab)
n̄ +ibτn̄)(v1(u))h(v1(u)) + e(f

(ab)
n̄ +ibτn̄)(v2(u))(v2(u))|

(1 − ε)e(f
(ab)
n̄ )(v1(u))H(v1(u)) + e(f

(ab)
n̄ )(v2(u))H(v2)

,

γ(2)
ε (u) =

|e(f(ab)
n̄ +ibτn̄)(v1(u))h(v1(u)) + e(f

(ab)
n̄ +ibτn̄)(v2(u))(v2(u))|

e(f
(ab)
n̄ )(v1(u))H(v1(u)) + (1 − ε)e(f

(ab)
n̄ )(v2(u))H(v2)

.

Denote V~l = σn1Z~l, X
i
~l

= {v : v = vi(u) for some u and σn−n0−n1v ∈ Y i
~l
}.

Lemma 13. The following statement holds provided that ε12, ε11 (see (14))
are small enough. Let cubes Z~lI , Z~lII and Z~lIII be obtained from each other
by the smallest possible shift in z1–direction, i.e. lIII1 = lII1 + 1 = lI1 and
lIk = lIIk = lIIIk for k = 2 . . . d. Then there exist i ∈ {I, II, III}, j ∈ {1, 2} such
that for all u ∈ V~li γ

j
ε12

(u) ≤ 1.
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Clearly Lemma 13 implies Lemma 10′′ since one can take

J = J(h,H) = {Y j
~l

: ∀u ∈ X~l
γjε12(u) ≤ 1}

To prove Lemma 13 we need several elementary bounds.
Lemma 14. Let h,H satisfy |h| ≤ H, ‖h′‖ ≤ E|b|H, H ∈ KE|b|. If ε12 is

small enough then for all ~l, j
a) for all v1, v2 ∈ Xj

~l

1

2
≤ H(v1)

H(v2)
≤ 2;

b) either

∀v ∈ Xj
~l
|h(v)| ≤ 3

4
H(v) (A)

or ∀u ∈ X~l
|h(v)| ≥ 1

4
H(v) (B).

Proof: a) is immediate since the logarithmic derivative of H is at most

E|b| and the diameter of X j
~l

is less than ε11
√
d

|b| .

b) Assume that there is v0 ∈ Xj
~l

such that |h(v0)| ≥ 3
4
H(v). Then ∀v ∈ Xj

~l

|h(v)| ≥ |h(v0)| − E|b| sup
X

j

~l

(H) diam(Xj
~l
) ≥ 3

4
H(v0) − 2E|b|H(v0)

ε11

√
d

|b| ≥

(
3

4
− 2Eε11

√
d)H(v0) ≥

1

2
(
3

4
− 2Eε11

√
d)H(v)

so (B) is satisfied if ε11 ≤ 1
16E

√
d
.

Lemma 15. Let

ψ̃(u) = Arg(exp[ibτN (v1(u)) − ibτN (v2(u))]).

Then there exist constants ε16, ε17 such that ∀uI ∈ V~lI , u
III ∈ V~lIII

ε16 ≤ |ψ̃(uI) − ψ̃(uIII)| ≤ ε17

and ε17 can be made as small as we wish by decreasing ε11

(The point of the upper bound is of course to make sure that this difference
is not a multiple of 2π.)
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Proof: Consider coordinates z̄1 . . . z̄d on V~lj such that z̄k(u) = zk(σ
n̄−n1v1(u))

(i.e. z̄k is the pushforward of zk.) Consider ũIII such that z̄1(ũ
III) = z̄1(u

III),
z̄k(ũ

III) = z̄k(u
I) for k = 2 . . . d. Since |ψ̃(uI) − ψ̃(ũIII)| = | ∂

∂z̄1
[τn̄(v1(u)) −

τn̄(v2(u))](·)||uI − ũIII| Lemma 8 implies that

ε9ε11 ≤ |ψ̃(uI) − ψ̃(ũIII)| ≤ C39ε9ε11.

Likewise
|ψ̃(uIII) − ψ̃(ũIII)| ≤ ε9

100
√
d
|uIII − ũIII| ≤ ε9ε11.

Proposition 8. ∀N, ε there exist δ = δ(N, ε) > 0 such that if in 4ABC
6 A ≥ ε and |AB| ≥ |AC|

N
then

|BC| ≤ |AB| + (1 − δ)|AC|.

Proof of lemma 13: If for some i ∈ {I, II, III}, j ∈ {1, 2} the alternative
(A) of Lemma 14 holds there is nothing to prove (since we can take ε12 ≤ 1

4
).

So we assume that inequality (B) is satisfied for all v ∈ X j
~l
. Denote

ψ(u) = Arg(eibτN (v1(u))h(v1(u))) − Arg(eibτN (v2(u))h(v2(u))).

By assumption (B)

‖ ∂
∂u

ln h(v)‖(u) =
‖h′‖
|h(v)|‖

∂v

∂u
‖ ≤ 4E|b|ε4n̄

and so ∀uI ∈ V~lI , u
III ∈ V~lIII

|ψ(uI) − ψ(uIII)| ≥ ε16 − ‖ ∂
∂u

lnh(v)‖ diam(V j
~l
) ≤ ε16 − C40ε

n̄
4 .

Thus if n̄ is large enough

|ψ(uI) − ψ(uIII)| ≥ ε16

2

and so either ∀uI ∈ V~lI

|ψ(uI)| ≥ ε16

4
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or ∀uIII ∈ V~lIII

|ψ(uIII)| ≥ ε16

4
.

Assume to fix our notation that the first inequality is true. Take some u0 ∈
V~lI . There are two cases. If H(v1(u0)) ≥ H(v2(u0)) then by Lemma 14
∀u ∈ V~lI H(v1(u)) ≥ 4H(v2(u)). Also ∀v1, v2 ∈ U

1

C41
≤ exp f

(ab)
n̄ (v1)

exp f
(ab)
n̄ (v2)

≤ C41

where C41 = exp
[

2n̄‖f (ab)
n̄ ‖0

]

. therefore Proposition 8 implies that γ(2)
ε12

≤ 1

where ε12 = ε(4C41,
ε17
4

). Likewise if H(v1(u0)) < H(v2(u0)) then γ(1)
ε12

≤ 1.
9. Proof of theorem 3. In this section we give the proof of theorem 3.
Some steps of the proof are word-by-word repetitions of the proof of Theorems
1 and 2. In this case we give only the statement leaving the proof to the reader
(who may also consult [D] for details). We find it convenient to change our
notation slightly in this section. Namely we shall write σ only for the map
Σ+ → Σ+ and shall use σ̂ for the map Σ → Σ to keep up with notation in
the proof of Theorem 1 and 2. This change is only effective in Section 9.
Unlike Theorems 1 and 2 we have to work with Cθ(Σ

+) since L? does not
preserve spaces Cα(U). We define L̂ab as before but without smoothing (i.e.
f (b) ≡ f). We analogue of Lemma 2 is the following estimate.
Proposition 9.

L(L̂nabh) ≤ C42(‖h‖0 + |b|θnL(h)).

We prove now an analogue of lemma 8.
Lemma 16. There exist ε18 > 0, C43 such that for any ε ≤ ε18 for any
n > C43 ln(1

ε
) there are two branches w1(ω) and w2(ω) of σ−n and two points

ω′ and ω′′ ∈ Σ+ such that

ε

2
≤
∣

∣

∣

[

τn(w
1(ω′)) − τn(w

1(ω′′))
]

−
[

τn(w
2(ω′)) − τn(w

2(ω′′))
]∣

∣

∣ ≤ 2ε.

Proof: ζ−1(Πi) is the cylinder Ci = {ω : ω0 = i}. Since ϕ is not identically
0 on

⋃

i
(Πi×Πi) by the Intermediate Value Theorem there exist Πi such that

ϕ(Πi×Πi) contains an interval [0, ε18]. If ε ≤ ε18 there are two points ω̄ and
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ω̃ such that ϕ(ω̄, ω̃) = ε. Let ω′ = puω̄, ω
′′ = puω̃ (following the proof of

Theorem 1 we write pu for the natural projection pu : Σ → Σ+). Recall the
expression of ϕ through τ ([PP]). If ω(1) and ω(2) are two points such that

ω
(1)
j = ω

(2)
j for j ≤ 0 define

∆(ω(1), ω(2)) =
∞
∑

k=1

[τ(σ−kω(2)) − τ(σ−kω(1))].

ThenWwu
loc ((ω(1), 0)) = {(ω(2), t) : ω

(1)
j = ω

(2)
j for j ≤ 0 and t = −∆(ω(1), ω(2))}.

Thus
ϕ(ω̄, ω̃) = ∆(ω̄, [ω̄, ω̃]) − ∆([ω̃, ω̄], ω̃).

Let w1(ω) = ω̄−nω̄−(n−1) . . . ω̄−1ω, w
2(ω) = ω̃−nω̃−(n−1) . . . ω̃−1ω. Then

∣

∣

∣

[

τn(w
1(ω′)) − τn(w

1(ω′′))
]

−
[

τn(w
2(ω′)) − τn(w

2(ω′′))
]

− ϕ(ω̄, ω̃)
∣

∣

∣ ≤ C44ε
n
20

and the lemma follows.
Denote ‖h‖(b) = max(‖h‖0,

L(h)
|b| ).

Lemma 17. There exist C45, C46, β7 such that if ‖h‖(b) ≤ 1 then

νa(|L̂C45 ln |b|
ab h|) ≤ 1 − C46

|b|β7
.

Proof: Denote N = C45 ln |b|. Consider two cases. The easier one is if
there exist ω(0) such that |h(ω(0))| ≤ 1

2
because then we can just bound

νa(|L̂C45 ln |b|
ab h|) by νa(|h|). Indeed then |h(ω)| ≤ 3

4
for ω in the ball b(ω(0), 1

2|b|)

centered at ω(0) and of radius 1
2|b| . But νa(b(ω

(0), 1
2|b|)) ≥ C47

|b|β8
and we are

done. So assume that inf |h| > 1
2
. Choose ε = ( 1

|b|)
2 in Lemma 16 and let

γ′ = |e(f(ab)
N

+ibτN )(ω1(ω′))h(ω1(ω′)) + e(f
(ab)
N

+ibτN )(ω2(ω′))h(ω2(ω′))|,

γ′′ = |e(f(ab)
N

+ibτN )(ω1(ω′′))h(ω1(ω′′)) + e(f
(ab)
N

+ibτN )(ω2(ω′′))h(ω2(ω′′))|.
We claim that for some β9 γ

′ ≤ 1− 1
|b|β9

or γ′′ ≤ 1− 1
|b|β9

. In view of Proposition

8 and the fact that exp[f
(ab)
N (ω)] ≥ 1

|b|β10
it is enough to prove that

∣

∣

∣Arg
(

eibτN (ω1(ω′))h(ω1(ω′))
)

− Arg
(

eibτN (ω1(ω′))h(ω1(ω′))
)∣

∣

∣ ≥ 1

|b|4 (A)
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or
∣

∣

∣Arg
(

eibτN (ω1(ω′′))h(ω1(ω′′))
)

− Arg
(

eibτN (ω1(ω′′))h(ω1(ω′′))
)∣

∣

∣ ≥ 1

|b|4 (B).

Assume to the contrary that both (A) and (B) are false. We also have

∣

∣

∣Arg(h(ω1(ω′))) − Arg(h(ω1(ω′)))
∣

∣

∣ ≤ 2L(h)θN (since |h| > 1

2
)

≤ 2|b|θN .
Similarly

∣

∣

∣Arg(h(ω1(ω′′))) − Arg(h(ω1(ω′′)))
∣

∣

∣ ≤ 2|b|θN

So if N is large enough (i.e. C45 is large) this implies that

∣

∣

∣Arg
(

eibτN (ω1(ω′′))
)

− Arg
(

eibτN (ω1(ω′′))
)∣

∣

∣ ≥ 3

|b|4 .

But by Lemma 16 this difference is between 1
2|b| and 1

|b| . Hence either (A) or

(B) is true.
Corollary 7. There exist C48, C49, β11 such that if ‖h‖(b) ≤ 1 then

|L̂C48 ln |b|
ab h| ≤ 1 − C49

|b|β11
.

Proof:

|L̂Nabh|(ω) = |L̂N−Ñ
ab (L̂Ñabh)|(ω) ≤

(

L̂N−Ñ
a0 |L̂Ñabh|

)

(ω) ≤

νa(L̂Ñabh) + C50|b|θN−Ñ

as in the proof of Corollary 2. Take Ñ = C45 ln |b| and choose C48 � C45.
Corollary 8. There exist C51, β12 so that

‖L̂C51 ln |b|
ab ‖(b) ≤ 1 − |b|−β12 .

(This follows immediately from corollary 7 and lemma 15.)
Corollary 9. There exist C52, C53, β13, β14 such that if A,B ∈ Cα(M) and
|a| ≤ C52|b|−β13 then

|ρ̂A,B(a + ib)| ≤ C53|b|β14‖A‖α‖B‖α.
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(Repeat the calculations of corollary 5.)
If A,B ∈ CN+α(M) then

|ρ̂A,B(a+ ib)| =
1

|a+ ib|N |( ∂
∂t

N

ρA,B )̂| =

1

|a+ ib|N |ρ̂( ∂
∂t

)NA, B(a+ ib)| ≤ C53|b|β14−N‖A‖N+α‖B‖α.

Thus for A,B ∈ C∞(M) ρ̂ decays faster than any power of b in the region

{|a| ≤ C52|b|β13}. Now the Cauchy formula implies that
(

∂
∂b

)N
ρ̂(ib) also

decays faster than any power and theorem 3 is proven.
Appendix 1. Correlation density. In this section we recall the expression
for Laplace transform of the correlation function. Our exposition follows
closely [P], [R2].
Consider the suspension flow Gt with the roof function τ. We assume that τ ∈
C+
θ (Σ) which is true in the case when τ comes from the construction described

in the previous section. Let µ be the Gibbs measure for the potential F ∈
Cθ2(Σ

τ ). We can decompose the mean value F̄ (ω) =
τ(ω)
∫

0
F (ω, s)ds as F̄ (ω) =

f(ω) + H(ω) − H(σω) with f(ω) ∈ C+
θ (Σ). µ can be written as dµ(q) =

1
C
dν(ω) ds where C is the normalization constant and ν(ω) is the Gibbs

measure for f(ω)
Let A,B ∈ Cθ(Σ

τ ) and ρA,B(t) =
∫

Στ

A(q)B(Gtq) dµ(q) be the correlation

function. Consider its Laplace transform

ρ̂(ξ) =

∞
∫

0

e−ξt
∫

Στ

A(q)B(Gtq) dµ(q)dt

=
∫

Στ

A(ω, s)
∞
∑

n=0

τ(σnω)
∫

0

B(σnω, s̄)e−ξ(τn(ω)+s̄−s)dsds̄dµ−
∫

Στ

A(ω, s)

s
∫

0

B(ω, s̄)e−ξ(s̄−s)dsds̄dµ

= ρ̂I(ξ) + ρ̂II(ξ),

where ρ̂II(ξ) is an entire function bounded as long as Reξ is bounded. Denote

by Â(ω, ξ) =
τ(ω)
∫

0
A(ω, s)eξs ds the Laplace transform of A then

ρ̂I(ξ) =
1

Const

∫

Σ

Â(ω, ξ)
∞
∑

n=0

e−ξτn(ω)B̂(σnω,−ξ) dν(ω).
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Note that
‖Â(ω, ξ)‖0 ≤ C54‖A‖θ, ‖B̂(ω, ξ)‖0 ≤ C54‖B‖θ, (15)

L(Â(ω, ξ)) ≤ C55‖A‖θ|b|, L(B̂(ω, ξ)) ≤ C55‖B‖θ|b|. (16)

We now utilize the following decomposition.

Proposition 10. Every h ∈ Cθ(Σ) can be decomposed as h =
∞
∑

j=0
hj where

1) ‖h‖0 = C56‖h‖θεj20;
2) L(h) ≤ C57K

n
1L(h);

3) hj(σ
−jω) ∈ C+

θ (Σ)

Proof: For any symbol i choose a backward sequence ω(i) = {ω(i)
j }j≤0 such

that ω
(i)
0 = i. For ω ∈ Σ define ω(N) by

(ω(N))j =

{

ωj j ≥ −N
ω

(ω−N )
j−N j ≤ −N

Choose some N0 and define by induction h(0) = h(ω(0)), h(k)(ω) = h(k−1)(ω)+
(h− h(k−1))(ω(N0k)). Then

‖h− h(k)‖0 ≤
(

L(h) + L(h(k−1))
)

θN0k,

L(h(k)) ≤ 2L(h(k−1)) + L(h) ≤
(

2(k+1) − 1
)

L(h).

Thus is θN0k < 1
2
‖h − h(k)‖0 decays exponentially. Let h0 = h(0), hjN0 =

h(j) − h(j−1) and hj = 0 if j is not a multiple of N0.

So write Â(ω, ξ) =
∞
∑

j=0
Âj(ω), B̂(ω,−ξ) =

∞
∑

j=0
B̂j(ω), and let Āj(ω) =

Â(σ−jω), B̄j(ω) = B̂(σ−jω) then Āj ∈ C+
θ (Σ), B̄j ∈ C+

θ (Σ) and

‖Āj‖0 ≤ C56‖A(ω, ξ)‖0ε
j
20, ‖B̄j‖0 ≤ C56‖B(ω,−ξ)‖0ε

j
20, (17)

L(Āj) ≤ C57L(A(ω, ξ))Kj
2, L(B̄j) ≤ C57L(B(ω, ξ))Kj

2. (18)

So ρ̂I(ξ) = 1
ν(τ)

∑

jk
ρ̂jk(ξ), where

ρ̂jk(ξ) =
∫

Σ

Âj(ω)
∞
∑

n=0

e−ξτn(ω)B̂k(ω) dν(ω).
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The rearrangement of this series performed below is valid at least for small
Reξ. By σ−invariance of the measure ν

ρ̂jk(ξ) =
∫

Σ

Āj(ω)
∞
∑

n=0

e−ξτn(σjω)B̄(σn+j+kω) dµ(ω).

Denote

Ãj(ω, ξ) = Āj(ω, ξ)e
−ξτj(ω), B̃j(ω, ξ) = B̄j(ω, ξ)e

−ξτj(ω)

so that
‖Ãj‖ ≤ ‖Āj‖0e

ε20j, ‖B̃j‖ ≤ ‖B̄j‖0e
ε20j, (19)

L(Ãj) ≤
(

C58‖Āj‖0|b| + L(Āj)
)

eε20j, (20)

L(B̃j) ≤
(

C58‖B̄j‖0|b| + L(B̄j)
)

eε20j. (21)

We have

ρ̂jk(ξ) =
∞
∑

n=j+k

∫

Σ

Ãj(ω)e−ξτn(ω)B̃k(σ
nω) dν(ω).

Since Ã and B̃ depend only on the future the integration in the last expression
may be taken over Σ+ as well. Performing the change of variables $ = σnω
we obtain

ρ̂jk(ξ) =
∞
∑

n=j+k

∫

Σ+

∑

σnω=$

B̃k($)

[

Ãj(ω)e−xiτn(ω) dν(ω)

dν($)

]

dν($).

Assuming that the corresponding transfer operator is normalized we get the
following expression for the Jacobian (2):

dν(ω)

dν($)
= exp[fn(ω) − Pr(F )τn(ω)].

Therefore

ρ̂jk(ξ) =
∞
∑

n=j+k

∫

Σ+

B̃k($)

[

∑

σnω=$

Ãj(ω)efn(ω)−[Pr(F )+ξ]τn(ω)

]

dν($).
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In terms of transfer-operators this can be rewritten as follows:

ρ̂jk(ξ) =
∫

Σ+

[

Lj+kf−[Pr(F )+ξ]τ(1 − Lf−[Pr(F )+ξ]τ)
−1Ãj

]

B̃k dν.

Let Qj : A → Ãj, Rj : B → B̃j. Then bounds a) and b) of Proposition 3
follow immediately from (15)-(21).
Appendix 2. A priori bounds.

proof of Corollary 3: Consider the following norm in Cα′
(U)

‖h‖(b,α′) = max(‖h‖0,
G(h)

|b| ).

We prefer to work with this norm because we already saw that 1
|b| is a natural

scale for the study of L̂ab. Take h ∈ Cα′
(U) with ‖h‖(b) ≤ 1 and decompose

it h = h̃ + (h − h̃) where ‖h − h̃‖ ≤ ( 1
|b|)

α′
h̃ ∈ C1(U) and ‖ ∂

∂u
h̃‖0 ≤ C59|b|.

By Corollary 2

|L̂C17 ln |b|
ab h̃| ≤ C18(

1

|b|)
β1.

Since Lab does not increase the norm of C0 functions

|L̂C17 ln |b|
ab h| ≤ C60

|b|β15

where β15 = min(α′, β1). Recall the relation between L̂ab and L̃ab (5). Since
the operator of multiplication by hab is uniformly bounded in ‖·‖(b,α′) (in fact
hab is almost constant on the scale 1

|b|) we get the following estimate valid for
small a and large b

∣

∣

∣L̃C17 ln |b|
ab h

∣

∣

∣ ≤ C61

(

1

|b|

)β15−C62(|a|+ 1
|b|

)

.

Using analyticity of λab in a and 1
|b| we obtain for small a and large b the

following bound
∣

∣

∣L̃C17 ln |b|
ab h

∣

∣

∣ ≤ C61
1

|b|β16
,

β16 > 0. Now
∣

∣

∣LC17 ln |b|
ab

∣

∣

∣ =
∣

∣

∣L̃C17 ln |b|
ab

(

exp[(f
(b)
C17 ln |b| − fC17 ln |b|) ◦ σC17 ln |b|]h

)∣

∣

∣ ≤

32



|L̃C17 ln |b|
ab h|+

∣

∣

∣LC17 ln |b|
ab

∣

∣

∣ =
∣

∣

∣L̃C17 ln |b|
ab

((

exp[(f
(b)
C17 ln |b| − fC17 ln |b|) ◦ σC17 ln |b|] − 1

)

h
)∣

∣

∣ ≤

C61
1

|b|β16
+ C63 ln |b|





1
√

|b|



 ≤ C64
1

|b|β17
.

Now take C23 � C17. Then

∣

∣

∣LC23 ln |b|
ab h

∣

∣

∣ =
∣

∣

∣L(C23−C17) ln |b|
ab (LC17 ln |b|

ab h)
∣

∣

∣ ≤
∣

∣

∣LC17 ln |b|
ab h

∣

∣

∣ ≤ C64
1

|b|β17
.

From the other hand by Lemma 2.d)

G(LC23 ln |b|
ab h) = G(L(C23−C17) ln |b|

ab (LC17 ln |b|
ab h)) ≤

λ
(C23−C17) ln |b|
ab C15

(

|b|‖LC17 ln |b|
ab h‖0 + ε

α′(C23−C17) ln |b|
4 G(LC17 ln |b|

ab h)
)

So for small a and large b the following bounds holds

‖LC23 ln |b|
ab ‖(b,α′) ≤

C65

|b|β21
.

This estimate clearly implies Corollary 3.
Corollary 4 follows from term-by-term summation in (3) using the following
bound.
Lemma 18. Let h ∈ Cα′

(U) α′ < α, and G(h) ≤ D|b|‖h‖0, D > 1. Then

‖(1 − Lab)−1h‖0 ≤ C66D
ε(a,b)(ln |b| + lnD)‖h‖0

where ε→ 0 as a→ 0, b→ ∞.
Proof: By Lemma 2.d)

‖LNabh‖0 ≤ C14λ
N
ab‖h‖0,

G(LNabh) ≤ C15(|b|‖h‖0 + εα
′N

4 G(h)).

Therefore if N = C67 lnD where C67 is large enough

‖LNabh‖(b) ≤ 2λC67 lnD
ab ‖h‖0.

Write

(1 − Lab)−1h =
C67 lnD
∑

j=0

Ljabh +
∞
∑

j=1

Ljab(LC67 lnD
ab h)
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and estimate the first term by Lemma 2.d) and the second one by Corollary
3.
Appendix 3. Gibbs measures. In this section we collect some distortion
properties of Gibbs measures for codimension 1 Anosov flows.
Proof of Lemma 6: It is enough to fix u and v1 and to bound

∑

v2: d(v1 ,v2)≤δ
ef

(a)
N

(v2)

There is a constant C68 such that if d(v1, v2) < δ then σN−nv1 = σN−nv2 for
n ≤ C68 ln 1

δ
. But

∑

v2: σN−n0v1=σN−n0 (v2)

ef
(a)
N

(v2) = exp[f (a)
n0

(v1)]
∑

σN−n0v2=σN−n0v1

e
f
(a)
N−n0

(v2)
=

exp[f (a)
n0

(v1)]
(

L̂N−n0
ab 1

)

(σN−n0v1) = exp[f (a)
n0

(v1)]

Now we prove Proposition 7.
Proposition. Under conditions of theorem 1 given N there is a constant
CN such that if I1 ⊂ I2 ⊂ U are two intervals and |I1| ≥ |I2|

N
then ν(I2) ≤

CNν(I1).
Proof: Let n0 = max{n : |σnI2| ≤ 1}. Then by Lemma 3 ∀v1, v2 ∈ I2

1
C69

≤
(σn0 )′(v1)
(σn0v2)

≤ C69 where the constant C69 does not depend on I2. Therefore

|σn0I1| > C70 for some constant C70. Since the measure of any open set is
positive there is a constant C71 such that ν(σn0I1) > C71. But by (2) and
Lemma 3

1

C72
≤ ν(σn0I1)ν(I2)

ν(σn0I2)ν(I1)
≤ C72.

The last two inequalities prove the proposition.
Appendix 4. The proof of van der Corput lemma. This section
contains the proof of the following statement.
Lemma 7. Let

I =
∫

eibψ(u)r(u) du

Assume that ψ ∈ C1+γ(J), ‖ψ‖1+γ ≤ c1, |ψ′(u)| ≥ c2, where 1
b
≤ c2 ≤ 1,

‖r‖0 ≤ ε and ‖r(u)‖1 ≤ εD then

|I| ≤ εConst(c1)

[

D + 1

|b|c2
+

1

|b|γc22

]

.
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Proof:

I =
1

ib

∫

r(u)

ψ′(u)
deibψ(u).

Take ψ̄ ∈ C1(J) so that |ψ̄ − ψ′| ≤ 1
|b| , ‖ψ̄‖1 ≤ |b|1−γ then I = Ī + ∆I where

Ī =
1

ib

∫

r(u)

ψ̄′(u)
deibψ(u)

and |∆I| ≤ Const 1
|b| . Integrating by parts we obtain

Ī =
1

ib

[

eibψ(u) r(u)

ψ̄(u)
|J −

∫

eibψ(u) ∂

∂u

[

r(u)ψ̄(u)
]

du

]

.

The statement follows since

‖ ∂
∂u

[

r(u)φ̄(u)
]

‖0 ≤ Const

(

D

c2
+

|b|1−γ
c22

)

.
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