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ABSTRACT
In this paper we study Brownian zeroes in the neighborhood of which one can observe non-typical growth

rate of Brownian excursions. We interprete the multifractal curve for the Brownian zeroes calculated in 6) as the
Hausdorff dimension of certain sets.
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1. INTRODUCTION
1.1. Notations. In this article we deal with multifractal structure of zeroes of Brownian path. A Brownian

path, denoted by ω(t), is a point of the space C[0,1] equipped with the Wiener measure denoted by P . Recall,
that this measure is specified by the condition that for disjoint intervals [t11, t

1
2], [t21, t

2
2], ..., [t

n
1 , tn2 ] the corresponding

increments of Brownian curve ω(t12) − ω(t11), ω(t22) − ω(t21),...,ω(tn2 ) − ω(tn1 ) are independent normal variables with
mean values 0 and variances tk2 − tk1 .

The set of zeroes {t : ω(t) = 0} is denoted by Z[0,1]. It is random as soon as ω is random. It’s also well-known
that Z[0,1] is closed, nonwhere dense and its Hausdorff dimension h-dim(Z[0,1])= 1

2 for a.e. ω. The purpose of this
paper is to study the fine structure of Z[0,1]. Denote by Cm[0,1] the complement to Z[0,1]. It is an open set consisting
of a countable set of intervals. Take ε > 0 and delete from [0,1] all intervals whose length is not less than ε. The
connected components of remaining set will be called ε-clusters. We denote them by Ki(ε) (counting from the left
to the right). Sometimes it will be convenient to consider ε-clusters on the whole semiline, assuming that Wiener
measure is considered on the space C[0,∞). We denote ε- cluster, containing t ∈[0,1] by K(ε, t). We use also the
following notation:

L(t) is the local time on Z[0,1] (the definition and basic properties of the local time see in 5)); in the subsection
1.2 we discuss some properties of local time connected with fractal structure of Z[0,1];

li(ε), l(ε, t) are the increments of the local time on Ki(ε) and K(ε, t) respectively;
δi(ε), δ(ε, t) are the lengths of Ki(ε) and K(ε, t);
∆i(ε) is the distance between Ki(ε) and Ki+1(ε);
Hs is the s-dimensional Hausdorff measure; Hs

ε is the corresponding ε-measure (Hs
ε (A) = inf

∑
i

|Ii|s, where

infimum is taken over all coverings of the set A with diameter less than ε and |·| denotes the diameter);
εm=( 1

2 )
m

;

Am(γ) = {t : ln l(εm,t)
ln δ(εm,t) ≥ 1

2 + γ};
Bm(γ) = {t : δ(εm, t) ≤ ε1+γ

m };
Cm(γ) = {t : l(εm, t) ≤ ε

1
2+γ
m };

νm([a,b]) is the number of εm-clusters , intersecting the segment [a,b].
During the proofs we omit some indices if it does not lead to misunderstanding (for example we usually write

δ(t) and Am). All statements about Z[0,1] hold only for a subset of probability 1 even in cases we do not mention
this explicitly.

1.2. Fractal geometry of Z[0,1] and local time. As it was already mentioned, h-dim(Z[0,1])= 1
2 . This

fact follows from a more strong theorem. Denote φ(s) =
√

s ln ln s and put

φ − m(A) = lim
ε→0

inf
∑

i

φ(|Ii|),

* The work was done in Moscow State University
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where the infimum is taken over all coverings of the set A by segments , whose length is less than ε .Then

φ − m(Z[0, 1]) = const ·L(1), (1.1)

(See 9)).
There is another curious property of the local time. According to the Frostman’s lemma (see 3)), for a given

set A, for any s, s < h − dim(A) one can find a measure µ(s) and a constant c(s) with the following property: for
any x, y the measure µ([x, y]) < c(s) |x − y|s . For A=Z[0,1] we can describe this measure explicitly. Indeed, for
sufficiently small ε the following inequality holds for the set of Wiener measure 1:

L(t + ε) − L(t) <

√
3ε ln

(
1

ε

)
(1.2)

(see 5)).

1.3. The main result. (1.2) implies that for all points of Z[0,1]

lim
ε→0

inf
ln(L(t + ε) − L(t))

ln ε
≥ 1

2
.

This statement can be reformulated in the following way: for all points of Z[0,1]

lim
m→∞

inf
ln l(εm, t)

ln δ(εm, t)
≥ 1

2
.

The goal of this paper is to strengthen the last inequality.

Theorem 1. For any γ : 0 < γ < 1
4 for a.e. ω

h − dim{t : lim
m→∞

inf
ln l(εm, t)

ln δ(εm, t)
≥ 1

2
+ γ} = 0,

h − dim{t : lim
m→∞

sup
ln l(εm, t)

ln δ(εm, t)
≥ 1

2
+ γ} =

1

2
− 2γ.

(an equivalent form is following :
h − dim lim

m→∞
inf Am(γ) = 0

h − dim lim
m→∞

sup Am(γ) =
1

2
− 2γ.

This theorem imply that H
1
2 {t : lim

m→∞
ln l(εm,t)
ln δ(εm,t) 6= 1

2 or the limit of this ratio fails to exist} = 0 , while in virtue

of (1.1) H
1
2 (Z[0,1])=+∞.

1.4. The dimension of other singularities. The method used to prove theorem 1 is also applicable to the in-

vestigation of lim
m→∞

inf Bm , lim
m→∞

inf Cm , lim
m→∞

sup Bm , lim
m→∞

sup Cm , that is , respectively, {t : lim
m→∞

inf ln δ(εm,t)
ln εm

≥
≥ 1 + γ}, {t : lim

m→∞
inf ln l(εm,t)

ln εm
≥ 1

2 + γ}, {t : lim
m→∞

sup ln δ(εm,t)
ln εm

≥ 1 + γ}, {t : lim
m→∞

sup ln l(εm,t)
ln εm

≥ 1
2 + γ}.

Roughly speaking, the structure of these sets is the following. Xm consists of about ( 1
εm

)ρ segments (any of A,
B or C may be substituted instead of X ), which are ”almost equidistributed” on the segment [0,1], and most of these
segments have the length of order of magnitude εθ

m . In this case h−dim(lim inf Xm) = 0, h−dim(lim sup Xm) = ρ
θ
.

Moreover, one can extract from the proof, that if we replace εm =
(

1
2

)m
by an arbitrary sequence ε̃m, then the

following statements hold with the probability 1:

— if lim
m→∞

ε̃m−1

ε̃m

= +∞ , then h − dim(lim inf Xm) = ρ
θ

;

— if ε̃m−1

ε̃m

remains bounded then h − dim(lim inf Xm) = 0 ; (of course, the exceptional sets of the measure 0,

there any of the statements above doesn’t hold may differ for different sequences).
The plan of our paper is the following. In the subsection 1.5 we explain our results using the notion of

multifractality applied to the set Z[0,1] (equipped with L(t)). In section 2 we present some facts about the distribution
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of li(ε) , δi(ε) , and ∆i(ε) . The proof of theorem 1 is contained in sections 3 and 4 . In section 3 we describe the
set of Wiener measure 1 for which the statement of theorem 1 is true. In section 4 we give the proof of the main
statement for this set. Essentially it doesn’t differ too much from one in the case when Xm is the union of ( 1

εm
)ρ

equidistributed segments of the length εθ
m . At last in the section 5 we calculate the above formulated dimensions

for Bm and Cm. Since the proof in this case almost completely coincides with the proof of theorem 1, we restrict
ourselves by the calculations of ρ and θ . The answer is following:

Proposition 1. With probability 1 for 0 < γ ≤ 1

h − dim (lim inf Bm) = 0,

h − dim (lim sup Bm) =
1

2
·1 − γ

1 + γ
.

Proposition 2. With probability 1 for 0 < γ ≤ 1
2

h − dim (lim inf Cm) = 0,

h − dim (lim sup Cm) =
1

2
·1 − 2γ

1 + 2γ
.

1.5. Singular points and the multifractal structure of Z[0,1]. As one will see in the section 2, typical
εm-clusters have the size of order εm and for majority of them ln li

ln δi
≈ 1

2 . At the same time there exist few εm-clusters

for which α < ln li
ln δi

≤ α + ∆α, where α 6= 1
2 . For some α the share of such clusters varies polynomially with εm ,

i.e. it approximately equals εm
f(α)(f(α) = 3

2 − 2α, where α ∈ [ 12 , 3
4 ] (cf 6) )). In this case one says that f(α) lay in

multifractal spectrum of Z[0,1] . The multifractal structure of Z[0,1] is studied in a different way in 6).

In our paper we interprete f(α) as the Hausdorff dimension of the lim sup Am . It is quite clear why we use

lim sup (instead of lim inf ). Indeed, it reflects very complicated behavior of rt(ε) = ln l(ε,t)
ln δ(ε,t) as the function of

ε. Really, rt(ε) is piecewise constant, and it grows up in points, whose coordinates are equal to the length of the
intervals from Cm[0, 1], laying close to t. The quite complicated structure of Cm[0, 1] as being compared with the
complement to Cantor dust, for example, explains the chaotic behavior of rt(ε).

2. BASIC DISTRIBUTIONS, RELATED TO ε-CLUSTERS

Here we give some properties of the distributions, related to ε-clusters, which will be used in the following
sections. The proofs can be found in 6).

Proposition 3.
a) The triples (∆i, δi, li) are independent and identically distributed.

b) the pair of random variables (δi, li) does not depend on ∆i for any i.

c) introduce new random variables ξ−i , ξ+
i , and ηi, where δi(ε) = εξ−i , ∆i(ε) = εξ+

i , and li(ε) =
√

πε
2 ηi.

Then the distribution of ξ+
i , ξ−i and ηi does not depend on ε and

d) ηi has the exponential distribution with the mean value 1, i.e. Fηi
(x) = 1 − exp{−x}.

e) The distribution function of ξ+
i is Fξ+

i
(x) = 1 − 1√

x
, x > 1.

f) ξ−i has all positive moments and

Fξ−

i
(x) =

1√
π
√

x
(1 + O(1)), x → 0.

g) P (ξ−i > sβ, η < sγ) ∼ const(γ, β)·s2γ− β
2 , s → 0 , 0 < β

2 < γ < 1
2 .

h) Fix γ , 0 < γ < 1. We shall say that an εm-cluster is poor of zeroes if it belongs to Am(γ). The

probability of the event ”Ki(ε) is poor of zeroes” has the asymptotics const ·ε2γ as ε → 0, when γ 6= 1
2 , γ < 1

( we are interested only in a dense set of γ).
i) a cluster which is poor of zeroes and satisfies the inequality ε

2 < δi < ε will be called standard εm-cluster.

Then the probability of standard cluster has the same asymtotics as in the item h), i.e. ˜const·ε2γ .

3. THE DESCRIPTION OF THE SET OF THE FULL MEASURE,
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WHERE OUR RESULTS ARE VALID

3.1. Number of ε-clusters. Let us recall that νm([a, b]) is the number of εm- clusters, intersecting the
segment [a,b].

Lemma 1. For any given δ and a.e. ω for almost all m, (i.e. all m except a finite set)

(
1

εm

) 1
2−δ

< νm([0, 1]) <

(
1

εm

) 1
2+δ

.

Proof.

νm([0, 1]) = min

{
n :

n∑

i=1

li(ε) ≥ L(1)

}
= min

{
n :

n∑

i=1

ηi ≥
√

2

πε
L(1)

}

We shall use Bernstein’s inequality in the following form: let Zi be independent and exponentially distributed random
variables with mean value 1; then there are positive constants c1, c2, c3, c4, such that

P

(
c1n <

n∑

i=1

Zi < c2n

)
> 1 − c3 exp{−c4n}. (3.1)

In particular,

P

( ( 1
εm

)
1
2
−δ

∑

i=1

ηi(ε) > c2

(
1

εm

) 1
2−δ)

< c3 exp

{
−c4

(
1

εm

) 1
2−δ
}

. (3.2)

and

P




( 1
εm

)
1
2
+δ

∑

i=1

ηi(ε) < c1

(
1

εm

) 1
2+δ


 < c3 exp

{
−c4

(
1

εm

) 1
2+δ
}

(3.3)

In virtue of Borel-Cantelli lemma, inequalities in (3.2) and (3.3) with probability 1 take place only a finite
number of times.

Since

c2

(
1

εm

) 1
2−δ

< L(1)

√
1

εm

< c1

(
1

εm

) 1
2−δ

,

if m is large enough, the lemma is proven.

Lemma 2. For any given δ with probability 1 for all m large enough the number of εm-clusters, poor of the

zeroes, νm[0, 1] is confined between
(

1
εm

) 1
2−2γ−δ

and
(

1
εm

) 1
2−2γ+δ

.

Proof. Let us prove, for example, the lower estimation. In virtue of lemma 1 it is sufficient to show that for

all m, except for a finite number of them not less than ( 1
εm

)
1
2−2γ−δ εm-clusters among the first of ( 1

εm
)

1−δ
2 of them

are poor of zeroes. The probability of the complementary event is

P(m) =

( 1
εm

)
1
2
−2γ−δ

∑

k=0

b
(( 1

εm

) 1−δ
2

, k, pm

)
,

where b(n, k, p) = Ck
npk(1 − p)n−k and pm = P{εm-cluster with the given number is poor of zeroes } ∼ const ·ε2γ

(see proposition 3.h). The inequality

l∑

k=0

b(n, k, p) < b(n, l, p)
np − k

np − kp
,

which is valid for k < np in our case gives

P(m) <
c( 1

εm
)

1
2−2γ−γ

2 − ( 1
εm

)
1
2−2γ−δ

c(( 1
εm

)
1
2−2γ− δ

2 − ( 1
εm

)
1
2−4γ−δ

)
const b

(( 1

εm

) 1−δ
2

,

(
1

εm

) 1
2−2γ−δ

, pm

)
. (3.4)
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It is easy to show (using Stirling’s formula ) that

P(m) < c5(δ)

(
1

εm

)c6(δ)

exp

{
−c7

(
1

εm

) 1
2−

δ
2−2γ

}
.

Hence,
∞∑

m=1

P(m) < +∞.

In the same way, if we define P(m) as

P(m) = P
{
not less than

(
1

εm

) 1
2−2γ+δ

among the first

(
1

εm

) 1
2+δ2

εm−clusters are poor of zeroes
}
,

we obtain, using again the Stirling’s formula and the inequality

n∑

k=l

b(n, k, p) < b(n, l, p)
k − np

k − kp

(which is valid for k > np), that

P(m) < c8(δ)

(
1

εm

)c9(δ)

exp

{
−c10

(
1

εm

) 1
2−

δ
2−2γ

}
,

and therefore
∞∑

m=1

P(m) < +∞.

Lemma 2 is proven.

Proposition 4. The statement of lemma 2 holds for standard εm-clusters too.

Proof. P{ certain εm−cluster is a standard one} has the same asymtotics as pm.

3.2. The decay of εm-clusters’ size. Denote by rm the maximal size of εm-clusters on the segment [0,1].

Lemma 3. With probability 1 lim
m→∞

sup
ln rm

ln εm

≥ 1 (and, therefore, lim
m→∞

sup
ln rm

ln εm

= 1).

Proof. Fix δ > 0. It is sufficient to show that rm ≤ ε1−δ for all m large enough .
In virtue of lemma 1 it is sufficient to prove that for all large enough m the inequality holds:

( max
j≤( 1

εm
)
1
2
+δ

δj(εm)) ≤ ε1−δ
m or

( max
j≤( 1

εm
)
1
2
+δ

ξ−j ) ≤
(

1

εm

)δ

.

P
(
( max
j≤( 1

εm
)
1
2
+δ

ξ−j ) ≤
(

1

εm

)δ)
≤
(

1

εm

) 1
2+δ

P

(
ξ−j ≥

(
1

εm

)δ
)

≤ ε
3
2−δE

((
ξ−j
) 2

δ

)
.

So,
∞∑

m=1

P(( max
j≤( 1

εm
)
1
2
+δ

δj(εm)) ≤ ε1−δ
m ) < ∞

and lemma is proven.
Now we introduce two sequences of numbers:

kn =

( 1
2 + γ + δ
1
2 − 2γ − δ

)n

and ε(n) = 2−2n2

.
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3.3. The equidistribution of ε-clusters.

Lemma 4.Fix δ > 0. Then a.e. the following statements hold:

a) fix natural n. Then for almost all m for any j (1 ≤ j ≤ n) any poor of zeroes (ε
kj−1
m )-cluster contains not

more than(
1

εm

)[ kj−kj−1
2 −γkj−2γkj−1+δ(kj+kj−1)

]

ε
kj
m -clusters, which are poor of zeroes;

b) for almost all n the number of standard ε(n)-clusters falling inside any standard ε(n)-cluster is contained

between

2

[
2n2

−2(n−1)2

2 −γ2(n−1)2−2γ2n2
−δ2n2

]
and 2

[
2n2

−2(n−1)2

2 −γ2(n−1)2−2γ2n2
+δ2n2

]
.

Proof. We shall prove only the statement a) (the statement b) is similar).

In virtue of lemma 3, if m is large enough, the increment of the local time on any poor of zeroes ε
kj−1
m -cluster

is less than
(
ε

kj−1
m

) 1
2 +γ−δ

(since, otherwise, rmkj−1 > εm

kj−1

1
2
+γ−δ

1
2
+γ ) and the number of these clusters is less than

(
1

εm

)kj−1( 1
2−2γ+δ)

. Let l(K) be the number of ε
kj
m -clusters, the left boundary of which coincides with the left boundary

of ε
kj−1
m -cluster K. Then, the number n(K) of the ε

kj
m -clusters being inside K is less then

min



n :

n+l∑

j=l

li
(
εkj

m

)
≥
(
εkj−1

m

) 1
2+γ−δ



 = min





n+l∑

j=l

ηi ≥
(

1

εm

)[kj−kj−1
2 −γkj−1+δkj−1

]

 .

By the estimation (3.2)

∞∑

m=1

(
1

εm

)kj ( 1
2−2γ+δ)

P



n(K) >

(
1

εm

)[ kj−kj−1
2 −γkj−1+δkj−1

+ δ
2 kj

]

 < ∞ .

So, for all m large enough

n(K) <
(

1
εm

)[ kj−kj−1
2 −γkj−1+δkj−1

+ δ
2 kj

]
and estimation (3.5) implies that

∞∑

m=1

(
1

εm

)kj ( 1
2−2γ+δ)

P
{

the number of poor of zeroes εkj
m -clusters among the εkj

m -clusters with the numbers from

l(K) to l(K) +

(
1

εm

)[kj−kj−1
2 −γkj−1−δkj−1

− δ
2 kj

]

is more than

(
1

εm

)[ kj−kj−1
2 −γkj−1−2γkj−δkj−1

− δ
2 kj

]
}

< ∞.

The lemma is proven.

Lemma 5. For any positive δ there is a constant c(δ) such that for a.e. ω for almost all n any interval on the

segment [0, 1] containing c(δ) of standard ε(n)-clusters contains not less than
(

1
ε(n)

)2γ−δ

ε(n)-clusters.

Proof. In virtue of lemma 2 it is sufficient to consider the case when the number of standard ε(n)-clusters

does not exceed
(

1
ε(n)

) 1
2−2γ+δ

.

Therefore,

P{there exists a segment containing less than

(
1

ε(n)

) 1
2−2γ+δ

ε(n)-clusters among which c(δ) are standard ones} ≤

≤ P{the segment beginning from the given standard ε-cluster and containing c(δ) of them, does not cover

(
1

ε(n)

)2γ−δ

ε(n)-clusters} ×
(

1

ε(n)

) 1
2−2γ+δ

≤

≤ [P{there are less than

(
1

ε(n)

)2γ−δ

ε(n)-clusters falling between two neighboring standard
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ones}]c(δ)
(

1

ε(n)

) 1
2−2γ+δ

≤
(
c11ε

2γ(n)
)c(δ)−1

(
1

ε(n)

) 1
2−2γ+δ

≤ c
c(δ)−1
11 (ε(n))

2γc(δ)− 1
2+δ

,

i.e. for example, 1
γ

+ 1 is the possible value for c(δ) and the lemma is proven.
Lemma 6. Fix δ > 0. A.e. for all n except for a finite number of them, any segment I on the t-axis, containing

k standard ε(n)-clusters, has the length exceeding ε(n)

{[
k

c(δ)

] (
1

ε(n)

)2γ−δ
}2−δ

.

Proof. In virtue of lemma 5 it is sufficient to give the proof in the case when the number of the ε(n)-clusters

on the segment I is more than
[

k
c(δ)

] (
1

ε(n)

)2γ−δ

.

Let us numerate standard ε(n)-clusters and denote by pjk(n) the probability of the event that the maximal dis-
tance between neighboring ε(n)-clusters on the segment, beginning from the j-th standard ε(n)-cluster and containing
[

k
c(δ)

] (
1

ε(n)

)2γ−δ

ε(n)-clusters, is less than ε(n)

{[
k

c(δ)

] (
1

ε(n)

)2γ−δ
}2−δ

.

It is sufficient to check the convergence of the series

∞∑

n=1

(
1

ε(n)

) 1
2
−2γ+δ

∑

j=1

(
1

ε(n)

) 1
2
−2γ+δ

∑

k=1

pkj(n) ≤
∞∑

n=1




(
1

ε(n)

) 1
2
−2γ+δ

∑

k=1

p1k(n)



(

1

ε(n)

) 1
2−2γ+δ

.

p1k(n) =


P



∆ < ε(n)

{[
k

c(δ)

](
1

ε(n)

)2γ−δ
}2−δ








[
k

c(δ)

](
1

ε(n)

)2γ−δ

∼

∼




1 − 1√{[
k

c(δ)

] (
1

ε(n)

)2γ−δ
}2−δ




[
k

c(δ)

](
1

ε(n)

)2γ−δ

< exp



−c12

([
k

c(δ)

](
1

ε(n)

)2γ−δ
) δ

2−
δ
4



 =

= exp



−c12

([
k

c(δ)

](
1

ε(n)

)2γ−δ
) δ

4



 .

The last inequality is valid when n is large enough (we have used the asymptotics lnp1k(n) ∼
∼ ([ k

c(δ) ](
1

ε(n) )
2γ−δ

)
δ
4
).

QED.

4. GEOMETRICAL CONSIDERATIONS

In this part we consider those Brownian paths where the statements of lemmas 1-6 and proposition 4 are valid
for all positive δ.

4.1. The dimension of the lower limit of Am.

Lemma 7. h-dim( lim
m→∞

inf Am)=0.

Proof. Fix n. Denote by A(m) the set { t: for any j : 0 ≤ j ≤ n K(ε
kj
m , t) is poor of zeroes }. Denote by

Nm(n) the number of εkn
m -clusters involved in A(m).

N(m) ≤( the number of poor of zeroes εm-clusters)
n∏

j=1

( the maximal number of poor of zeroes ε
kj
m -clusters

inside ε
kj−1
m -cluster)≤

(
1

εm

) 1
2−2γ+δ n∏

j=1

(
1

εm

)kj(
1
2−2γ+δ)−kj−1( 1

2 +γ−δ)

=
(

1
εm

)ϕ

, where

ϕ = (
1

2
− 2γ + δ)

(
1
2 +γ+δ

1
2−2γ−2δ

)n+1

− 1
(

1
2+γ+δ

1
2−2γ−2δ

)
− 1

− (
1

2
+ γ − δ).
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In virtue of lemma 3 Hs

(ε
kn
m )

1−δ (A(m)) ≤ ε
kn(1−δ)δ−ϕ
m .

Since δ is arbitrary small, we obtain that h-dim(
∞⋂

k=m

A(k)) = 0. But lim inf A ⊂
∞⋃

m=1

∞⋂
k=m

A(k), and the lemma

is proven.

4.2. The upper estimation of the upper limit dimension. To obtain the upper estimation of
h-dim(lim supAm) we need the following lemma.

Lemma 8. Let sets Xn and sequence εn → 0 are such that

∞∑

n=1

Hs
εn

(Xn) < +∞,

then h-dim (lim sup Xn) ≤ s.

Proof.

Hs
εn

(lim sup Xn) ≤ Hs
εn

( ∞⋃

k=n

Xk

)
≤

∞∑

k=n

Hs
εk

(Xk) → 0.

QED.

Corollary 1. h-dim (lim supAm)≤ 1
2 − 2γ.

Proof. For any positive s Hs
εm

(Am) ≤ const(s)
(

1
εm

) 1
2−2γ+δ

(εm)
(1−δ)s

, i.e. if s >
1
2−2γ+δ

1−δ
, then

h-dim (lim sup Am) ≤ s.

Since δ is arbitrary small, the proof is completed.

4.3. The lower estimation for the upper limit dimension. Let us now consider n, starting from which
the statement of the item b) of lemma 4 is true. Take an arbitrary standard ε(n)-cluster. We’d like to introduce
the probability measure µ on the set { t: for any k ≥ n K(ε(k), t) is standard ε(k)-cluster and K(ε(n), t) = K }
according to the following condition: all standard ε(l + 1)-clusters falling inside the same ε(l)-cluster have the equal
measure.

In virtue of lemma 4.b) for any standard ε(l)-cluster (l > n) it holds that

µ(Kl) ≤
l∑

k=n+1

(
1

ε(n)

)[ 12 (2k2
−2(k−1)2 )−γ2(k−1)2−2γ2k2

−δ2k2
]

≤ const ·
(

1

2

)2l2
(

1
2−2γ−2δ

)

.

Lemma 9. Given interval I, then |I | 12−2γ−2δ ≥ const µ(I).

Proof. Let j be the minimal natural number such that I covers the entire standard ε(j)-cluster with positive
measure, and k is the number of ε(j)-clusters inside I . There are two alternatives:

a) k < c(δ). Then µ(I) < (c(δ) + 2)· const
(

1
2

)2j2 ( 1
2−2γ−2δ)

(c(δ) + 2 takes account of more fine clusters as well)

and |I | > 1
2 ·
(

1
2

)2j2

.

b) k > c(δ). In this case the statement follows from lemma 6 and the estimation

µ(I) ≤ (k + 2) const

(
1

2

)2j2 ( 1
2−2γ−2δ)

.

The lemma is proven.

Corollary 2. h-dim(lim supAm) ≥ 1
2 − 2γ.

Proof. The implication (lemma 9) → (corollary 2) is well-known in the fractal geometry. We are presenting
the proof here, because it is short enough.

Let Ij be the ε-cover of (
∞⋂

k=n

Ak)
⋂

K, then

∞∑

j=1

|Ij |
1
2−2γ−2δ ≥ const ·

∞∑

j=1

µ(Ij) ≥ const ·µ
(( ∞⋂

k=n

Ak

)⋂
K

)
= const ,
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i.e. for any ε > 0 H
1
2−2γ−2δ
ε ((

∞⋂
k=n

Ak)
⋂

K) ≥ const or h-dim((
∞⋂

k=n

Ak)
⋂

K) ≥ 1
2 − 2γ − 2δ and the corollary is

proven.
This completes the proof of theorem 1.

5. THE DIMENSION OF OTHER SETS OF SINGULAR POINTS OF THE BROWNIAN ZEROES

5.1. Small size clusters. The proof of h − dim (lim inf Bm) = 0 is similar to the proof of lemma 7.
The probability of small size clusters (belonging to Bm) has the asymptotics const ·ε γ

2 . Hence, the number of

those clusters has the order
(

1
ε

) 1
2−

γ
2 in the sense of lemma 2 . The length of clusters is bounded by ε1+γ , therefore

h − dim (lim sup Bm) ≤ 1

2
·1 − γ

1 + γ

To prove the inverse inequality one should define the standard small cluster the one having the length confined
between 1

2ε1+γ and ε1+γ and act in proving in a similar way as we did with lemmas 4–6, 9 and corollary 2.

5.2. Small local time increment clusters. In the same way as in subsections 4.1 and 5.1 we get
h − dim (lim inf Cm) = 0.

To study the upper limit let us divide the segment [0, 2γ] into subsegments of the length 1
n

. Denote β
(n)
i = i

n

and

Cm(i, n) = {t : ε
1+β

(n)
i+1

m < δ(εm, t) ≤ ε
1+β

(n)
i

m ; li(εm, t) < ε
1
2+γ}.

The probability of clusters from Cm(i, n) has an asymptotics const ·ε2γ−
β
(n)
i
2 .

Similarly to lemma 3, with probability 1 Cm ⊂
(

[2( 1
2−γ)n]+1⋃

i=1

Cm(i, n)

)
, if m is large enough . So

h − dim (lim sup Cm) = max
i

(h − dim (lim sup Cm(i, n)))

Similarly to subsections 4.2–3 and 5.1 we have the inequality

1
2 − 2γ − β

(n)
i

2

1 + β
(n)
i+1

≤ h − dim (lim sup Cm(i, n)) ≤
1
2 − 2γ − β

(n)
i

2

1 + β
(n)
i

. (5.1)

Since n is arbitrary large (5.1) implies that

h − dim (lim sup Cm) = sup
β∈[0,2γ]

1
2 − 2γ − β

2

1 + β
=

1

2
·1 − 2γ

1 + 2γ
.
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