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1. Introduction.

An outer billard map F is defined outside a closed convex curve Γ in the
following way. Let z be a point on the plane. Consider the supporting
line L(z) from z to Γ such that Γ lies on the right of L. F (z) lies on L(z)
so that the point of contact divides the segment [z, F (z)] in half. If Γ
contains segments then F (z) is not defined if L(z) contains a segment.
In this case F (z) is defined almost everywhere but it is discontinuous.

In [14] Moser outlined the proof of the fact that if Γ is smooth and
strictly convex then all trajectories are bounded (the complete proof
(for C6-curves) was later given in [3]). Moser also asked ([14, 15]) what
happens if Γ is only piecewise smooth, mentioning in particular that
even in the case where Γ is quadrangle, the question of boundedness of
the orbits was open.
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Figure 1. Four iterations of semicircular outer billiard

The majority of the subsequent papers on this subject dealt with the
most degenerate case when Γ is a polygon. In this case F (z) is obtained
from z by reflection around a vertex. In [23, 12, 11] boundedness of
the trajectories was proved for the so called quasi-rational polygons, a
class including rational polygons as well as regular n-gones. Since affine
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equivalent curves have conjugated outer billiards all triangular outer
billiards have bounded (in fact, periodic) orbits. It was proved in [5]
that if Γ is a trapezoid then all trajectories are bounded. Schwartz ([18,
19]) considers kites–quadrangles with vertices (−1, 0), (0, 1), (A, 0) and
(0,−1), and proves that for all irrational A, there exists an unbounded
orbit (if A is rational then the orbits are bounded since the kite is
rational). It is believed that unbounded orbits exist for almost all N -
gonal outer billiards for N ≥ 4 but this question is far from settled.
In particular it is unknown if there exists a polygon with an infinite
measure of unbounded orbits (it seems that for kites almost all orbits
are periodic but that case is quite special because a foliation by lines
parallel to the x axis is preserved by F 2).

An intermediate case that consists of curves containing both seg-
ments and strictly convex pieces received much less attention. Numer-
ical simulations reported in [21] show that for the outer billiard around
a semicircle there is a large set of unbounded trajectories. In this paper
we show that this numerical conclusion is indeed correct.

Theorem 1. The outer billiard around a semicircle has an open ball
escaping to infinity.

2. Main ingredients.

In all what follows, the billiard curve Γ will be fixed for definiteness to
be the semicircle given by the upper part of the unit circle of R

2, and F
will denote the outer billiard map around Γ. Let ℓ1 denote the halfline
{x ≥ 1, y = 0}. Let D be the infinite region bounded by ℓ1, F

2ℓ1 and
{x = x0} where x0 is a large constant. We shall show in the appendix
that F 2ℓ is a graph of a function y = h(x) where h(x) = 2 + O(1/x2).
Thus

D = {(x, y) : x ≥ x0, 0 ≤ y ≤ h(x)}.
Denote by F the first return map to D under F 2. Theorem 1 will of
course follow if we show the existence of balls that escape to inifinity
under the iteration by F . The proof of this fact consists of two parts.

We can rescale the coordinates in D and think of it as a cylinder
(where the boundaries are identified by F 2). A further change of coor-
dinates allows to derive a normal form expression for the return map
F that consists of a periodic (piecewise) linear part L̄ : D → D, and
an asymptotic expansion in powers of 1/R, where R denotes the radial
coordinate in the fundamental domain (we call a map of D periodic if it
commutes with integer translations of R). The normal form will have
singularity lines corresponding to the discontinuities of F 2 and of its
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derivative that result from the flat piece and the corners in Γ. This nor-
mal form is presented at the end of this section while its proof, based on
lengthy but straightforward computations, is deferred to Appendix A.

Since L̄ is periodic there is a map L̂ : T
2 → T

2 such that πL̄ = L̂π
where π is the projection of the cylinder D to the torus. Hence, we
can reduce the dynamics of L̄ to a dynamics on T

2 and look for an
escaping orbit on D which projects to the simplest orbit on T

2, namely
a periodic orbit. In our case, we will exhibit a fixed point of L̂ that
moves up in D by two units in the R direction under each iteration of
L̄. The question is hence that of the stability of this orbit when the
additional terms of the normal form are considered, which constitutes
the second part of the proof. The first crucial observation is that the
linear part L̂ happens to be elliptic so that the escaping orbit of L̄ is
actually accompanied by a small ball around it.

Under L̄, the radial coordinate R of the points in the escaping ball
goes to infinity linearly with time, and viewed on T

2, our problem be-
comes similar to that of establishing the stability of a periodic point
under a time dependent perturbation. If the perturbation was inde-
pendent of time, it would be possible to derive the result from Moser’s
theorem on the stability of elliptic fixed points. Time dependent per-
turbations were studied in [16, 4] but there it was assumed that the
perturbation vanishes at the fixed point. This is not true in our case,
however there are two features which considerably simplify the prob-
lem.

(1) The unperturbed map is globally linear so that the approximation
by the linear map does not become worse as we move away from the
fixed point.

(2) Rather than a general smooth function, the perturbation has a
special form. Namely, if we use a coordinate system centered around
the escaping orbit of L̄, the main term of our return map will be the lin-
ear elliptic map L̄, the term of order O( 1

R̄n

), where R̄n ∼ 2n is the radial

coordinate at time n, is quadratic, the term of order O( 1
R̄2

n

) = O( 1
n2 ) is

cubic and so on (see Lemma 2). The O( 1
n2 )-terms clearly do not alter

the stability displayed in the linear picture, and the O( 1
n
)-perturbation

contains only one resonant term which may cause divergence (rather
than infinitely many resonant terms which might have appeared for a
general smooth perturbation). In our case, the only resonance is related
to the fact that the small perturbation of an area preserving map can
be area contracting or area expanding (and in the latter case stability
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is clearly impossible). Stability is thus insured by the nullity of the res-
onant term, which we obtain a posteriori due to the area preservation
property of the outer billiard map.

Finally, a particular attention has also to be given to the verification
that the candidate escaping ball stays away from the singularity lines
of the map.

We now specify with two statements the two principal moments of
the proof discussed above.

Denote

L(R, φ) =

(

R − 4

3
+

8

3
{φ− R}, {φ− R}

)

.

We will use the notation [x] for the integer part of x and {x} for its
fractional part x− [x].

Figure 2. Dynamics of L. R decreases on the shaded
parallelograms and increases on white parallelograms.
The thick solid lines are discontinities of L. The thick
dashed lines are singularities of higher order terms which
are invisible in the linear approximation. Also shown is
an escapinng orbit which projects to a constant orbit
of T

2.

Lemma 2. There exists a smooth change of coordinates G : (x, y) ∈
D 7→ (R, φ) ∈ C = [R0,∞) × T of the form

(1) R =
2

3
x− 1

6
+ O

(

1

x

)

, φ =
y

2
+ O

(

1

x

)

so that the following holds.1

(a) The singularities of F are O(1/R) close to one of the following
curves

• the singularities of L2

• {φ− R
2
} = 1

4
and {φ− R

2
} = 3

4

• {φ̃− R̃
2
} = 1

4
and {φ̃− R̃

2
} = 3

4
where (R̃, φ̃) = L(R, θ).

1We use the same notation for F and G ◦ F ◦ G−1
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(b) If (R, φ) is O(1/R) far from the singularities then

F(R, φ) = L2(R, φ) + (P ({R}, φ)/[R], Q({R}, φ)/[R]) + O(1/R2)

where P,Q : [0, 1] × T → R are piecewise polynomials of degree 2
(c) The map F preserves a measure with density

1 +W (φ)/R+ O(R−2)

where W is an affine function.

Lemma 3. Any map satisfying the conclusions of Lemma 2 has an
open ball of points escaping to infinity.

Remark. A more explicit expression for G in Lemma 2 is given by
formulas (14), (15), (18), (19), (21) and (23) given in the appendix. The
reader will notice that those formulas are rather cumbersome however
for our proof (that is for Lemma 3) we only need the properties listed
in Lemma 2.

Lemma 3 is proven in Section 3. We follow [16] but our case is
simpler since we deal with a perturbation of the linear system and the
first order perturbative terms are polynomials while [16] considers an
arbitrary perturbation. The proof of Lemma 2 is given in Appendix A.

3. Construction of unbounded orbits.

Following [16] we first observe that the limit map L2 has an escaping
orbit given by Rn = 2n and φn = φ0 = 7/8, namely L2(Rn, φ0) =
(Rn+1, φ0). Notice that the latter escaping orbit remains away from
the singularity lines. Define

L = dL =

(

−5
3

8
3

−1 1

)

.

Notice that the trace of L is equal to −2/3 which implies that it is
elliptic, and so is L

2. Hence a full ball will accompany the escaping
point to infinity. To deal with the higher order perturbative terms, a
first observation is that F has no singularities in balls of sufficiently
small but fixed radius around the escaping points (2n, φ0).

We will therefore consider a point {RN , φN} in a small neighbor-
hood of {2N, φ0} and study its dynamics. For n ≥ N , we will denote
{Rn, φn} the n−N iterate of {RN , φN}, and introduce Un = Rn − 2n,
υn = φn − φ0. Let s be such that cos(πs) = −1/3. We can introduce
a suitable complex coordinate zn = Un + i(aUn + bυn) such that DF
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becomes a rotation by angle 2πs near the origin. In these coordinates
F takes the following form in a small neighborhood of (0, 0)

(2) zn+1 = ei2πszn +
A(zn)

N
+ O(N−2)

where
A(z) = w1 + w2z + w3z̄ + w4z

2 + w5zz̄ + w6z̄
2.

Lemma 4. (a) We have that Re(e−i2πsw2) = 0.
(b) There exists ǫ > 0 and a constant C such that if |zN | ≤ ǫ, then

for every n ∈ [N,N +
√
N ]

|zn| ≤ |zN | + CN−1.

Part (b) is the main result of the lemma. Part (a) is an auxiliary
statement needed in the proof of (b). Namely, part (a) says that the
resonant coefficient mentioned in Section 2 vanishes.

Before we prove this lemma, let us observe that it implies that for
sufficiently large N , all the points |zN | ≤ ǫ/2 are escaping orbits. In-

deed by [
√
N ] applications of lemma 4 there is a constant C such that

|zl| ≤
ǫ

2
+ CN−

1

2

for every l ∈ [N, 2N ]. It now follows by induction on k that if l ∈
[2kN, 2k+1N ] then

|zl| ≤ ǫk

where

ǫk =
ǫ

2
+

C√
N

k
∑

j=0

(

1√
2

)j

(N has to be chosen large so that ǫk ≤ ǫ for all k). This proves lemma 3.

Proof of lemma 4. Let n̄ = n−N. For n̄ ≤
√
N equation (2) gives

(3) zn = ei2πn̄szN +
1

N

n̄−1
∑

m=0

ei2πmsA(ei2π(n̄−m−1)szN+n̄−m) + O(N−
3

2 )

In particular for these values of n we have

zn = ei2πs(n−N)zN + O
(

1√
N

)

.

Substituting this into (3) gives

zn = ei2πn̄szN +
1

N

n̄−1
∑

m=0

ei2πmsA(ei2π(n̄−m−1)szN ) + O
(

1

N

)

.
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To compute the sum above expand A as a sum of monomials and
observe that

n̄−1
∑

m=0

ei2πms
(

ei2π(n̄−m−1)szN

)α (
e−i2π(n̄−m−1)sz̄N

)β

is bounded for α + β ≤ 2 unless α = β + 1 (that is α = 1, β = 0).
Therefore

(4) zn = ei2πn̄szN

(

1 + w̃2
n̄

N

)

+ O
(

N−1
)

where w̃2 = e−i2πsw2.
Consider now the disc DN around 0 of radius N−0.4. Then by (4)

Area(F n̄DN )

Area(DN)
=
(

1 + 2Re(w̃2)
n̄

N

)

+ O
(

N−0.6
)

.

On the other hand there exists z ∈ DN such that denoting z′ = F n̄z
we have

Area(F n̄DN)

Area(DN)
=

1 +W (z)/N

1 +W (z′)/(n̄+N)
+ O

(

N−2
)

= 1 + O
(

N−1.4
)

since W (z)−W (z′) = O (N−0.4) . Comparing those two expressions for
the ratio of areas we obtain that Re(w̃2) = 0.

This proves part (a) of Lemma 4. Part (b) now follows from (4). �

4. Open questions.

In this paper we consider a very simple piecewise smooth curve–the
semicircle and prove that there is a positive measure set of escaping
orbits. This is just the first step in the study of outer billiards around
piecewise smooth curves. In the current section we discuss some of the
immediate questions raised by this work.

Question 1. Prove that unbounded orbits exist generically for the
following classes of curves

(a) circular caps;
(b) curves consisting of finitely many strictly convex pieces and

finitely many segments;
(c) unions of two circular arcs.

We observe that since our proof depends on the existence of an ellip-
tic fixed point for a certain auxiliary map which is an open condition
we also obtain the existence of unbounded orbits for caps close to the
semicircle. However the limiting cases of caps close to the full circle ap-
pear to be much more difficult. It is not difficult to extend Lemma 2 to
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small piecewise smooth perturbations of the identity in the plane corre-
sponding to curves (a)–(c) above (see the Appendix), however proving
that the limiting map has unbounded orbits is more complicated.

Question 2. Let P be the set of maps of the cylinder R × T of the
form

F(R, φ) = id + L({R}, φ)

where L is piecewise linear which are invertible and area preserving. Is
it true that a generic element of P has unbounded orbits?

We observe that the affirmative answer to question 2 would be a
significant step in answering cases (a) and (b) of question 1, however
it would give little for case (c) (because in cases (a) and (b) the outer
billiard map is discontinuous while in case (c) it is continuous but not
smooth).

Another interesting direction of research is to describe different pos-
sible types of behavior for outer billiards. In particular we say that the
orbit {zn} is oscillatory if

lim sup |zn| = +∞, lim inf |zn| <∞.

We say that an oscillatory orbit is erratic if in addition

lim inf d(zn,Γ) = 0.

We observe that unbounded orbits constructed in [18, 19] are erratic
and it is conjectured there that for outer billiard around kites every
orbit is either periodic or erratic.

Question 3. Does generic outer billiard for classes (a)–(c) of question 1
have

(a) oscillatory (in particular erratic) orbits;
(b) infinite measure of bounded (in particular quasiperiodic) orbits;
(c) bounded non-quasiperiodic orbits?

Concerning parts (b) and (c) of question 3 we observe that the semi-
circular outer billiard has infinitely many elliptic periodic orbits close
to R ∈ N, φ = 1/2 (that are periodic points for the linear part) however
verifying their KAM stability requires checking a nonzero twist condi-
tion, and thus computing an asymptotic of the orbits with a higher
precision than what it is done in the Appendix.

As it is the case for question 1, the natural first step in investigating
question 3 is to study the limiting maps of question 2. In case the
limiting map is elliptic the dynamics is piecewise isometric for a suitable
metric. We refer the reader to [7] for a survey of general properties of
piecewise isometries and to [8] and references wherein for an interesting
case study with an emphasis on existence of unbounded orbits.
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Question 4. Does there exist a curve Γ such that the limiting map of
Lemma 2 has hyperbolic linear part?

Thus question 4 raises the problem of existence of a curve such that
the outer billiard dynamics is chaotic near infinity. We note that [6]
gives an example of a curve such that the outer billiard is chaotic near
the curve itself. See also [2, 10] for the discussion of unstable orbits
near the boundary of piecewise smooth outer billiards.

In conclusion we mention that there are several mechanical systems
(with collisions) of which the dynamics for large energies is given by a
small piecewise smooth perturbation of an integrable map (see [2, 9, 20,
24], for example) and all the questions discussed here are interesting
for these systems as well.

Appendix A. Normal form.

Here we prove Lemma 2. The proof consists of three parts.
In subsection A.1 we derive the formulas for F 2 in polar coordinates.
In subsection A.2 we make a coordinate change to simplify the ex-

pression of F 2. Our approach follows closely the computations of the
normal form for small perturbations of the id (cf [1, 13]), however the
resulting normal form is different due to the presence of singularities.

In subsection A.3 we use the coordinates of subsection A.2 to com-
pute the first return map of F 2 inside D.

A.1. Semicircular outer billiard. Here we obtain the asymptotic
expansion of F near infinity. Consider coordinates in which the semidisc
is given by

{x2 + y2 ≤ 1, y ≥ 0}.
F is piecewise smooth with discontinuities at the following halflines

ℓ1 = {x ≥ 1, y = 0}, ℓ2 = {x = 1, y ≥ 0}, ℓ3 = {x = −1, y ≤ 0}.
Inside its continuity domains F can be describes as follows:

between ℓ1 and ℓ2–reflection about O1 = (1, 0);
between ℓ2 and ℓ3–reflection about a tangency point to the circular

part;
between ℓ3 and ℓ1–reflection about O2 = (−1, 0);
Let ℓ′j = F−1ℓj. Denote by Rj the reflection about Oj. Observe that

far from the origin F looks like the reflection about the origin. There-
fore we are interested in F 2 which is close to id. F 2 has six continuity
domains.

Region I : between ℓ1 and ℓ′3 we have F 2 = TR1;
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Region V : between ℓ′3 and ℓ2 we have F 2 = R2R1;
Region II : between ℓ2 and ℓ′1 we have F 2 = R2T ;
Region III : between ℓ′1 and ℓ′2 we have F 2 = R1T ;
Region V I : between ℓ′2 and ℓ3 we have F 2 = T 2;
Region IV : between ℓ3 and ℓ1 we have F 2 = TR2.
Thus regions I–IV look like the four coordinate quadrants while

regions V and V I are small buffers between them (it is easy to see
that when the orbit of F 2 visits the last two regions it leaves them
immediately). We call the union of regions I, V and II the upper
region and the union of regions III, IV and V I the lower region. We
consider coordinates (r, θ) which are polar coordinates in the upper
region and polar coordinate shifted by π in the lower region. Thus
both in upper and the lower region 0 ≤ θ ≤ π. Our choice is motivated
by the wish to make F 2 in the upper and the lower region look similar.
We shall need the formulas for ℓj and ℓ′j in polar coordinates.

ℓ1

ℓ2

ℓ3

ℓ′1

ℓ′2

ℓ′3
I

II

III

IV

V

VI

Figure 3. Continuity regions for F 2.

Proposition 5. The discontinuity lines of F 2 are given by the following
equations

ℓ1 ⊂ {θ = 0}, ℓ′3 ⊂
{

θ =
π

2
− 3

r
+ O

(

1

r2

)}

, ℓ2 ⊂
{

θ =
π

2
− 1

r
+ O

(

1

r2

)}

,

ℓ′1 ⊂
{

θ = π − 2

r
+ O

(

1

r2

)}

, ℓ′2 ⊂
{

θ =
π

2
− 3

r
+ O

(

1

r2

)}

,
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ℓ3 ⊂
{

θ =
π

2
− 1

r
+ O

(

1

r2

)}

.

Proof. The result for ℓj follows by direct computation. To obtain
the result for ℓ′j observe that the preimage of a halfline ℓ(t) = u + vt

F−1ℓ(t) satisfies

F−1ℓ(t) = w − 2u − vt+ O(1/t)

where w is the vector where the supporting line of the semidisc has
slope v (because the midpoint of the segment [ℓ(t), F−1ℓ(t)] is O(1/t)
close to w).

Alternatively one can compute F−1 explicitly and obtain the follow-
ing parametric equations for ℓ′j :

ℓ′1 =

{(

2

t
− t, 2

√

1 − 1

t

)

, t ≥ 1

}

,

ℓ′2 =

{(

1 − 3t2

1 + t2
,

4t

1 + t2
− t

)

, t > 0

}

, ℓ′3 = {x = 3, y ≥ 0} .

�

Proposition 6. In our coordinates R1 and R2 have the same form
given by

R(r, θ) =

(

r − 2 cos θ +
2 sin2 θ

r
+ O

(

1

r2

)

, θ +
2 sin θ

r
+

2 sin 2θ

r2
+ O

(

1

r3

))

and

T (r, θ) =

(

r, θ +
2

r
+ O

(

1

r3

))

.

Proof. The proof is based on elementary computations that we de-
scribe for R1 in the region I, the other cases being similar. Let A be
a point in region I and let (r, θ) and (x, y) be its polar and cartesian

coordinates respectively. Denote Ã = F (A). Then x̃ = 2 − x and

ỹ = −y. Hence r̃ = (4 + x2 − 4x+ y2)
1/2

= (r2 + 4 − 4r cos θ)
1/2

=

r − 2 cos θ + 2−2 cos2 θ
r

+ O(1/r2). �

As a direct consequence of Proposition 6 we get

Proposition 7. In the regions I–IV , F 2 takes the following form

F 2(r, θ) =

(

r + a(θ) +
a1(θ)

r
+ O

(

1

r2

)

, θ +
b(θ)

r
+
b1(θ)

r2
+ O

(

1

r3

))

where

(5) a(θ) = −2 cos θ, b(θ) = 2(1 + sin θ),
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b1(θ) = 4 cos θ(1 + sin θ)

and a1(θ) = 2 sin2 θ in regions I and IV,

a1(θ) = 2 sin2 θ + 4 sin θ in regions II and III.

In the region V I F 2 is given by

(6) F 2(r, θ) =

(

r, θ +
4

r
+ O

(

1

r3

))

while in the region V it is given by2

(7) F 2(r, θ) =

(

r +
8

r
− 4

(π

2
− θ
)

+ O
(

1

r2

)

, θ +
4

r
+ O

(

1

r3

))

Proof. This follows from the previous proposition by a direct compu-
tation, since F 2 = TR in the regions I and IV and F 2 = RT in the
regions II and III. The fact that F 2 = R2 and F 2 = T 2 in the regions
V and V I respectively directly yields (6) and (7). �

Remark. (5) can also be obtained by a simpler computation as follows.
Let A0 be a point, say, in region I, with polar coordinates (r, θ). Denote
A1 = FA0, A2 = F 2A0 and let B1 and B2 be the midpoints of A0A1

and A1A2 respectively. Then the triangles △A0A1A2 and △B1A1B2

are similar so that
−→

A0A2 = 2
−→

B1B2. If r is large then B1 and B2 are

close to the points where the lines with slope
−→

OA0 touch the semisircle,
that is B1 = O1, B2 ≈ (− sin θ, cos θ). Therefore

−→

A0A2 ≈ 2(−(1 + sin θ), cos θ).

a and b are the radial and the angular components of
−→

A0A2 giving (5).

Computing how far is
−→

B1B2 from the limiting vector allows to express
the higher order terms in terms of the curvature of Γ and its derivatives,
however for the semicircle it seems simpler to use the explicit formulas
of Proposition 6.

A.2. Normal form coordinates. In this section we make a coordi-
nate change to simplify the outer billiard map near infinity. In par-
ticular we refine the result of [22] about the asymptotics of the outer
billiard orbits.

2Notice that in region V we have θ = π

2
+ O

(

1

r

)

so the second and the third

terms in (7) are of the same order.
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Proposition 8. There exists a piecewise smooth change of coordinates
G : (r, θ) 7→ (ρ, ψ), with discontinuity lines ℓ1 and ℓ′1 and the lines
θ = π/2 in the upper and lower regions, such that F 2 takes the following
normal form in the variables (ρ, ψ).

In the regions I − IV we have

(8) ρn+1 = ρn + O(1/ρ3
n),

(9) ψn+1 = ψn +
1

ρn
+

c

ρ2
n

+
u

ρ3
n

+ O
(

1

ρ4
n

)

,

where c = cupper = 1
4

inside the upper region and c = clower = −1
4

in
the lower region.

In the regions V and V I, we have

ψn+1 = ψn +
1

ρn
+
u2

ρ2
n

+ O
(

1

ρ3
n

)

,(10)

ρn+1 = ρn +
u1

ρn

+ 64(ψn − 1

3
) + O

(

1/ρ2
n

)

, in region V(11)

ρn+1 = ρn +
v1

ρn
+ O

(

1/ρ2
n

)

, in region V I(12)

where u1, v1, u2 are constants that may be different in the upper and
lower regions.3

Moreover, for (r, θ) ∈ D, we have the following expression for the
Jacobian of G

(13) Jac(G) =
1

2
(1 − θ) +

cupper

2r
+ O

(

1

r2

)

Proof. We will look for a coordinate change of the form

ρ = rΦ1(θ) + Φ2(θ) +
Φ3(θ)

r
(14)

ψ = Ψ(θ) +
Ψ1(θ)

r
+

Ψ2(θ)

r2
.(15)

This is a usual expression of a change of coordinates in view of a normal
form for a twist map and the order of the 1/r powers is determined by
the order of the perturbative terms required in (8) and (9) that in term
correspond to what is needed to obtain in the sequel an expression of
the return map to D as in Lemma 2. Notice that (8) and (9) should
be viewed as functions of the lower and upper coordinates (r, θ) rather
than the original polar cooridnates.

3The explicit values of these constants is not necessary for the sequel.
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Remark. We will observe that ρ has a discontinuity when the orbit
crosses from the upper to the lower region, a fact that translates into the
discontinuity of the derivative of our coordinate change Φ1 at the same
crossing. This fact is crucial since we shall see in the next subsection
that the main change to ρ will come from crossing between the regions.

Given the expression of F 2 in Proposition 7, observe that iterating
by F 2 in the regions I − IV yields

ρn+1−ρn = Φ′

1b+aΦ1+

(

Φ′

1b1 +
Φ′′

1b
2

2
+ aΦ′

1b+ a1Φ1 + Φ′

2b

)

1

rn
+O

(

1

r2
n

)

so that if we require that

(16)
Φ′

1

Φ1
= −a

b
,

(17) Φ′

2 = −1

b

(

a1Φ1 + Φ′

1(ab+ b1) +
Φ′′

1b
2

2

)

then ρn+1 − ρn = O( 1
r2
n

), and since 1 ≤ Φ1 ≤ 2 and −1 ≤ Φ2 ≤ 1 it

follows that ρn+1 − ρn = O( 1
ρ2

n

). Given the expressions of a, b, a1, b1 in

the different regions, we can choose

(18) Φ1(θ) = 1 + sin θ,

(19) Φupper
2 = 1 − | cos θ|, Φlower

2 = | cos θ| − 1.

Likewise, expanding ψn+1 − ψn we get

ψn+1 − ψn = Ψ′
b

rn
+ Ψ′

b1
r2
n

+
Ψ′′

2

(

b

rn

)2

+
Ψ′

1b

r2
n

− aΨ1

r2
n

+ O
(

1

r3
n

)

.

So if we require that

(20) Ψ′ =
1

bΦ1

then, using the computational fact Φ1b1
b

= (Φ1b)′

2
, we obtain

ψn+1 − ψn =
1

ρn

+
Φ2 + bΦ2

1Ψ
′

1 + bΦ1Φ
′

1Ψ1

ρ2
n

+ O
(

1

ρ3
n

)

.

Observe that (20) is satisfied by

(21) Ψ(θ) =
2

3
− 1

3

(

1

(1 + t)3 +
t2

(1 + t)3 +
t

(1 + t)2 +
1

(1 + t)

)

,
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where t = tan θ
2
. (To obtain (21) observe that the change of variables

t = tan s
2

transforms

(22) Ψ(θ) =

∫ θ

0

ds

2(1 + sin s)2
=

∫ 2 tan−1 θ

0

1 + t2

(1 + t)4
dt

since sin s = 2t
1+t2

, ds
dt

= 2
1+t2

. See also [22].)
Next, Ψ1 is defined by Ψ1(0) = 0 and

(23) (Ψ1Φ1)
′ =

c

bΦ1
− Φ2

bΦ1

and cupper and clower are chosen so that Ψ1(π) = Ψ1(0) = 0 both in
the upper and lower regions. The values cupper = −clower = 1

4
are then

obtained from the computation of
∫ π

0
1

bΦ1

and
∫ π

0
Φ2

bΦ1

using the same

change of variables as in (22).
Finally, Φ3 and Ψ2 are chosen in a similar fashion as Φ1,Φ2,Ψ,Ψ1 to

guarantee that

ρn+1 − ρn = O(
1

ρ3
n

) and ψn+1 − ψn =
1

ρn
+

c

ρ2
n

+
u

ρ3
n

+ O
(

1

ρ3
n

)

.

We do not have to explicit the functions Φ3 and Ψ2 since we do not
need to know the constant u for the sequel.

Observe that our coordinate change is designed to simplify the map
in the regions I − IV so they do not bring much simplification in
the buffer regions V and V I. However in those regions the angular
coordinate equals to π/2+O(1/ρ), so we can use the Taylor expansion
around π/2. Namely equations (6)–(7) and the facts that Φ1(π/2) = 2
and Ψ′(π/2) = 1/8 imply (10)–(11) for some constants u1 and u2 that
may be different in the lower and upper regions and that we will not
need to know explicitly for the rest of the proof.

To obtain the Jacobian estimate (13), recall that in D we have θ =
O(1/r). Thus

Jac(G) = |Φ1Ψ
′(θ) + (Ψ1Φ1)

′(0)/r| + O
(

1/r2
)

.

Next, due to (20) Φ1Ψ
′ = 1

b
= 1

2
(1−θ)+O(θ2) while (Ψ1Φ1)

′(0) = cupper

2
.

�

Remark. The explicit expression for Ψ is quite complicated, however
in the computations of Section A.3 we shall only use (20) and the fact
that

(24) Ψ(π) =
2

3
, Ψ

(π

2

)

=
1

3
.
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Remark. A similar argument shows that a change of variables of the
type

ρ =

k−1
∑

j=0

r1−jΦj(θ), ψ =

k−1
∑

j=0

r−jΨj(θ)

brings F 2 to the forms

ρn+1 = ρn + O
(

ρ−k
)

, ψn+1 = ψn +
k
∑

j=0

cjρ
−j + O

(

ρ−(k+1)
)

.

We shall not use this fact here but it can be useful for studying systems
which are continuous but have discontinuities of higher derivatives.

A.3. Proof of Lemma 2. According to our division of the plane into
upper and lower regions, we will represent F as a composition of two
maps. Namely let D̃ be the region bounded by the line y = 0, x ≤ −x̃0

(where x̃0 ≫ x0 used in the definition of D) and its image by F 2.
We represent F = F2F1 where F1 corresponds to the passage from

D to D̃ and F2 corresponds to the passage from D̃ to D.
We introduce changes of coordinates in D and D̃ that make them, up

to identification of their boundary lines, diffeomorphic to half cylinders
of the form φ, φ̃ ∈ T, ρ, ρ̃ ≥ ρ0 + O(1). Equation (9) shows that these

changes of coordinates are given by (ρ, ψ) 7→ (ρ, φ) and (ρ̃, ψ̃) 7→ (ρ̃, φ̃)
where

φ = ρψ − cupperψ + O
(

1

ρ2

)

, φ̃ = ρ̃ψ̃ − clowerψ̃ + O
(

1

ρ̃2

)

where we have used the bounds ψ = O
(

1
ρ

)

in D and ψ̃ = O
(

1
ρ̃

)

in D̃.
Conversely, observe that

ψ =
φ

ρ
+
cupper

ρ2
+ O

(

1

ρ3

)

, ψ̃ =
φ̃

ρ̃
+
clower

ρ̃2
+ O

(

1

ρ̃3

)

.

We will now study the iteration by F 2 from D to D̃ and give an
expression for F1. We first introduce D̃′ = F−2(D̃) and observe that
until entering D̃′ the normal form of F 2 in the (ρ, ψ) coordinates can
be used, albeit a special care must be given to an eventual passage in
region V . The discontinuity lines of the differential of F 2 that limit
the region V are l2 and l′3. Their equations in the (ρ, ψ) coordinates
become

(25)
ℓ2 =

{

ψ = 1
3
− 1

4ρ
+ O

(

1
ρ2

)}

,

ℓ′3 =
{

ψ = 1
3
− 3

4ρ
+ O

(

1
ρ2

)}

.
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This is due to the fact that 1/(2r) = 1/ρ + O(1/ρ2) in a O(1/r)-
neighborhood of the vertical axis (that contains ℓ2 and ℓ′3), and the
equalities Ψ(π/2) = 1/3 and Ψ′(π/2) = 1/8.

Until entering region V we have

ρk = ρ+ O
(

1

ρ2

)

,

ψk = ψ +
k

ρ
+
kcupper

ρ2
+
ku

ρ3
+ O

(

1

ρ3

)

.

The value cupper = 1/4 allows to compute the entrance times n and

n to the region V and to D̃′ respectively. Namely

n =
[

Ψ(
π

2
)ρ− Ψ(

π

2
)cupper − φ

]

=

[

ρ

3
− φ− 1

12

]

,(26)

n = [Ψ(π)ρ− Ψ(π)cupper − φ] =

[

2ρ

3
− φ− 1

6

]

(27)

unless the orbit comes close to a discontinuity4.
We let υ = u1 + 64

{

ρ
3
− φ− 1

12

}

if
{

ρ
3
− φ− 1

12

}

∈ [1/4, 3/4] and
υ = 0 otherwise, which corresponds to points that visit (respectively
not visit) the region V , since ψn = 1/3 −

{

ρ
3
− φ− 1

12

}

/ρ + O(1/ρ2).
It then follows from (11) that

ρn+1 = ρ+
υ

ρ
+ O

(

1

ρ2

)

.

Define now υ =
{

2ρ
3
− φ− 1

6

}

. We get

ρn = ρ+
υ

ρ
+ O

(

1

ρ2

)

,

ψn = ψ +
n

ρ
+
ncupper

ρ2
+
u2

ρ2
+
nu

ρ3
− ñυ

ρ3
+ O

(

1

ρ3

)

where ñ = n− n is the time remaining after going through the region
V . Hence

ψn =
2

3
− υ

ρ
+
Z(ρ, φ)

ρ2
+ O

(

1

ρ3

)

where Z(ρ, φ) = (−φ−1
6
−υ)cupper+u2+

2
3
u−υ

3
. Going back to the upper

region polar coordinates and using that Ψ(π) = 2/3,Ψ′(π) = 1/2,

4More precisely we might need to exclude the orbits which in the original Carte-
sian coordinates pass O(1/ρ)–close to discontinuities, see (28) and (29).
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Ψ′′(π) = 1,Φ1(π) = 1,Φ′

1(π) = −1,Φ′′

1(π) = 0,Φ2(π) = 0,Φ′

2(π) = 0,
we get

rn+1 = ρ− 2υ +
P1

ρ
+ O

(

1

ρ2

)

,(28)

θn+1 = π − 2υ

ρ
+
Q1

ρ2
+ O

(

1

ρ3

)

.(29)

Here and in the sequel Pi and Qi, i = 1, 2, . . . will denote piecewise
polynomials of degree 2 in the variables υ, φ that are not necessary
to explicit for the rest of the proof. Switching to the lower region
coordinates and iterating once more by F 2 we get

r̃n+1 = ρ− 2 − 2υ +
P2

ρ
+ O

(

1

ρ2

)

,(30)

θ̃n+1 =
2

ρ
− 2υ

ρ
+
Q2

ρ2
+ O

(

1

ρ3

)

.(31)

Consequently (14) and (15) yield

ρ̃n+1 = ρ− 4υ +
P3

ρ
+ O

(

1

ρ2

)

,

ψ̃n+1 =
1

ρ
− υ

ρ
+
Q3

ρ2
+ O

(

1

ρ3

)

.

This finally gives the (ρ̃, φ̃) coordinates of the iterate of (ρ, φ) inside
D̃ as

ρ̃ = ρ− 4 + 4φ̃+
P4

ρ
+ O

(

1

ρ2

)

,

φ̃ =

{

φ− 2ρ

3
+

1

6

}

+
Q4

ρ
+ O

(

1

ρ2

)

where we used that 1 − υ =
{

φ− 2ρ
3

+ 1
6

}

.
Repeating similar computations in the lower region, with this differ-

ence that in the last iteration before entering D, the −2 discontinuity
term of equation (30) is replaced by the +2 term (see (5)) and cupper is

replaced by clower in (27) we get, denoting by (ρ̂, φ̂) the image in D of

(ρ̃, φ̃) ∈ D̃

ρ̂ = ρ̃+ 4φ̂+
P5

ρ̃
+ O

(

1

ρ̃2

)

,

φ̂ =

{

φ̃− 2ρ̃

3
− 1

6

}

+
Q5

ρ̃
+ O

(

1

ρ̃2

)

.
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Introducing

R =
2ρ

3
− 1

6
, R̃ =

2ρ̃

3
+

7

6
, R̂ =

2ρ̂

3
− 1

6

we get up to O
(

1
ρ

)

-terms

φ̃ ∼ {φ− R} , R̃ ∼ R− 4

3
+

8φ̃

3
,

φ̂ ∼
{

φ̃− R̃
}

, R̂ ∼ R̃− 4

3
+

8φ̂

3
.

This shows that the linear part of F has the required form.
To prove the statement about the singularities in the upper region,

we must find the equation of the preimage of ℓ2, so we use the normal
form of F 2 and (25) to find that a point (ρ, φ) would hit ℓ2 after n =
ρ/3 + O(1) iterations if and only if

1

3
− 1

4ρ
=

1

ρ

(

φ+ n +
1

12

)

+ O
(

1

ρ2

)

.

Thus

n =
ρ

3
− 1

12
−
(

φ+
1

4

)

+ O
(

1

ρ

)

.

Since ρ
3
− 1

12
= R/2 we have that the preimage of ℓ2 is O

(

1
R

)

-close

to {φ−R/2} = 3/4. Likewise the preimage of ℓ′3 is O
(

1
R

)

-close to
{φ− R/2} = 1/4.

The computations in the lower regions are similar.
As for the density of the invariant measure of the return map, start

by denoting F the original map in the coordinate system (r, θ). Let
h1 : (ρ, ψ) 7→ (r, θ) denote the inverse map of the conjugacy obtained
in subsection A.2, and let h2 : (ρ, φ) 7→ (ρ, ψ) denote the inverse of
the rescaling used in subsection A.3. We are interested in F = h−1

2 ◦
h−1

1 ◦FN+1 ◦h1 ◦h2. Since F preserves the area element, we get that F
preserves the density Jac(h1◦h2)(ρ−2φ+O(1/ρ))dρdφ (this is because
due to (14) and (15) we have that the r coordinate of h1 ◦ h2(ρ, φ) is
ρ− 2φ+ O(1/ρ)). Next, (13) implies that Jac(h1) in D equals

2 + 2θ − c/ρ+ O
(

1

ρ2

)

= 2 +
4φ− c

ρ
+ O

(

1

ρ2

)

with c = cupper. Finally, since ψ = φ/ρ + cφ/ρ2 + O(1/ρ3) we have

that Jac(h2) = 1
ρ

(

1 − 2c
ρ

)

+ O
(

1
ρ3

)

. As a consequence the density

preserved by F is of the form 2− 5c/ρ+O(1/ρ2). This ends the proof
of Lemma 2. �
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Remark. A similar argument shows that in Lemma 2 O(1/ρ2)-terms
are piecewise polynomials of degree 3, O(1/ρ3)-terms are piecewise
polynomials of degree 4 etc. We shall not use this fact here, but it
could be useful in other problems, for example, for verification of KAM
stability of bounded periodic orbits.
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