AN EXAMPLE OF A SMOOTH HYPERBOLIC MEASURE WITH COUNTABLY MANY ERGODIC COMPONENTS.

D. Dolgopyat, H. Hu, Ya. Pesin

I. Introduction

We construct an example of a diffeomorphism with non-zero Lyapunov exponents with respect to a smooth invariant measure which has countably many ergodic components. More precisely we will prove the following result.
Theorem. There exists a C^{∞} diffeomorphism f of the three dimensional manifold $M=$ $\mathbb{T}^{2} \times \mathbb{S}^{1}$ such that
(1) f preserves the Riemannian volume μ on M;
(2) μ is a hyperbolic measure;
(3) f has countably many ergodic components which are open $(\bmod 0)$.

II. Construction of the Diffeomorphism f.

Let $A: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ be a linear hyperbolic automorphism. Passing if necessary to a power of A we may assume that A has at least two fixed points p and p^{\prime}. Consider the map $F=A \times$ id of the manifold M. We will perturb F to obtain the desired map f.

Consider a countable collection of intervals $\left\{I_{n}\right\}_{n=1}^{\infty}$ on the circle \mathbb{S}^{1}, where

$$
I_{2 n}=\left[(n+2)^{-1},(n+1)^{-1}\right], \quad I_{2 n-1}=\left[1-(n+1)^{-1}, 1-(n+2)^{-1}\right] .
$$

Clearly, $\bigcup_{n=1}^{\infty} I_{n}=(0,1)$ and int I_{n} are pairwise disjoint.
By Main Proposition below, for each n one can construct a C^{∞} volume preserving ergodic hyperbolic diffeomorphism $f_{n}: \mathbb{T}^{2} \times I \rightarrow \mathbb{T}^{2} \times I$ satisfying: 1) $\left\|F-f_{n}\right\|_{C_{n}} \leq n^{-2}$
2) for all $0 \leq m<\infty, D^{m} f_{n}\left|\mathbb{T}^{2} \times\{z\}=D^{m} F\right| \mathbb{T}^{2} \times\{z\}$ for $z=0$ or 1 .

Let $L_{n}: I_{n} \rightarrow I$ be the affine map and $\pi_{n}=\left(\operatorname{id}, L_{n}\right): \mathbb{T}^{2} \times I_{n} \rightarrow \mathbb{T}^{2} \times I$. We define the map f by setting $f \mid \mathbb{T}^{2} \times I_{n}=\pi_{n}^{-1} f_{n} \pi_{n}$ for all n and $f\left|\mathbb{T}^{2} \times\{0\}=F\right| \mathbb{T}^{2} \times\{0\}$. Note that

$$
\left\|F \mid \mathbb{T}^{2} \times I_{n}-\pi_{n}^{-1} f_{n} \pi_{n}\right\| \leq\left\|\pi_{n}^{-1}\left(F-f_{n}\right) \pi_{n}\right\| \leq n^{-2} \cdot n=n^{-1}
$$

It follows that f is C^{∞} on M and has the required properties.

[^0]
III. Main Proposition

The goal of this section is to proof the following statement.
Main Proposition. For any $k \geq 2$ and $\delta>0$, there exists a map g such that:
(a) g is a C^{∞} volume preserving diffeomorphism of M;
(b) $\|F-g\|_{C_{k}} \leq \delta$;
(c) for all $0 \leq m<\infty g\left|\mathbb{T}^{2} \times\{z\}=F\right| \mathbb{T}^{2} \times\{z\}$ for $z=0$ and 1 ;
(d) g is ergodic with respect to the Riemannian volume and has non-zero Lyapunov exponents almost everywhere.

Before giving the formal proof let us outline the main idea. The result will be achived in two steps. First by a method of [SW] we obtain a diffeomorphism with non-zero average central exponent $\int \chi_{c}(x) d \mu(x) \neq 0$, where $\chi_{c}(x)$ denotes the Lyapunov eponent of x on E_{c}. We then further perturb this diffeomorphism using a method of [NT] to ensure that our diffeomorphism has accessibility property and is therefore ergodic.

Conjecture. Consider a one parameter family g_{ε} with $g_{0}=F$. Then for small $\varepsilon g_{\varepsilon}$ satisfies the conditions of the Main Proposition except for a positive codimension submanifold in the space of one parameter families.

Proof. Consider the linear hyperbolic map A. We may assume that its eigenvalues are η and η^{-1}, where $\eta>1$. Let p and p^{\prime} be fixed points of A. Choose a number $\varepsilon_{0}>0$ such that $d\left(p, p^{\prime}\right) \geq 3 \varepsilon_{0}$. Consider the local stable and unstable one-dimensional manifolds for A at points p and p^{\prime} of "size" ε_{0} and denote them respectively by $V^{s}(p), V^{u}(p), V^{s}\left(p^{\prime}\right)$, and $V^{u}\left(p^{\prime}\right)$.

Let us choose the smallest positive number n_{1} such that the intersection $A^{-n_{1}}\left(V^{s}\left(p^{\prime}\right)\right) \cap$ $V^{u}(p) \cap B\left(p, \varepsilon_{0}\right)$ consists of a single point which we denote by q_{1} (here $B\left(p, \varepsilon_{0}\right)$ is the ball in \mathbb{T}^{2} of radius ε_{0} centered at p). Similarly, we choose the smallest positive number n_{2} such that the intersection $A^{n_{2}}\left(V^{u}\left(p^{\prime}\right)\right) \cap V^{s}(p) \cap B\left(p, \varepsilon_{0}\right)$ consists of a single point which we denote by q_{2}.

Given a sufficiently small number $\varepsilon \in\left(0, \varepsilon_{0}\right), \varepsilon \leq \frac{1}{2} \min \left\{d\left(p, q_{1}\right), d\left(p, q_{2}\right)\right\}$, there is $\ell \geq 2$ such that

$$
\begin{equation*}
A^{\ell}\left(q_{1}\right) \notin B(p, \varepsilon), \quad A^{\ell+1}\left(q_{1}\right) \in B(p, \varepsilon) . \tag{3.1}
\end{equation*}
$$

We now choose $\varepsilon^{\prime} \in(0, \varepsilon)$ such that $A^{\ell+1}\left(q_{1}\right) \in B\left(p, \varepsilon^{\prime}\right)$.
Finally, let $q \in \mathbb{T}^{2}$ be such that

$$
B(p, \varepsilon) \cap\left(A^{-n_{1}}\left(V^{s}\left(p^{\prime}\right)\right) \cup A^{n_{2}}\left(V^{u}\left(p^{\prime}\right)\right)\right)=\emptyset, \quad A^{i}(B(q, \varepsilon)) \cap B(q, \varepsilon)=\emptyset, \quad i=1, \ldots, N,
$$

where $N>0$ will be determined later.
Set $\Omega_{1}=B\left(p, \varepsilon_{0}\right) \times I$ and $\Omega_{2}=B^{u c}\left(\bar{q}, \varepsilon_{0}\right) \times B^{s}\left(\bar{q}, \varepsilon_{0}\right)$, where $\bar{q}=(q, 1 / 2)$ and $B^{u c}\left(\bar{q}, \varepsilon_{0}\right) \subset V^{u}(q) \times I$ and $B^{s}\left(\bar{q}, \varepsilon_{0}\right) \subset V^{s}(q)$ are balls of radius ε_{0} about \bar{q}.

After this preliminary considerations we describe the construction of the map g.
Consider the coordinate system in Ω_{1} originated at $(p, 0)$ with x, y, and z-axes to be unstable, stable, and neutral directions respectively. If a point $w=(x, y, z) \in \Omega_{1}$ and $F(w) \in \Omega_{1}$ then $F(w)=\left(\eta x, \eta^{-1} y, z\right)$.

Choose a C^{∞} function $\xi: I \rightarrow \mathbb{R}^{+}$satisfying:
(1) $\xi(z)>0$ on $(0,1)$;
(2) $\xi^{(i)}(0)=\xi^{(i)}(1)=0$ for $i=0,1,2, \ldots$;
(3) $\|\xi\|_{C^{k}} \leq \delta$.

We also choose two C^{∞} functions $\phi=\phi(x)$ and $\psi=\psi(y)$ which are defined on the interval $\left(-\varepsilon_{0}, \varepsilon_{0}\right)$ and satisfy
(4) $\phi(x)=\phi_{0}$ if $x \in\left(-\varepsilon^{\prime}, \varepsilon^{\prime}\right)$ and $\psi(y)=\psi_{0}$ if $y \in\left(-\varepsilon^{\prime}, \varepsilon^{\prime}\right)$, where ϕ_{0} and ψ_{0} are positive constants;
(5) $\phi(x)=0$ if $|x| \geq \varepsilon ; \psi(y) \geq 0$ for any y and $\psi(y)=0$ if $|y| \geq \varepsilon$;
(6) $\|\phi\|_{C^{k}} \leq \delta,\|\psi\|_{C^{k}} \leq \delta$;
(7) $\int_{0}^{ \pm \varepsilon} \phi(s) d s=0$.

We now define the vector field X on Ω_{1} by

$$
X(x, y, z)=\left(-\psi(y) \xi^{\prime}(z) \int_{0}^{x} \phi(s) d s, \quad 0, \quad \psi(y) \xi(z) \phi(x)\right)
$$

It is easy to check that X is a divergence free vector field supported on $(-\varepsilon, \varepsilon) \times(-\varepsilon, \varepsilon) \times I$.
We define the map h_{t} on Ω_{1} to be the time t map of the flow generated by X and we set $h_{t}=\mathrm{id}$ on the complement of Ω_{1}. It is easy to see that h_{t} is a C^{∞} volume preserving diffeomorphism which preserves the y coordinate (the stable direction).

Consider now the coordinate system in Ω_{2} originated at ($q, 1 / 2$) with x, y, and z-axes to be unstable, stable, and neutral directions respectively. We then switch to the cylindrical coordinate system (r, θ, y), where $x=r \cos \theta, y=y$, and $z=r \sin \theta$.

Consider a C^{∞} function $\rho:\left(-\varepsilon_{0}, \varepsilon_{0}\right) \rightarrow \mathbb{R}^{+}$satisfying:
(8) $\rho(r)>0$ if $0.2 \varepsilon^{\prime} \leq r \leq 0.9 \varepsilon$ and $\rho(r)=0$ if $r \leq 0.1 \varepsilon^{\prime}$ or $r \geq \varepsilon$;
(9) $\|\rho\|_{C^{k}} \leq \delta$.

We define now the map \tilde{h}_{τ} on Ω_{2} by

$$
\begin{equation*}
\tilde{h}_{\tau}(r, \theta, y)=(r, \theta+\tau \psi(y) \rho(r), y) \tag{3.2}
\end{equation*}
$$

and we set $\tilde{h}_{\tau}=\operatorname{id}$ on $M \backslash \Omega_{e}$. It is easy to see that for every τ the map \tilde{h}_{τ} is a C^{∞} volume preserving diffeomorphism.

Let us set $g=g_{t \tau}=h_{t} \circ F \circ \tilde{h}_{\tau}$. For all sufficiently small $t>0$ and τ, the map $g_{t \tau}$ is C^{k} close to F and hence, is a partially hyperbolic (in the narrow sense) C^{∞} diffeomorphism. It preserves the Riemannian volume in M and is ergodic by Lemma 1. It remains to show that $g_{t \tau}$ has non-zero Lyapunov exponents almost everywhere.

Denote by $E_{t \tau}^{s}(w), E_{t \tau}^{u}(w)$, and $E_{t \tau}^{c}(w)$ the stable, unstable, and neutral subspaces at a point $w \in M$ for the map $g_{t \tau}$. It suffices to show that for almost everywhere point $w \in M$ and every vector $v \in E_{\tau}^{c}(w)$, the Lyapunov exponent $\chi(w, v) \neq 0$.

Set $\kappa_{t \tau}(w)=D g_{t \tau} \mid E_{t \tau}^{u}(w), w \in M$. By Lemma 2, for all sufficiently small $\tau>0$,

$$
\int_{M} \log \kappa_{0 \tau}(w) d w<\log \eta
$$

The subspace $E_{t \tau}^{u}(w)$ depends continuously on t and τ (for a fixed w; for details see the paper by Burns, Pugh, Shub, and Wilkinson in this volume) and hence, so does $\kappa_{t \tau}$. It follows that for all sufficiently small $\tau>0$, there is $t>0$ such that

$$
\int_{M} \log \kappa_{t \tau}(w) d w<\log \eta
$$

Denote by $\chi_{t \tau}^{s}(w), \chi_{t \tau}^{u}(w)$, and $\chi_{t \tau}^{c}(w)$ the Lyapunov exponents of $g_{t \tau}$ at the point $w \in M$ in the stable, unstable, and neutral directions respectively (since these directions are ondimensional the Lyapunov exponents do not depend on the vector). By the ergodicity of $g_{t \tau}$, we have that for almost every $w \in M$,

$$
\chi_{t \tau}^{u}(w)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \prod_{i=0}^{n-1} \kappa_{t \tau}\left(g_{t \tau}^{i}(w)\right)
$$

By the Birkhorff ergodic theorem, we get

$$
\chi_{t \tau}^{u}(w)=\int_{M} \log \kappa_{t \tau}(w) d w<\log \eta
$$

Since $E_{t \tau}^{s}(w)=E_{00}^{s}(w)=E_{F}^{s}(w)$ for every t and τ, we conclude that $\chi_{t \tau}^{s}(w)=-\log \eta$ for almost every $w \in M$. Since $g_{t \tau}$ is volume preserving,

$$
\chi_{t \tau}^{s}(w)+\chi_{t \tau}^{u}(w)+\chi_{t \tau}^{c}(w)=0
$$

for almost every $w \in M$. It follows that $\chi_{t \tau}^{c}(w) \neq 0$ for almost every $w \in M$ and hence, $g_{t \tau}$ has non-zero Lyapunov exponents almost everywhere. This completes the proof of Main Proposition.

IV. Ergodicity of the Map $g_{t \tau}$.

Lemma 1. For every sufficiently small t and τ the map $g_{t \tau}$ is ergodic.
Proof. Consider a partially hyperbolic (in the narrow sense) diffeomorphism f of a compact Riemannian manifold M preserving the Riemannian volume. Two points $x, y \in M$ are called accessible (with respect to f if they can be joined by a piecewise differentiable piecewise nonsingular path which consists of segments tangent to either E^{u} or E^{s}. The diffeomrphism f satisfies the essential accessibility property if almost any two points in M (with respect to the Riemannian volume) are accessible. We will show that the map $g_{t \tau}$ has the essential accessibility property. The ergodicity of the map will then follow from the result by Pugh and Shub (see [PS]; see also the paper by Burns, Pugh, Shub, and Wilkinson in this volume).

Given a point $w \in M$, denote by $\mathcal{A}(w)$ the set of points $z \in M$ such that w and z are accessible. Set $I_{p}=\{p\} \times I$.

Sublemma 1.1. For every $z \in(0,1)$,

$$
\begin{equation*}
\mathcal{A}(p, z) \supset I_{p} \tag{4.1}
\end{equation*}
$$

Proof of Sublemma 1.1. We use the coordinate system (x, y, z) in Ω_{1} described above. Since the map h_{t} presrves the center leaf I_{p}, we have that

$$
h_{t}(0,0, z)=\left(h_{t}^{1}(0,0, z), h_{t}^{2}(0,0, z), h_{t}^{3}(0,0, z)\right)=\left(0,0, h_{t}^{3}(0,0, z)\right), z \in(0,1) .
$$

It suffices to show that for every $z \in(0,1)$,

$$
\begin{equation*}
\mathcal{A}(p, z) \supset\left\{(p, a): a \in\left[\left(h_{t}^{-\ell}\right)^{3}(p, z), z\right]\right\} \tag{4.2}
\end{equation*}
$$

where ℓ is chosen by (3.1). In fact, since accessibility is a transtive relation and $h_{t}^{-n}(p, z) \rightarrow$ $(p, 0)$ for any $z \in(0,1)$, (4.2) implies that $\mathcal{A}(p, z) \supset\{(p, a): a \in(0, z]\}$. Since this holds true for all $z \in(0,1)$ and accessibility is a reflective relation, we obtain (4.1).

Now we proceed with the proof of (4.2).
Let $q_{1} \in V_{t \tau}^{u}(p)$ and $q_{2} \in V_{t \tau}^{s}(p)$ be two points constructed in Section III. The intersection $V_{t \tau}^{s}\left(q_{1}\right) \cap V_{t \tau}^{u}\left(q_{2}\right)$ is not empty and consists of a single point q_{3}. We will prove that for any $z_{0} \in(0,1)$, there exist $z_{i} \in(0,1), i=1,2,3,4$ such that

$$
\begin{aligned}
& \left(q_{1}, z_{1}\right) \in V_{t \tau}^{u}\left(\left(p, z_{0}\right)\right), \quad\left(q_{3}, z_{3}\right) \in V_{t \tau}^{s}\left(\left(q_{1}, z_{1}\right)\right), \\
& \left(q_{2}, z_{2}\right) \in V_{t \tau}^{u}\left(\left(q_{3}, z_{3}\right)\right), \quad\left(p, z_{4}\right) \in V_{t \tau}^{s}\left(\left(q_{2}, z_{2}\right)\right)
\end{aligned}
$$

and

$$
\begin{equation*}
z_{4} \leq\left(h_{t}^{-\ell}\right)^{3}\left(p, z_{0}\right) \tag{4.3}
\end{equation*}
$$

This means that $\left(p, z_{4}\right) \in \mathcal{A}\left(p, z_{0}\right)$. By continuity, we conclude that

$$
\left\{(p, a): a \in\left[z_{4}, z_{0}\right]\right\} \subset \mathcal{A}\left(p, z_{0}\right)
$$

and (4.2) follows.
Since $g_{t \tau}$ preserves the $x z$-plane, we have that $V_{F}^{u c}\left(\left(p, z_{0}\right)\right)=V_{F}^{u c}\left(\left(p, z_{0}\right)\right)$. Hence, there is a unique $z_{1} \in(0,1)$ such that $\left(q_{1}, z_{1}\right) \in V_{t \tau}^{u}\left(\left(p, z_{0}\right)\right)$. Notice that

$$
g_{t \tau}^{-n}\left(p, z_{0}\right)=\left(p, h_{t}^{-n}\left(\left(p, z_{0}\right)\right), \quad g_{t \tau}^{-n}\left(q_{1}, z_{1}\right)=l\left(A^{-n} q_{1}, z_{1}\right)\right.
$$

for $n \leq \ell$. This is true because the points $A^{-n} q_{1}, n=0,1, \ldots, \ell$ lie outside the ε neighborhood of I_{p}, where the perturbation map $h_{t}=\mathrm{id}$. Similarly, since the points $A^{-n} q_{1}, n>\ell$ lie inside the ε^{\prime}-neighborhood of I_{p}, and the third component of h_{t} depends only on the z-coordinate, we have

$$
g_{t \tau}^{-n}\left(q_{1}, z_{1}\right)=\left(A^{-n} q_{1}, h_{t}^{-n+l} z_{1}\right)
$$

Since $d\left(g_{t \tau}^{-n}\left(\left(p, z_{0}\right)\right), g_{t \tau}^{-n}\left(\left(q_{1}, z_{1}\right)\right)\right) \rightarrow 0$ as $n \rightarrow \infty$, we have $d\left(h_{t}^{-n}\left(\left(p, z_{0}\right)\right), h_{t}^{-n+l}\left(\left(p, z_{1}\right)\right)\right) \rightarrow$ 0 as $n \rightarrow \infty$. It follows that $z_{1}=\left(h_{t}^{-\ell}\right)^{3}\left(\left(p, z_{0}\right)\right)$.

By the construction of the map h_{t} (that is $h_{t}=\mathrm{id}$ outside Ω_{1} the sets $A^{-n_{1}} V_{t \tau}^{s}\left(p^{\prime}\right)$ and $A^{n_{2}} V_{t \tau}^{u}\left(p^{\prime}\right)$ are pieces of horizontal lines. This means that $z_{2}=z_{3}=z_{1}$.

Since the third component of h_{t} is non-decreasing from $\left(q_{2}, z_{2}\right)$ to $\left(p, z_{4}\right)$ along $V_{t \tau}^{s}(p)$, we conclude that $z_{4} \leq z_{3}=z_{1}=\left(h_{t}^{-\ell}\right)^{3}\left(p, z_{0}\right)$ and thus (4.3) holds.

The essential accessibility property follows from Sublemma 1.1 and the following statement.

Sublemma 1.2. (see $[\mathrm{NT}]$). Assume that any two points in I_{p} are accessible. Then the map $g_{t \tau}$ satisfies the essential accessibility property.
Proof of Sublemma 1.2. It is easy to see that for any two points $x, y \in M$ which do not lie on the boundary of M one can find points $x^{\prime}, y^{\prime} \in I_{p}$ such that the pairs (x, x^{\prime}) and $\left(y, y^{\prime}\right)$ are accessible. By Sublemma 1.1 the points x^{\prime}, y^{\prime} are accessible. Since accessibility is a transitive relation the result follows.

V. Hyperbolicity of the Map $g_{0 \tau}$.

Lemma 2. For any sufficiently small $\tau>0$,

$$
\begin{equation*}
\int_{M} \log \kappa_{0 \tau}(w) d w<\log \eta \tag{5.1}
\end{equation*}
$$

Proof. Our approach is an elaboration of an arguments in [SW].
For any $w \in M$, we introduce the coordinate system in $T_{w} M$ associated with the splitting $E_{F}^{u}(w) \oplus E_{F}^{s}(w) \oplus E_{F}^{c}(w)$. Given $\tau \geq 0$ and $w \in M$, there exists a unique number $\alpha_{\tau}(w)$ such that the vector $v_{\tau}(w)=\left(1,0, \alpha_{\tau}(w)\right)^{\perp}$ lies in $E_{0 \tau}^{u}(w)$, (where \perp denote the transpose). Since the map \tilde{h}_{τ} preserves the y coordinate, by the definition of the function $\alpha_{\tau}(w)$, one can write the vector $D g_{0 \tau}(w) v_{\tau}(w)$ in the form

$$
\begin{equation*}
D g_{0 \tau}(w) v_{\tau}(w)=\left(\bar{\kappa}_{\tau}(w), 0, \bar{\kappa}_{\tau}(w) \alpha_{\tau}\left(g_{t 0}(w)\right)\right)^{\perp} \tag{5.2}
\end{equation*}
$$

for some $\bar{\kappa}_{\tau}(w)>1$. Sinse the expanding rate of $D g_{0 \tau}(w)$ along its unstable direction is $\kappa_{0 \tau}(w)$ we obtain that

$$
\kappa_{0 \tau}(w)=\bar{\kappa}_{\tau}(w) \frac{\sqrt{1+\alpha_{\tau}\left(g_{0 \tau}(w)\right)^{2}}}{\sqrt{1+\alpha_{\tau}(w)^{2}}}
$$

Since $E_{0 \tau}^{u}(w)$ is close to $E_{00}^{u}(w)$ the function $\alpha_{\tau}(w)$ is uniformly bounded. Using the fact that the map $g_{0 \tau}$ preserves the Riemannian volume we find that

$$
\begin{equation*}
L_{\tau}=\int_{M} \log \kappa_{0 \tau}(w) d w=\int_{M} \log \bar{\kappa}_{\tau}(w) d w \tag{5.3}
\end{equation*}
$$

Consider the map \tilde{h}_{τ}. Since it preserves the y-coordinate using (3.2), we can write that

$$
\tilde{h}_{\tau}(x, y, z)=(r \cos \sigma, y, r \sin \sigma)
$$

where $\sigma=\sigma(\tau, r, \theta, y)=\theta+\tau \psi(y) \rho(r)$. Therefore, the differential

$$
D \tilde{h}_{\tau}: E_{F}^{u}(w) \oplus E_{F}^{c}(w) \rightarrow E_{F}^{u}\left(g_{0 \tau}(w)\right) \oplus E_{F}^{c}\left(g_{0 \tau}(w)\right)
$$

can be written in the matrix form

$$
D \tilde{h}_{\tau}(w)=\binom{A(\tau, w) B(\tau, w)}{C(\tau, w) D(\tau, w)}=\left(\begin{array}{ll}
r_{x} \cos \sigma-r \sigma_{x} \sin \sigma & r_{y} \cos \sigma-r \sigma_{y} \sin \sigma \\
r_{x} \sin \sigma+r \sigma_{x} \cos \sigma & r_{y} \sin \sigma+r \sigma_{y} \cos \sigma
\end{array}\right)
$$

where

$$
\begin{gathered}
r_{x}=\frac{\partial r}{\partial x}=\frac{x}{r}=\cos \theta, \quad r_{z}=\frac{\partial r}{\partial z}=\frac{y}{r}=\sin \theta \\
\sigma_{x}=\frac{\partial \sigma}{\partial x}=\frac{-z}{r^{2}}+\frac{z}{r} \tau \tilde{\rho}_{r}(y, r)=\frac{\sin \theta}{r}+\tau \tilde{\rho}_{r}(y, r) \cos \theta \\
\sigma_{z}=\frac{\partial \sigma}{\partial z}=\frac{x}{r^{2}}+\frac{x}{r} \tau \tilde{\rho}_{r}(y, r)=\frac{\cos \theta}{r}+\tau \tilde{\rho}_{r}(y, r) \sin \theta
\end{gathered}
$$

and $\tilde{\rho}(y, r)=\psi(y) \rho(r)$. It is easy to check that

$$
\begin{align*}
& A=A(\tau, w)=1-\tau r \tilde{\rho}_{r} \sin \theta \cos \theta-\frac{\tau^{2} \tilde{\rho}^{2}}{2}-\tau^{2} r \tilde{\rho} \tilde{\rho}_{r} \cos ^{2} \theta+O\left(\tau^{3}\right) \\
& B=B(\tau, w)=-\tau \tilde{\rho}-\tau r \tilde{\rho}_{r} \sin ^{2} \theta-\tau^{2} r \tilde{\rho} \tilde{\rho}_{r} \sin \theta \cos \theta+O\left(\tau^{3}\right) \tag{5.4}\\
& C=C(\tau, w)=\tau \tilde{\rho}+\tau r \tilde{\rho}_{r} \cos ^{2} \theta-\tau^{2} r \tilde{\rho} \tilde{\rho}_{r} \sin \theta \cos \theta+O\left(\tau^{3}\right) \\
& D=D(\tau, w)=1+\tau r \tilde{\rho}_{r} \sin \theta \cos \theta-\frac{\tau^{2} \tilde{\rho}^{2}}{2}-\tau^{2} r \tilde{\rho} \tilde{\rho}_{r} \sin ^{2} \theta+O\left(\tau^{3}\right)
\end{align*}
$$

By Sublemma 2.1 below, we have

$$
L_{\tau}=\int_{M} \log \eta-\log \left(D(\tau, w)-\eta B(\tau, w) \alpha_{\tau}\left(g_{0 \tau}(w)\right)\right) d w
$$

By Sublemma 2.2, we have

$$
\left.\frac{d L_{\tau}}{d \tau}\right|_{\tau=0}=0,\left.\quad \frac{d^{2} L_{\tau}}{d \tau^{2}}\right|_{\tau=0}<0
$$

So we can choose τ so small that $L_{\tau} \neq \log \eta$.

Sublemma 2.1.

$$
L_{\tau}=\log \eta-\int_{M} \log \left(D(\tau, w)-\eta B(\tau, w) \alpha_{\tau}\left(g_{0 \tau}(w)\right)\right) d w
$$

Proof of Sublemma 2.1. Since $g_{0 \tau}=h_{0} \circ F \circ \tilde{h}_{\tau}=F \circ \tilde{h}_{\tau}$, we have that

$$
D_{\tau}(w)=D g_{0 \tau}(w) \left\lvert\, E_{0 \tau}^{u}(w) \oplus E_{0 \tau}^{c}(w)=\left(\begin{array}{cc}
\eta A(\tau, w), & \eta B(c w) \\
C(\tau, w), & D(\tau, w)
\end{array}\right) .\right.
$$

By (5.2),

$$
\begin{equation*}
D_{\tau}(w)\binom{1}{\alpha_{\tau}(w)}=\binom{\eta A(\tau, w)+\eta B(\tau, w) \alpha_{\tau}(w)}{C(\tau, w)+D(\tau, w) \alpha_{\tau}(w)}=\binom{\kappa_{\tau}(w)}{\kappa_{\tau}(w) \alpha_{\tau}\left(g_{0 \tau}(w)\right)} \tag{5.5}
\end{equation*}
$$

Since \tilde{h}_{τ} is volume preserving, $A D-B C=1$ and therefore,

$$
A+B \alpha=\frac{1}{D}+\frac{B}{D}(C+D \alpha)
$$

Comparing the components in (5.5), we obtain

$$
\begin{aligned}
\kappa_{\tau}(w) & =\eta\left(A(\tau, w)+B(\tau, w) \alpha_{\tau}(w)\right) \\
& =\eta\left(\frac{1}{D(\tau, w)}+\frac{B(\tau, w)}{D(\tau, w)}\left(C(\tau, w)+D(\tau, w) \alpha_{\tau}(w)\right)\right) \\
& =\eta\left(\frac{1}{D(\tau, w)}+\frac{B(\tau, w)}{D(\tau, w)}\left(\kappa_{\tau}(w) \alpha_{\tau}\left(g_{0 \tau}(w)\right)\right)\right) .
\end{aligned}
$$

Solving for $\kappa_{\tau}(w)$, we get

$$
\kappa_{\tau}(w)=\frac{\eta}{D(\tau, w)-\eta B(\tau, w) \alpha_{\tau}\left(g_{0 \tau}(w)\right)} .
$$

The desired result follows from (5.3).
Sublemma 2.2.

$$
\begin{equation*}
\left.\frac{d L_{\tau}}{d \tau}\right|_{\tau=0}=0,\left.\quad \frac{d^{2} L_{\tau}}{d \tau^{2}}\right|_{\tau=0}<0 \tag{5.6}
\end{equation*}
$$

Proof of Sublemma 2.2. In order to simplify notations we set $D_{\tau}^{\prime}=\frac{\partial D}{\partial \tau}, B_{\tau}^{\prime}=\frac{\partial B}{\partial \tau}, C_{\tau}^{\prime}=$ $\frac{\partial C}{\partial \tau}, D_{\tau \tau}^{\prime \prime}=\frac{\partial^{2} D}{\partial \tau^{2}}$, and $B_{\tau \tau}^{\prime \prime}=\frac{\partial^{2} B}{\partial \tau^{2}}$. Since the function $\alpha_{\tau}(w)$ is differentiable over τ (see the paper by Burns, Pugh, Shub, and Wilkinson in this volume) by Sublemma 2.1, we find

$$
\frac{d L_{\tau}}{d \tau}=-\int_{M} \frac{D_{\tau}^{\prime}-\eta B_{\tau}^{\prime} \alpha\left(g_{0 \tau}(w)\right)-\eta B \frac{\partial \alpha_{\tau}(w)}{\partial \tau}\left(g_{0 \tau}(w)\right)}{D(\tau, w)-\eta B(\tau, w) \alpha_{\tau}(w)\left(g_{0 \tau}(w)\right)} d w
$$

and therefore,

$$
\begin{aligned}
& \frac{d^{2} L_{\tau}}{d \tau^{2}}=\int_{M}\left(\frac{D_{\tau}^{\prime}-\eta B_{\tau}^{\prime} \alpha\left(g_{0 \tau}(w)\right)-\eta B(\tau, w) \frac{\partial \alpha_{\tau}(w)}{\partial \tau}\left(g_{0 \tau}(w)\right)}{D(\tau, w)-\eta B(\tau, w) \alpha_{s}\left(g_{0 \tau}(w)\right)}\right)^{2} d w \\
& \quad-\int_{M} \frac{D_{\tau \tau}^{\prime \prime}-\eta B_{\tau \tau}^{\prime \prime} \alpha\left(g_{0 \tau}(w)\right)-\eta B(\tau, w) \frac{\partial^{2} \alpha_{\tau}(w)}{\partial \tau^{2}}\left(g_{0 \tau}(w)\right)-2 \eta B_{\tau}^{\prime} \frac{\partial \alpha_{\tau}(w)}{\partial \tau}\left(g_{0 \tau}(w)\right)}{D(\tau, w)-\eta B(\tau, w) \alpha_{\tau}\left(g_{0 \tau}(w)\right)} d w
\end{aligned}
$$

Note that for all $w \notin \Omega_{2}$,

$$
A(\tau, w)=D(\tau, w)=1, \quad C(\tau, w)=B(\tau, w)=0
$$

and for all $w \in M$,

$$
A(0, w)=D(0, w)=1, \quad C(0, w)=B(0, w)=0, \quad \alpha_{0}(w)=0
$$

It follows that

$$
\begin{equation*}
\left.\frac{d L_{\tau}}{d \tau}\right|_{\tau=0}=\int_{\Omega_{2}} D_{\tau}^{\prime} d w \tag{5.7}
\end{equation*}
$$

and also that

$$
\begin{equation*}
\left.\frac{d^{2} L_{\tau}}{d \tau^{2}}\right|_{\tau=0}=\int_{\Omega_{2}}\left[\left(D_{\tau}^{\prime}\right)^{2}-D_{\tau \tau}^{\prime \prime}+2 \eta B_{\tau}^{\prime} \frac{\partial \alpha_{\tau}(w)}{\partial \tau}\left(g_{0 \tau}(w)\right)\right]_{\tau=0} d w \tag{5.8}
\end{equation*}
$$

By (5.4), we obtain that

$$
D_{\tau}^{\prime}(0, w)=r \tilde{\rho}_{r}(r) \sin \theta \cos \theta
$$

and hence,

$$
\int_{\Omega_{2}} D_{\tau}^{\prime} d w=0
$$

Therefore, (5.7) implies the equality in (5.6).
We now proceed with the inequality in (5.6). Applying Sublemma 2.3 below we obtain that

$$
\left.\frac{\partial \alpha}{\partial \tau}\left(g_{0 \tau}(w)\right)\right|_{\tau=0}=\frac{C_{\tau}^{\prime}(0, w)}{\eta}+\sum_{n=1}^{\infty} \frac{C_{\tau}^{\prime}\left(0, g_{00}^{-n}(w)\right)}{\eta^{n+1}} .
$$

It follows that

$$
\left.2 \eta B_{\tau}^{\prime}(0, w) \frac{\partial \alpha}{\partial \tau}\left(g_{0 \tau}(w)\right)\right|_{\tau=0}=2 B_{\tau}^{\prime}(0, w) C_{\tau}^{\prime}(0, w)+2 B_{\tau}^{\prime}(0, w) \sum_{n=1}^{\infty} \frac{C_{\tau}^{\prime}\left(0, g_{00}^{-n}(w)\right)}{\eta^{n}}
$$

First, we evaluate the term

$$
\mathcal{F}(w)=D_{\tau}^{\prime}(0, w)^{2}-D_{\tau \tau}^{\prime \prime}(0, w)+2 B_{\tau}^{\prime}(0, w) C_{\tau}^{\prime}(0, w)
$$

Using (5.4), we find that

$$
\begin{align*}
\mathcal{F}(w) & =\left(r \tilde{\rho}_{r} \sin \theta \cos \theta\right)^{2}+\left(\tilde{\rho}^{2}+2 r \tilde{\rho} \tilde{\rho}_{r} \sin ^{2} \theta\right)-2\left(\tilde{\rho}+r \tilde{\rho}_{r} \sin ^{2} \theta\right)\left(\tilde{\rho}+r \tilde{\rho}_{r} \cos ^{2} \theta\right) \\
& =-\tilde{\rho}^{2}-\left(r \tilde{\rho}_{r} \sin \theta \cos \theta\right)^{2}-2 r \tilde{\rho} \tilde{\rho}_{r} \cos ^{2} \theta \tag{5.9}
\end{align*}
$$

Recall that $\Omega_{2}=B^{u c}\left(\bar{q}, \varepsilon_{0}\right) \times B^{s}\left(\bar{q}, \varepsilon_{0}\right)$ and $\tilde{\rho}(r)=0$ if $r \geq \varepsilon$. We have

$$
\begin{equation*}
\int_{\Omega_{2}} 2 r \tilde{\rho} \tilde{\rho}_{r} \cos ^{2} \theta d w=\int_{-\varepsilon_{0}}^{\varepsilon_{0}} d y \int_{0}^{2 \pi} 2 \cos ^{2} \theta d \theta \int_{0}^{\varepsilon} r^{2} \tilde{\rho} \tilde{\rho}_{r} d r \tag{5.10}
\end{equation*}
$$

Since $0=\tilde{\rho}(0)=\tilde{\rho}(\varepsilon)$ (by the definition of the function ρ), we find that

$$
\begin{equation*}
\int_{0}^{\varepsilon} r^{2} \tilde{\rho} \tilde{\rho}_{r} d r=\left.\frac{1}{2} r^{2} \tilde{\rho}^{2}\right|_{0} ^{\varepsilon}-\int_{0}^{\varepsilon} r \tilde{\rho}^{2} d r=-\int_{0}^{\varepsilon} r \tilde{\rho}^{2} d r \tag{5.11}
\end{equation*}
$$

We also have that

$$
\begin{equation*}
\int_{0}^{2 \pi} 2 \cos ^{2} \theta d \theta=\int_{0}^{2 \pi} d \theta \tag{5.12}
\end{equation*}
$$

It follows from (5.10) - (5.12) that

$$
\begin{equation*}
-\int_{\Omega_{2}} 2 r \tilde{\rho} \tilde{\rho}_{r} \cos ^{2} \theta d w=\int_{\Omega_{2}} r \tilde{\rho}^{2} d w \leq \varepsilon \int_{\Omega_{2}} \tilde{\rho}^{2} d w \tag{5.13}
\end{equation*}
$$

Arguing similarly one can show that

$$
\begin{equation*}
-\int_{\Omega_{2}} r \tilde{\rho}_{r} \sin \theta \cos \theta d w=-\frac{1}{8} \int_{\Omega_{2}}(r \tilde{\rho})^{2} d w \tag{5.14}
\end{equation*}
$$

Thus we conclude using (5.9), (5.13), and (5.14) that

$$
\begin{equation*}
\int_{\Omega_{2}} \mathcal{F}(0, w) d w \leq-(1-\varepsilon) \int_{\Omega_{2}} \tilde{\rho}^{2} d w-\frac{1}{8} \int_{\Omega_{2}}(r \tilde{\rho})^{2} d w<0 \tag{5.15}
\end{equation*}
$$

We now evaluate the remaining term

$$
\mathcal{G}(0, w)=\sum_{n=1}^{\infty} \frac{1}{\eta^{i}} \int_{\Omega_{2}} 2 B_{\tau}^{\prime}(0, w) C_{\tau}^{\prime}\left(0, g_{00}^{-n}(w)\right) d w
$$

Since the map $g_{00}=F$ preserves the Riemannian volume we obtain that

$$
\begin{aligned}
\int_{\Omega_{2}} 2 B_{\tau}^{\prime}(0, w) C_{\tau}^{\prime}\left(0, g_{00}^{-n}(w)\right) d w & \leq \int_{\Omega_{2}} B_{\tau}^{\prime}(0, w)^{2} d w+\int_{\Omega_{2}} C_{\tau}^{\prime}\left(0, g_{00}^{-n}(w)\right)^{2} d w \\
& =\int_{\Omega_{2}} B_{\tau}^{\prime}(0, w)^{2} d w+\int_{\Omega_{2}} C_{\tau}^{\prime}(0, w)^{2} d w
\end{aligned}
$$

Applying (5.4), we find that

$$
\begin{aligned}
& \int_{\Omega_{2}} B_{\tau}^{\prime}(0, w)^{2} d w+\int_{\Omega_{2}} C_{\tau}^{\prime}(0, w)^{2} d w \\
= & \int_{\Omega_{2}}\left(\tilde{\rho}+r \tilde{\rho}_{r} \sin ^{2} \theta d w+\int_{\Omega_{2}}\left(\tilde{\rho}+r \tilde{\rho}_{r} \cos ^{2} \theta d w\right.\right. \\
\leq & 4\left(\int_{\Omega_{2}} \tilde{\rho}^{2} d w+\int_{\Omega_{2}} r^{2} \tilde{\rho}_{r}^{2} d w\right) .
\end{aligned}
$$

It follows that for sufficiently large $N>0$ (which does not depend on ε)

$$
\begin{equation*}
\sum_{i=N}^{\infty} \frac{1}{\eta^{i}} \int_{\Omega_{2}} 2 B_{\tau}^{\prime}(0, w) C_{\tau}^{\prime}\left(0, g_{00}^{-i}(w)\right) d w \leq \frac{1}{10}\left(\int_{\Omega_{2}} \tilde{\rho}^{2} d w+\int_{\Omega_{2}} r^{2} \tilde{\rho}_{r}^{2} d w\right) \tag{5.16}
\end{equation*}
$$

Note that if $g_{00}^{-n} \Omega_{2} \cap \Omega_{2}=\emptyset$, then $B_{\tau}^{\prime}(0, w) C_{\tau}^{\prime}\left(0, g_{00}^{-n}(w)\right)=0$ for all w. Hence,

$$
\int_{\Omega_{2}} 2 B_{\tau}^{\prime}(0, w) C_{\tau}^{\prime}\left(0, g_{00}^{-n}(w)\right) d w=0
$$

We may choose the point q and a small ε such that $g_{00}^{-n} \Omega_{2} \cap \Omega_{2}=F^{-n} \Omega_{2} \cap \Omega_{2}=\emptyset$ for all $n=1,2, \ldots, N$. It follows from (5.8), (5.15), and (5.16) that
$\left.\frac{d^{2} L_{\tau}}{d \tau^{2}}\right|_{\tau=0}=\int_{\Omega_{2}} \mathcal{F}(0, w) d w+\int_{\Omega_{2}} \mathcal{G}(0, w) d w \leq-\left(\frac{9}{10}-\varepsilon\right) \int_{\Omega_{2}} \tilde{\rho}^{2} d w-\frac{1}{40} \int_{\Omega_{2}} r^{2} \tilde{\rho}_{r}^{2} d w<0$.
The desired result follows.

Sublemma 2.3.

$$
\left.\frac{\partial \alpha}{\partial \tau}\left(g_{0 \tau}(w)\right)\right|_{\tau=0}=\sum_{n=0}^{\infty} \frac{C_{\tau}^{\prime}\left(0, g_{00}^{-n}(w)\right)}{\eta^{n+1}}
$$

Proof of Sublemma 2.3. Define

$$
R(\tau, w, \alpha)=\frac{C(\tau, w)+D(\tau, w) \alpha}{\eta(A(\tau, w)+B(\tau, w) \alpha)}
$$

Clearly,

$$
\begin{equation*}
\alpha_{\tau}\left(g_{0 \tau}(w)\right)=R\left(\tau, w, \alpha_{\tau}(w)\right) \tag{5.17}
\end{equation*}
$$

By (5.6), we have

$$
\left.\frac{\partial R}{\partial \tau}\right|_{\tau=0}=\left.\frac{\left(C_{\tau}^{\prime}+D_{\tau}^{\prime} \alpha\right)(A+B \alpha)+(C+D \alpha)\left(A_{\tau}^{\prime}+B_{\tau}^{\prime} \alpha\right)}{\eta(A+B \alpha)^{2}}\right|_{\tau=0}=\frac{C_{\tau}^{\prime}(0, w)}{\eta}
$$

Since $A(0, w), B(0, w), C(0, w)$, and $D(0, w)$ are constant functions over $w=(x, y, z)$ we obtain that

$$
\left.\frac{\partial H}{\partial x}\right|_{\tau=0}=\left.\frac{\partial H}{\partial z}\right|_{\tau=0}=0
$$

for $H=A, B, C, D$. This implies that

$$
\left.\frac{\partial R}{\partial x}\right|_{\tau=0}=\left.\frac{\partial R}{\partial z}\right|_{\tau=0}=0
$$

Since $A D-B C=1$,

$$
\left.\frac{\partial R}{\partial \alpha}\right|_{\tau=0}=\left.\frac{A D-B C}{\eta(A+B \alpha)^{2}}\right|_{\tau=0}=\frac{1}{\eta} .
$$

It follows from (5.17) that

$$
\left.\frac{\partial \alpha}{\partial \tau}\left(g_{0 \tau}(w)\right)\right|_{\tau=0}=\frac{C_{\tau}^{\prime}(0, w)}{\eta}+\left.\frac{1}{\eta} \cdot \frac{\partial \alpha}{\partial t}(w)\right|_{\tau=0} .
$$

Using (5.17) again, we also obtain that

$$
\alpha_{\tau}(w)=R\left(\tau, g_{0 \tau}^{-1}(w), \alpha_{\tau}\left(g_{0 \tau}^{-1}(w)\right)\right)
$$

and hence,

$$
\left.\frac{\partial \alpha}{\partial \tau}(w)\right|_{\tau=0}=\frac{C_{\tau}^{\prime}\left(0, g_{0 \tau}^{-1}(w)\right)}{\eta}+\left.\frac{1}{\eta} \cdot \frac{\partial \alpha}{\partial \tau}\left(g_{0 \tau}^{-1}(w)\right)\right|_{\tau=0}
$$

Therefore the result follows by induction.

References

[NT] V. Niticã, A. Török, An Open and Dense Set of Stably Ergodic Diffeomorphisms in a Neighborhood of a Non-ergodic One, Topology, to appear (1999).
[PS] C. Puhg, M. Shub, Stable Ergodicity and Julienne Quasi-Conformality, Journal EMS, to appear.
[SW] M. Shub, A. Wilkinson, Pathological foliations and removable zero exponents, Invent. Math. 139 (2000), 495-508.

Department of Mathematics, Pennsylvania State University, University Park, PA 16802, USA

E-mail address: dolgopyat@math.psu.edu, hu@math.psu.edu, pesin@math.psu.edu

[^0]: Key words and phrases. Hyperbolic measure, Lyapunov exponents, stable ergodicity, accessibility.
 The work of D. Dolgopyat was partially supported by the Sloan Foundation; the work of H. Hu was partially supported by the National Science Foundation grant \#DMS-9970646; the work of Ya. Pesin was partially supported by the National Science Foundation grant \#DMS-9704564 and by the NATO grant CRG970161.

