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Abstract. We provide necessary and sufficient conditions for a suspension
flow over a subshift of a finite type to mix faster than any power of time.
Then we show that these conditions are satisfied if the flow have two periodic
orbits such that the ratio of the periods can not be well approximated by
rationals.

1. Introduction. Bowen-Ruelle conjecture states that every mixing Axiom
A flow is also exponentially mixing.This is equivalent to the corresponding
property of suspension flows over subshifts of finite type. However it turns out
that if the roof function is locally constant no such flow can be exponentially
mixing. Moreover, given any function of time one can produce a flow whose
mixing rate is not faster than this function. In this paper we prove that
nonetheless most flows have quite fast decay of correlations. This is done by
showing that given the lengths of two periodic orbits the correlations can not
decay slower than in a locally constant roof function flow.
We begin with describing necessary and sufficient conditions for rapid mixing.
For this we need some notation. Let (Σ, σ) the one-sided subshift of a finite
type with transition matrix Q. (All theorems we prove are valid also for
two-sided subshifts but we consider one-sided case to simplify formulae.) A
word means an admissible sequence of finite length. We assume that σ is

1



topologically mixing that is some power of Q is strictly positive. Consider
the distance dθ(ω, $) = θk, where k = max{j : ωi = $i for i ≤ j}, θ < 1.
Let Cθ(Σ) be the space of functions Lipschitzian with respect to d endowed
with the norm ‖h‖θ = max(‖h‖0, L(h)) where L(h) is the Lipschitz constant
of h. If τ ∈ Cθ(Σ) is positive the suspension flow with the roof function τ is
defined on

Στ = {(ω, t) : 0 ≤ t ≤ τ(ω)}/ ((ω, τ(ω)) ∼ (σ(ω), 0))

by St(ω, s) = (ω, t + s) subject to the identification above. We will denote
points of Στ by q. We write τ1 ∼ τ2 if τ1 is cohomologous to τ2 that is
τ2(ω) = τ1(ω)+T (ω)−T (σω). We refer the reader to [PP] for the background
about the basic notions of thermodynamic formalism such as Gibbs measures,
Ruelle-Perron-Frobenius theorem, Livshic’s theorem etc. Let us introduce
the set of test functions.
Definition. The space D(Στ ) consist of functions of the form D(Στ ) =
{A(ω, t) = 1C(ω)a(t), where C is a cylinder in Σ and a(t) is a C∞ function
with a compact support}. It is assumed in this definition that supp a(t) lies
strictly inside the interval [0, min

C
τ(ω)].

On Στ we have the distance dθ((ω, t), (ω′, t′)) = dθ(ω, ω′) + |t − t′|. Let F (q)
be a dθ−Lipschitz function and µF be its Gibbs measure. For A, B ∈ C(Στ )
denote RA,B(F, t) = µF (A(q)B(Stq)) − µF (A)µF (B).
Definition. {St} ∈ RM(F ) ({St} is rapidly mixing with respect to F ) if
1) for A, B ∈ D(Στ ) RA,B(F, t) belongs to Schwartz space;
2)the map (A, B) → RA,B is continuous in the sense that given natural n
there are N(n), C(n), K(n) such that

|RA,B(F, t)tn| ≤ C(n)‖a‖CN‖b‖CN K l(C(A))+l(C(B))

where A(ω, t) = 1C(A)(ω)a(t), B(ω, t) = 1C(B)(ω)b(t) and l(C) denotes the
length of C. {St} is called rapidly mixing ({St} ∈ RM) if it is rapidly mixing
with respect to any Lipschitz F.
Definition. Let {St} be a semiflow on a metric space space M . We write

{St} ∈ TPM(q1, q2, t0, α0) if for any r and t ≥ max
((

1
r

)α0

, t0
)

StB(q1, r)
⋂

B(q2, r) 6= ∅
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where B(q, r) is the ball of radius r about q. {St} is called topologically
power mixing ({St} ∈ TPM) if there are t0, α0 such that ∀q1, q2 {St} ∈
TPM(q1, q2, t0, α0).

We write hn(ω) =
n−1
∑

j=0
h(σjω). Given f ∈ Cθ(Σ) denote by Lf the transfer

operator on Cθ(Σ)
Lfh(ω) =

∑

σ$=ω

ef($)h($)

and and by Vb the operator

(Vbh)(ω) = eibτ(ω)h(σω).

Below we give several conditions equivalent to rapid mixing. Our result is a
quantitative version of the similar statement for mixing. Let us recall this
theorem to the reader.
Proposition 1. The following conditions are equivalent
(i) ∃F such that (Στ , {St}, µF ) is mixing;
(ii) ∀F (Στ , {St}, µF ) is mixing;
(iii) ∃F such that (Στ , {St}, µF ) is weak mixing;
(iv) ∀F (Στ , {St}, µF ) is weak mixing;
(v) {St} has no Lipschitz continuous eigenfunction;
(vi) {St} is topologically mixing;
(vii) ∃f such that Lf1 = 1 and for all real b 6= 0 1 − Lf+ibτ is invertible;
(viii) ∀f such that Lf1 = 1 for all real b 6= 0 1 − Lf+ibτ is invertible;
(ix) ∃f such that Lf1 = 1 and for all real b 6= 0 Lf+ibτ is not conjugated to
Lf ;
(x) ∀f such that Lf1 = 1 for all real b 6= 0 Lf+ibτ is not conjugated to Lf ;
(xi) for all real b 6= 0 the operator Vb has no Lipschitz eigenfunction with
eigenvalue 1.
To introduce our conditions we need two definitions.
Definition. Let L : Cθ(Σ) → Cθ(Σ) be a linear operator. h is called
(λ, N, ε)−approximate eigenfunction if 1 ≤ ‖h‖θ ≤ N and

∀ω |(Lh − λh)(ω)| ≤ ε.

Definition. H ∈ Cθ(Σ
τ ) is called (λ, N, ε) approximate eigenfunction for

{St} if 1 ≤ ‖h‖θ ≤ N, H(t, q) = H(Stq) is differentiable function of t and
∀q, t

|(∂t − λ)H(t, q)| ≤ ε.
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Theorem 1. The following conditions are equivalent:
(i) {St} ∈ RM ;
(ii) ∃F : {St} ∈ RM(F );
(iii) {St} ∈ TPM ;
(iv) ∃q1, q2, : {St} ∈ TPM(q1, q2, t0, α0);
(v) given real f ∈ Cθ(Σ) such that Lf1 = 1 there are constants α1, C1 such
that for real b |b| > 1 ‖(1 − Lf+ibτ )

−1‖ ≤ C1|b|α1 ;
(vi) (v) holds for some f ;
(vii) given real f ∈ Cθ(Σ) such that Lf1 = 1 there is a constant α2 such that
for ξ satisfying |=ξ| > 1, |<ξ| ≤ |=ξ|−α2 the operator 1−Lf+ξτ is invertible;
(viii) (vii) holds for some f.
The theorem above may be considered as a quantitative version of the com-
plex Ruelle-Perron-Frobenius theorem ([P1]). The equivalence of (i)− (ii) to
(vii) − (viii) can be regarded as Paley-Wiener theorem for suspension flows.
Set n(β, b) = [β ln |b|].
Theorem 2. The following conditions are equivalent
(i) {St} 6∈ TPM ;
(ii) There is a function f satisfying Lf1 = 1 and a constant α3 such that
given α there are a constant β and sequences bk → ∞, k → ∞ and Gk(ω)
such that |Gk| = 1, ‖Gk‖θ ≤ |bk|α3 and if

Mkh =
1

Gk
Ln(β,bk)

f+ibkτ (Gkh) (1)

then ‖Mk − Ln(β,bk)
f ‖0 ≤ |bk|

−α;
(iii) (ii) holds for all f satisfying Lf1 = 1;
(iv) There exists α4 such that for any α {St} has (ibk, |bk|α4, |bk|−α)−approximate
eigenfunction of absolute value 1 for some sequence bk → ∞, k → ∞.
(v) There exists α5 such that given α there exist a constant β and a sequence

bk → ∞, k → ∞ such that Vn(β,bk)
bk

has (1, |bk|α5 , |bk|−α)−approximate eigen-
function of absolute value 1;
Usually it is hard to verify any of the conditions above. However there is
quite simple sufficient condition.
Example.([R2], [P3]) Let (Σ, σ) be the full shift on two symbols

τ(x) =
{

l1 if x0 = 0,
l2 if x0 = 1
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and f(x) ≡ ln 2. One readily sees that Lf+ibτ1 = 1
2

(

eibl1 + eibl2
)

·1. Moreover
it is shown in above-mentioned papers that

‖(1 − Lf+ibτ )
−1‖ ≤ max(1 − ε,

2

2 − (eibl1 + eibl2)
).

Conditions of Theorem 1 are satisfied if l1
l2

is a Diophantine number that is

there are C2, α6 such that
∣

∣

∣

l1
l2
− m1

m2

∣

∣

∣ ≥ C2m
−α6
2 for all integers m1, m2. This

condition works also in a more general set up.
Theorem 3. Assume that {St} has two periodic points ω1 = σω1 and
ω2 = σω2 with periods l1 = τ(ω1), l2 = τ(ω2), such that l1

l2
is a Diophantine

number then {St} is rapidly mixing.
This statement is proven in Section 13.
Corollary 1. Let {τs} be continuous 1-parameter family of roof functions
and {St

s} be corresponding suspension flows. Assume that {{S t
s}}

⋂

RM = ∅.
Then there exist a function Γ(s) such that all flows {S t/Γ(s)

s } are Holder
conjugated to each other.
Proof of corollary 1: Let (ω1, 0) be periodic point ω1 = σnω1. Set
Γ(s) = (τs)n(ω1). Then all flows {St/Γ(s)

s } have the periodic point (ω1, 0) of
period 1. Therefore by Theorem 3 all flows S t/Γ(s)

s have only periodic points of
non-Diophantine length. However any continuous function of the parameter
which assumes only non-Diophantine values is a constant. Hence all flows
{St/Γ(s)

s } have the same length spectrum so the statement follows by Livshic’s
theorem.
Corollary 2. In a generic 1-parameter family {τs} mes{s : {St

s} /∈
RM} = 0 .
The counterparts of these results are valid also for smooth flows. The proofs
are very similar. Let {St} be a flow with basic hyperbolic set set Λ. We say
that St is rapidly mixing on Λ with respect to Holder continuous potential
F ({St} ∈ RM(Λ, F )) if the map (A, B) → RA,B(F, t) is continuous from
C∞(M) × C∞(M) to the Schwartz space.
Theorem 4. The following conditions are equivalent
(i) {St} ∈ RM(Λ);
(ii) ∃F : {St} ∈ RM(Λ, F );
(iii) {St} ∈ TPM(Λ);
Theorem 5. Assume that {St} has two periodic points γ1 and γ2 in Λ such
that the ratio of their periods is a Diophantine number then {S t} is rapidly
mixing on Λ.
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Corollary 3. Let {{St
s}} be continuous 1-parameter family of the flows

such that {St
s} has a basic hyperbolic set Λs near Λ0. Then if no {St

s} is
rapidly mixing on Λs there is a function Γ(s) such that St/Γ(s)

s |Λs
is Holder

conjugated to St
0|Λ0.

Corollary 4. For any k ≥ 1 in a generic 1-parameter Ck family {{St
s}}

mes{s : {St
s} /∈ RM(Λs)} = 0.

2. Scheme of the proof of Theorems 1 and 2. From now on we write
simply (i) − (viii) for conditions (i) − (viii) of Theorem 1 and (2.i) − (2.v) for
conditions (i) − (v) of Theorem 2. (ix) − (xii) will mean the converses of
(2.ii) − (2.v) respectively.
The plan of the proof of Theorems 1 and 2 is the following. It is clear that
(i) ⇒ (ii) ⇒ (iii) ⇒ (iv), (v) ⇒ (vi), (vii) ⇒ (viii), and (ix) ⇒ (x). Also
(v) ⇒ (vii) and (vi) ⇒ (viii) since

(1 − Lf+ξτ )
−1 = (1 − (1 − Lf+i=ξτ )

−1(Lf+ξτ − Lf+i=ξτ ))
−1(1 − Lf+i=ξτ )

−1

and ‖(Lf+ξτ −Lf+i=ξτ )‖ ≤ C3|<ξ|. In Section 3 we prove that (xi) ⇔ (xii). In
Section 4 we show that (x) ⇒ (xii). In Section 5 we demonstrate that (iv) ⇒
(xi). Section 6 contains an auxiliary estimate. The implication (xii) ⇒ (v) is
proven in Sections 7-9. The implication (vi) ⇒ (ii) where F and f are related
by

F̄ (x) = f(x) + G(x) − G(σx) + Pr(F )τ (2)

(where F̄ (x) =
τ(x)
∫

0
F (x, s) ds and Pr(F ) is a constant) is due to Pollicott

([P2], [P3]). For convenience of the reader we provide the proof in Section
10. This gives (ii) ⇔ (iii) ⇔ (iv) ⇔ (v) ⇔ (vi) ⇔ (xi) ⇔ (xii). Hence (i) is
also equivalent to (ii) − (vi) because every F has decomposition (2) (see for
example [PP]). Thus we get

(ix) ⇒ (x) ⇒ ((i) − (vi), (xi), (xii)) ⇒ (vii) ⇒ (viii).

In Section 11 we prove that (vii) ⇒ (ix) with the same function f. Therefore,
also (viii) ⇒ (x) which completes the proof of Theorems 1 and 2.
3. Eigenfunctions of {St} and V. In this section we show that (2.iv) ⇔
(2.v) or in other words that (xi) ⇔ (xii).
(2.iv) ⇒ (2.v)) : Let Jk(q) be the approximate eigenfunction for {St}. Set
Hk(ω) = 1

Jk((ω,0))
. Then

|((Vn(β,bk)
bk

Hk) − Hk)(ω)| = |eibkτn(β,bk)(ω)Hk(σ
n(β,bk)ω) − H(ω)| =
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|eibkτn(β,bk)(ω)Jk((ω, 0)) − Jk((σ
n(β,bk)ω, 0))| =

|eibkτn(β,bk)(ω)Jk((ω, 0))− Jk(S
τn(β,bk)(ω)(ω, 0))| ≤

|bk|
−ατn(β,bk)(ω) ≤ C4|bk|

−αn(β, bk).

(2.v) ⇒ (2.iv)) : Let Hk be the approximate eigenfunction of Vn(β,bk)
bk

then if
bk is large enough we can find a branch ∆(ω) of

Arg

(

Hk(ω)

Hk(σn(β,bk)ω)
eibkτn(β,bk)(ω)

)

which takes values in (− 2
|bk|α , 2

|bk|α ). Consider the space

Σ̃τ = {(ω, t) : 0 ≤ t ≤ τn(ω)}/ ((ω, τn(ω)) ∼ (σnω, 0)) .

Zn acts on Σ̃τ by shifts T k(ω, t) = (σkω, t + τk(ω)) and Σ̃τ/Zn
∼= Στ . Denote

by {S̃t} the flow S̃t(ω, s) = (ω, s + t) and by P the natural projection P :
Σ̃τ → Στ . We may assume without loss of generality that τ ≥ 1. Let ϕ(t)

be a cutoff C∞ function such that supp ϕ ⊂ [ 1
2
, 1] and

1
∫

1
2

ϕ(s) ds = 1. If

q̃ = (ω, t) : 0 ≤ t < τn(bk)(ω) set

J̃k(q̃) =
1

Hk(ω)
exp



i





t
∫

0

(bk + ∆(x)ϕ(s)) ds







 .

J̃(q̃) can be lifted to (ibk, C5|bk|α7 , 1
|bk|−α )−approximate eigenfunction for {S̃t}

(α7 = max(1, α5)). Let
J(q) =

∏

P q̃=q

J̃(q̃),

then J is (ink(β, bk)bk, C5|bk|α7n(β, bk),
n(β,bk)
|bk|−α )− approximate eigenfunction

for {St}.
4. Almost conjugacy. In this section we show that (2.v) ⇒ (2.iii) or in
other words (x) ⇒ (xii). This follows immediately from the following state-
ment.
Lemma 1. Assume that |G| ≡ 1 and ‖Vn

b G − eiΘG‖0 ≤ ε. Define Mh =
GLn

f+ibτ (
h
G

), then ‖(M− eiΘLn
f )h‖0 ≤ ε‖h‖0.
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Proof:

|M− eiΘLn
fh(ω)| =

∣

∣

∣

∣

∣

∑

σn$=ω

efn($)

[

Gk(σ
n$)

Gk($)
eibkτn($) − eiΘ

]

h($)

∣

∣

∣

∣

∣

≤

∑

σn$=ω

efn($)ε‖h‖0 = ε‖h‖0(L
n
f1)(ω) = ε‖h‖0.

5. Topological power mixing and approximate eigenfunctions. In
this section we show that (iv) ⇒ (xi). So assume that there are α0, t0 so that
for t > min((1

r
)α0 , t0) StB(q1, r)

⋂

B(q2, r) 6= ∅. We prove that for any α4

{St} has no approximate eigenvalue of unit absolute value if α and |b| are
large enough. Indeed, assume that converse is true. Let J(q) be such an
eigenfunction, J(q1) = eiΘ1 , J(q2) = eiΘ2 . Let r = 1

|b|γ then for q ∈ B(q1, r)

|J(q) − eiΘ1 | ≤ |b|α4

|b|γ and for q ∈ B(q2, r) |J(q) − eiΘ2 | ≤ |b|α4

|b|γ . Also for

q ∈ StB(q1, r) |J(q) − ei(Θ1−bt)| ≤ t
|b|α + |b|α4

|b|γ . So if t < 2 1
rα0

= 2|b|γα0 then

|J(q) − ei(Θ1−bt)| ≤ 2|b|γα0

|b|α + |b|α4

|b|γ . Thus if for any t, 1
rα0

≤ t ≤ 2
rα0

∃q ∈

StB(q1, r)
⋂

B(q2, r) then for any such t |ei(Θ1+tb)−eiΘ2 | ≤ 2|b|α4−γ +2|b|γα0−α

which can not be true if γ > α4 and α > γα0.
6. Apriori bounds. This section contain useful bounds for iterations of
complex transfer operators.
Proposition 2. (See [PP]) Let Lf1 = 1, then
(a) ‖Ln

f+ibτ‖ ≤ 1;
(b) there exist a constant C6 such that

L(Ln
f+ibτh) ≤ C6 (|b|‖h‖0 + θnL(h)) .

Proof: Direct calculation.
Consider a new norm on Cθ(Σ)

‖h‖(N) = max

(

‖h‖0,
L(h)

2C6N

)

,

then ‖Ln
f+ibτ‖(|b|) ≤ 1.

For the future use we provide an estimate of the resolvent of Lf in ‖ · ‖(N)−norm.
By Ruelle-Perron-Frobenius theorem we can decompose Lf as Lf = P + N
where Ph = νf (h)1, NP = PN = 0 and ‖N k‖θ ≤ C7δ

k for some constants
δ < 1, C7.
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Lemma 2. If 1+δ
2

≤ |λ| ≤ 1 then

‖(λ − Ln
f )

−1‖(N) ≤
C8

|1 − λ|

(

ln
1

|1 − λ|
+ ln N + n

)

.

Proof: Inequalities

‖ · ‖θ ≤ ‖ · ‖(N) ≤ 2C6N‖ · ‖θ

imply ‖N k‖(N) ≤ C9δ
kN. Now

(λ − (P)k)−1 = (λ − P)−1 =
P

λ − 1
+

1 − P

λ
.

Hence

‖(1 −
Pk

λ
)−1‖(N) ≤

C10

|λ − 1|
.

Take k = [C11(ln(N) + ln 1
|λ−1|)]. Then if C11 is large enough

‖N k‖(N) ≤
C10

2|λ − 1|
≤

1

2‖(1 − Pk

λ
)−1‖(N)

.

Therefore

‖(λ − Lkn
f )−1‖(N) ≤

C12

|λ − 1|

and we are done.
7. Pointwise estimates. In this section we begin with the proof of (xii) ⇒
(v). We assume that (v) is false and obtain (2.v). If (v) fails there is a
function f, Lf1 = 1 such that given α there is arbitrary large b such that
‖(1−Lf+ibτ )

−1‖θ > |b|α. Choose such a function f. In the next three sections
we will work only with this weight. We use Lb as a shorthand for Lf+ibτ .
The proof of the above implication consists of two steps. First we show that
if (v) is false then given α there are β(α) and bk → ∞ such that Vn(β,bk)

bk

has an approximate eigenfunction with approximate eigenvalue eiΘ and then
demonstrate that eiΘ should be close to 1. The first step in turn, is divided
into two parts. In this section we show that if (v) is violated there is a
function h, ‖h‖(b) = 1 whose Lb iterations remain near the unit sphere for a
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long time and in the next section we show that some iteration of h give the
approximate eigenfunction we need.
Lemma 3. If there are α, β such that for any b, —b—¿1 for any h, ‖h‖(|b|) ≤
1 there exist ω0 ∈ Σ and n : 0 ≤ n ≤ 3n(β, b) such that |(Lb

n(h))(ω0)| ≤
1 − 1

|b|α , then there are constants C13, α
′ such that ‖(1 − Lb)

−1‖θ ≤ C13|b|α
′
.

Proof:

|Lb
Nh(ω)| = |(Lb

N−n(Lb
nh))(ω)| ≤ (LN−n

f |Lb
nh|)(ω).

Let νf be the Gibbs measure for f (that is L∗
fνf = νf ), then by Ruelle-

Perron-Frobenius theorem

(LN−n
f |Lb

nh|)(ω) ≤ νf (|Lb
nh|) + C7δ

N−n‖Lb
nh‖θ

By Proposition 2 ‖Lb
nh‖θ ≤ C7|b|. On the other hand |(Lb

nh)(ω)| ≤ 1 −
1

2|b|α for ω ∈ B(ω0,
1

2C6 |b|α+1 ). Now there are constants C14, α8 such that

νf (B(ω0,
1

2C6|b|α+1 )) ≥
C14

|b|α8
. Hence νf(|Lb

nh|) ≤ 1 − C15

|b|α9
and

‖Lb
Nh‖0 ≤ 1 −

C15

|b|α9
+ C7δ

N−n|b|.

Take N = n(β̄, b) where β̄ � β, then

‖Lb
Nh‖0 ≤ 1 −

C15

2|b|α9
.

Take Ñ > N then

‖Lb
Ñh‖0 ≤ ‖Lb

Nh‖0 ≤ 1 −
C15

2|b|α9
,

whereas

L(Lb
Ñh) ≤

(

1 −
C15

2|b|α

)

C6|b| + C6θ
Ñ−N |b|.

So if Ñ = n(β̃, b) where β̃ � β̄ then

‖LÑh‖(b) ≤ 1 −
C15

4|b|α9
.

The estimate of the lemma now follows easily.
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8. Construction of approximate eigenfunction. In this section we use
Lemma 3 to construct approximate eigenfunctions for Lb.
Lemma 4. Assume that (v) fails then given α there is β(α) such that one
can find arbitrary large b such that

‖(1 − Lb)
−1‖θ > |b|α

and Vn(β,b)
b has (eiΘ, 2C6|b|,

1
|b|α )−approximate eigenfunction of absolute value

1.
The proof proceeds by a series of lemmas. Take some α′, β then by Lemma
3 one can find arbitrary large b such that

‖(1 − Lb)
−1‖θ > |b|α

and there is a function h(ω) such that

∀n : 0 ≤ n ≤ 3n(β, b) ∀ω |(Lb
nh)(ω)| ≥ 1 −

1

|b|α′ . (3)

Write h̄ = Lb
n(β,b)h, ¯̄h = Lb

2n(β,b)h, h(ω) = r(ω)eiγ(ω), h̄(ω) = r̄(ω)eiγ̄(ω),
¯̄h(ω) = ¯̄r(ω)ei¯̄γ(ω).
Lemma 5. ∀ᾱ, β∃α′ such that if (3) holds then ∀($, ω) : ω = σn(β,b)$

| exp(i[bτn(β,b)($) + γ($) − γ̄(ω)]) − 1| ≤
1

|b|ᾱ
, (4)

| exp(i[bτn(β,b)($) + γ̄($) − ¯̄γ(ω)]) − 1| ≤
1

|b|ᾱ
. (5)

Proof: We show only (4), proof of (5) is the same. By definition

r̄(ω)eiγ̄(ω) =
∑

σn(β,b)$=ω

e(f+ibτ)n(β,b)($)r($)eiγ($).

Thus

1 − r̄(ω) =
∑

σn(β,b)$=ω

efn(β,b)(ω)
(

1 − r($) exp(i[bτn(β,b)($) + γ($) − γ̄(ω)])
)

so that

∑

σn(β,b)$=ω

efn(β,b)(ω)
(

1 − exp(i[bτn(β,b)($) + γ($) − γ̄(ω)])
)

= O

(

1

|b|α′

)

.
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Since the real part of each term is positive ∀($, ω)

efn(β,b)(ω)<
(

1 − exp(i[bτn(β,b)($) + γ($) − γ̄(ω)])
)

= O

(

1

|b|α′

)

.

Using the estimate

exp
[

fn(β,b)(ω)
]

≥ exp [−n(β, b)‖f‖0] ≥
C16

|b|β‖f‖0

we get

<
(

1 − exp(i[bτn(β,b)($) + γ($) − γ̄(ω)])
)

= O

(

1

|b|α′−β‖f‖0

)

.

Lemma 6. If β in the previous lemma is large enough then there exists Θ
such that ∀ω

| exp(i[¯̄γ(ω) − γ̄(ω) − Θ]) − 1| ≤
4

|b|ᾱ
.

Proof: Let B be a ball of radius 1
2C6bᾱ+1 in Σ. Then ∃Θ1, Θ2 such that

∀$ ∈ B |eiγ($) − eiΘ1 | ≤ 1
|b|ᾱ , |eiγ̄($) − eiΘ2 | ≤ 1

|b|ᾱ . If β is large enough

∀ω∃$ ∈ B such that σn(β,b)$ = ω and the statement follows by Lemma 5.
Let ᾱ > α. We claim that H(ω) = e−iγ(ω) is the required eigenfunction.
Indeed

Vn(β,b)
b H

H
(ω) = exp(i[bτn(β,b)(ω) − γ̄(σn(b,β)ω) + γ̄(ω)]) =

exp(i[Θ + bτn(β,b)(ω) − ¯̄γ(σn(b,β)ω) + γ̄(ω)])

(

1 + O

(

1

|b|ᾱ

))

= exp(iΘ)

(

1 + O

(

1

|b|ᾱ

))

by Lemma 5.
9. Perturbation estimates. Combining the result of the previous section
with Lemma 1 we get
Lemma 7. If (v) fails then given α there exist β(α) such that one can
find arbitrary large b, a constant Θ and a function H satisfying |H| ≡ 1,

‖H‖(b) = 1 such that if K denotes the operator Kh = HeiΘLn(β,b)
f ( h

H
) then

‖(1 − Lb)
−1‖θ ≥ |b|α

12



‖(Lb
n(β,b) −K)h‖0 ≤ ‖h‖0

1

|b|α
.

We now show that the last two inequality impose some restrictions on the
value of Θ.
Proposition 3. L((Lb

n(β,b) − K)h) ≤ 1
|b|α L(h) + C17|b|‖h‖0.

Proof: Direct calculation.
Recall that ‖h‖(N) = max(‖h‖0,

L(h)
C6N

). By Proposition 3

‖(Lb
n(β,b) − K)h‖(N) ≤

1

|b|α
+

C17

N
|b|.

We show that if b is large enough, then |eiΘ − 1| ≤ 1
|b|α∗ , α∗ = α−3

2
. Indeed

assume that this inequality is false. Then by Lemma 2

‖(1 − eiΘLn(β,b)
f )−1‖(N) ≤ C18|b|

α∗

(ln |b| + ln N).

Now if N > 2C6|b| multiplication by H has norm less than 2 and so

‖(1 − K)−1‖(N) ≤ C19|b|
α∗

.

On the other hand if N = |b|α
∗+2 then ‖Lb − K‖(N) ≤ C20|b|α

∗+1. Therefore
‖(1 − Lb)

−1‖(N) ≤ C21|b|α and

‖(1 − Lb)
−1‖θ ≤ 2C6N‖(1 − Lb)

−1‖(N) = C22|b|
2α∗+2 = C22|b|

α−1,

a contradiction. Hence actually |eiΘ − 1| ≤ 1
|b|α∗(α) . Since α∗ → ∞ as α → ∞

the implication (xi) ⇒ (v) is proven.
10. Decay of correlations.

In this Section we prove that (vi) ⇒ (ii). Let F̄ (ω) =
τ(ω)
∫

0
F (ω, s) ds and be

such that F̄ (ω) = f(ω) + G(ω)−G(σω) + Pr(F )τ and Lf1 = 1. Let Â(ω, ξ)

be Laplace transform of A Â(ω, ξ) =
τ(ω)
∫

0
F (ω, s)e−ξsds. We use the following

expression of the Laplace transform of RA,B(F, t) (see [P2])

R̂A,B(F, ξ) =
1

νf (τ)

∫

B̂(ω, ξ)
[

(1 − Lf−ξτ )
−1 Â(ω,−ξ)

]

dνf + R̃(ξ)

where R̃ is an entire function bounded in any strip |<ξ| ≤ M.
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We already noticed that (vi) ⇒ (viii) and moreover for Στ Lipschitz A, B we
have the following inequality in the region |b| > 1, a > −|b|−α2

R̂A,B(F, a + ib) ≤ C23‖A‖1‖B‖1|b|
α10 .

Now consider the case when A, B ∈ D(Στ ). In this case RA,B(F, t) is a
smooth function and ∂

∂t
RA,B(F, t) = −R∂tA,B ∂t being the derivative along

the orbits. Consider the Taylor expansion

RA,B(t) =
N−1
∑

j=0

R
(j)
A,B(0)

j!
tj +

t
∫

0

R∂tA,B(s)
(s − t)N

(N − 1)!
ds.

Laplace transform of the last term decays not slower than

C23‖A‖N‖B‖1|b|
α10−N

in the region above (Here ‖1C(ω)a(t)‖N means
(

1
θ

)l(C)
‖a‖CN .) It has the only

pole of the N−th order at 0.
Applying the inversion formula for Laplace transform and moving the contour
of the integration to {−a = min(ε, |b|−α2)} we get

|
N−1
∑

j=0

R
(j)
A,B(0)

j!
tj +

t
∫

0

R∂tA,B(s)
(s − t)N

(N − 1)!
ds| ≤

C24‖A‖N‖B‖1

∞
∫

1

|b|α10−N exp(−t|b|−α2) db

which implies (ii).
11. Polefree regions. In this section we prove that (vii) ⇒ (ix). To this
end it is enough to show that if for some f (2.ii) holds then the poles of
(1−Lξ)

−1 accumulate to the imaginary axis faster than any power of ξ (Lξ is
a shorthand for Lf+ξτ). The idea is to establish the analyticity of the leading
eigenvalue of Lξ and then use Rouche’s theorem to show that 1 ∈ Sp(Lξ). v
So assume that for some b̄ there exists G, |G| ≡ 1, ‖G‖θ ≤ |b̄|α3 such that

Mh = 1
G
Ln(β,b̄)

ib0
(Gh) satisfies

‖Ln(β,b̄)
f −M‖0 ≤ |b̄|−α.
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Denote Mξ = 1
G
Lξ

n(β,b̄)(Gh). Lξ is invertible if and only if Mξ is invertible.
We show that Mξ has 1 as an eigenvalue for ξ close to ib̄. A direct calculation
shows that

‖M− Ln(β,b̄)
f ‖(N) ≤

1

|b̄|α
+

C23|b̄|
α̃

N

where α̃ = 2α3 + 1 (since ‖b̄τ‖θ = O(|b̄|), ‖G‖θ = ‖G−1‖θ = O(|b̄|α3)). Take
N = |b̄|α+α̃.
Lemma 8. There are constants C26, C27 such that uniformly in b̄, ξ such that
ξ − i b̄ | ≤ |b̄|−1

‖
∂

∂ξ
M‖(N) ≤ C26 ln |b̄|,

‖
∂2

∂ξ2
M‖(N) ≤ C27 ln2 |b̄|.

Proof: We prove only the first estimate, the proof of the second one is
similar. Since multiplications by G, G−1 are (uniformly) bounded operators

it is enough to bound ‖ ∂
∂ξ
Ln(β,b̄)

ξ ‖(N).

‖
∂

∂ξ
Ln(β,b̄)

ξ ‖(N) = ‖
∑

j<n(β,b̄)

Lj
ξ(

∂

∂ξ
Lξ)L

n(β,b̄)−j−1
ξ ‖(N)

Applying Proposition 2 to
Lξ

exp[Pr(f+<ξτ)]
and using the bound Pr(f+<(ξ)τ) ≤

C28|<ξ| we get
‖Lj

ξ‖(N) ≤ C29n(β, b)

and we are done.
Let γ be the circle {|z| = 1+δ

2
}, where δ is the constant from Section 6. By

Lemma 2 for λ ∈ γ

‖(λ − Ln(β,b̄)
f )−1‖(N) ≤ C30 ln |b̄|

and so
‖(λ −M)−1‖(N) ≤ C31 ln |b̄|.

From Lemma 8 it follows that in |ξ − ib̄| ≤ |b̄|−1 Mξ has only one eigenvalue
ρ(ξ), this eigenvalue is simple and the corresponding eigenfunction is

g(ξ, ω) = 1 −
1

2πi

∫

γ

(z −Mξ)
−11 dz.
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Moreover ρ(ξ) is analytic in {|ξ− ib̄| < 1
|b|}. By standard perturbation theory

|ρ(ib̄) − 1| ≤ C32|b̄|
−α ln |b̄|,

|
∂

∂ξ
ρ(ξ)| ≤ C33 ln2 |b̄|,

|
∂2

∂ξ2
ρ(ξ)| ≤ C34 ln3 |b̄|,

‖g(ib̄, ω) − 1‖0 ≤ C35|b̄|
−α ln |b̄|

and

‖
∂

∂ξ
g(ξ, ω)‖0 ≤ C36 ln |b̄|.

12. Derivative of the eigenvalue. It remains to estimate ∂
∂ξ

ρ(ξ) from
below. Differentiating

1

G(ω)

∑

σn(β,b̄)$=ω

efn(β,b̄)($)+ξτn(β,b̄)($)G($)g(ξ, $) = ρ(ξ)g(ξ, ω)

at ξ = ib̄ we obtain

Mib̄

(

τn(β,b̄) ◦ σn(β,b̄)g
)

+ Mib̄

(

∂

∂ξ
g

)

=

(

∂

∂ξ
ρ(ib̄)

)

g + ρ(ib̄)
∂

∂ξ
g.

Integrate this identity against νf .

νf

(

Mib̄

∂

∂ξ
g

)

= νf

(

Ln(β,b̄)
f

∂

∂ξ
g

)

+ O

(

ln |b̄|

|b̄|α

)

= νf

(

∂

∂ξ
g

)

+ O

(

ln |b̄|

|b̄|α

)

,

ρ(ib̄)νf

(

∂

∂ξ
g

)

= νf

(

∂

∂ξ
g

)

+ O

(

ln2 |b̄|

|b̄|α

)

,

∂

∂ξ
ρ(ib̄)νf (g) = 1 + O

(

ln2 |b̄|

|b̄|α

)

,

νf

(

Mib̄(τn(β,b̄) ◦ σn(β,b̄)g)
)

= νf

(

Ln(β,b̄)

ib̄
(τn(β,b̄) ◦ σn(β, b̄)g)

)

+ O

(

ln2 |b̄|

|b̄|α

)

=

νf

(

τn(β,b̄) ◦ σn(β,b̄)
)

+ O

(

ln2 |b̄|

|b̄|α

)

= n(β, b̄)νf (τ) + O

(

ln2 |b̄|

|b̄|α

)

.
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Hence
∂

∂ξ
ρ(ib̄) = n(β, b̄)νf(τ) + O

(

ln2 |b̄|

|b̄|α

)

.

Remark. Actually we have shown that

∂

∂ξ
|ξ=ib̄ ρ(Mξ) =

∂

∂ξ
|ξ=0

(

ρn(β,b)(Lξ)
)

+ O

(

ln2 |b̄|

|b̄|α

)

.

Taking into account the bound on the second derivative of ρ(ξ) we conclude
by Rouche’s theorem that in {|ξ − b̄| ≤ |b̄|−1} the equations ρ(ξ) = 1 and
ρ(ib̄) + (ξ − ib̄)ν(τ) = 1 have the same number of solutions. That is both
have one solution.
13. Proof of Theorem 3. In this section we show that conditions of Theo-
rem 3 imply (xii). Indeed let H be (1, |b|α5, |b|−α)− approximate eigenfunction

of Vn(β,b)
b , that is

∣

∣

∣

∣

∣

eibτn(β,b)(ω)H(σn(β,b)ω)

H(ω)

∣

∣

∣

∣

∣

≤ |b|−α.

Substituting ω = ω1 we get

|eibn(β,b)l1 − 1| ≤ |b|−α.

So bn(β, b)l1 = 2πm1 + O (|b|−α) for some m1 ∈ Z. Similarly bn(β, b)l2 =
2πm2 + O (|b|−α) . Hence

l1
l2

=
m1

m2
+ O

(

|b|−α
)

=
m1

m2
+ O

(

|m2|
−α
)

.

If |b| is large enough this implies α ≤ α6 where α6 is Diophantine exponent
of l1

l2
.

14. Concluding remarks. As we have seen above topological power mix-
ing plays quite important role for suspension flows over subshift of a finite
type. Now several examples of dynamical systems satisfying this condition
are known. We mention just few of them: any topologically mixing Anosov
flow, some maps on the boundary of Anosov diffeomorphisms, certain Henon
maps etc. We expect that some convenient set of axioms could be formulated
which would cover all this cases. Of course, in the general case one cannot
get anything better then powerlike correlation decay.
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Another problem is whether generic Axiom A flow is actually exponentially
mixing. The same question may also be asked for symbolic flows. Even if
the answers to these two cases are the same the proofs would probably be
different. We expect that the question about the exponential bound is of
topological rather than arithmetic nature.
It is also interesting to know to what extent Theorem 1 can be generalized
to deal with exponential mixing. More specifically, we would like to ask two
questions. Is it true that topological exponential mixing imply exponential
correlation decay for any Gibbs measure? In particular is it true that if
correlations decay exponentially for some Gibbs measure then the same holds
for any potential? Of course, the conditions of this theorem if true would be
even more difficult to verify than for power mixing.

Appendix.

Dimension and Rapid Mixing.

1. Two-sided subshifts. Above we gave several necessary and sufficient
conditions for a symbolic flow to mix faster than any power of time. We
also described an arithmetic property (incommensurability of periods) which
imply these conditions. Here we present a topological mechanism for a rapid
mixing.
Here we let (Σ, σ) be a two-sided subshift of a finite type since to formulate
our condition for one-sided subshift we need to pass to its natural extention.
If ωΣ ω− and ω+ stand for {ωj}j≤0 and {ωj}j≥0 respectively. C−

θ (Σ) and
C+

θ (Σ) are subspaces of Cθ(Σ) depending only on ω− (ω+). As before (Στ , gt)
means the suspension flow with the roof function τ.
Recall that any symbolic flow has a certain geometric structure, namely the
structure of a Smale space ([R1]). For the suspension (Στ , gt) of the two-
sided subshift of a finite type (Σ, σ) with the roof function τ ∈ Cθ(Σ) the
Smale structure consists of the following objects.
–the unstable manifold W u(ω, t) = {(ω̄, t̄) : ω̄+ = ω+};
–the stable manifold W s(ω, t) = {(ω̄, t̄) : ω̄− = ω−};
–the strong unstable manifold W su = {(ω̄, t̄) ∈ W u(ω, t) : t − t̄ = ∆−(ω̄, ω)}

where ∆−(ω̄, ω) =
∞
∑

j=1
[τ(σ−jω̄) − τ(σ−jω)];
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–the strong stable manifold W ss = {(ω̄, t̄) ∈ W s(ω, t) : t − t̄ = ∆+(ω̄, ω)}

where ∆−(ω̄, ω) =
∞
∑

j=0
[τ(σjω̄) − τ(σjω)];

–the local product structure: if ω0 = ω̄0 then [ω, ω̄] is defined as following.

([ω, ω̄])j =
{

ωj, if j ≤ 0
ω̄j, if j ≥ 0

;

–the temporal distance function (see [Ch])

ϕ(ω, ω̄) = ∆+([ω̄, ω], ω) + ∆−([ω̄, ω], ω̄) + ∆−([ω, ω̄], ω) + ∆+([ω, ω̄], ω̄).

The geometric meaning of the temporal distance is the following. Let p
(ω̄,t̄)
∗

denote the projection to W ∗(ω̄, t̄) (along the leaves of the complimentary
foliation). Then

p(ω,0)
s ◦ p(ω,0)

u ◦ p(ω̄,0)
s ◦ p(ω̄,0)

u (ω, t) = (ω, t + ϕ(ω, ω̄)).

Since ϕ is defined geometrically it is clear that it is invariant in the sense that
depends only on the cohomology class of τ. This can also be seen directly
since the replacement of τ(ω) by τ(ω) + T (ω) − T (σω). alter ∆+(ω̄, ω) by
T (ω̄)− T (ω) and ∆−(ω̄, ω) by T (ω)− T (ω̄). If τ ∈ C+(ω) then ∆+ vanishes
and

ϕ(ω, ω̄) = ∆−([ω̄, ω], ω̄) + ∆−([ω, ω̄], ω).

2. Local integrability.

Definition. {gt} is called locally integrable if ϕ ≡ 0.
The following statement essentially goes back to Anosov.
Proposition 4. (Anosov alternative for symbolic flows.) If {gt}
is locally integrable τ ∼ τ̄ where τ̄ depends only on ω0.
Before giving the proof recall some standard results about the cohomology of
subshifts of finite type. First, note that ∆−([ω̄, ω], ω̄) does not depend on ω−

so we can write ∆−([ω̄, ω], ω̄) = δ−(ω+, ω̄+, ω̄−). Similarly ∆+([ω̄, ω], ω) =
δ−(ω̄−, ω−, ω̄+).
Proposition 5. ([S]) There is a constant C37 such that
∣

∣

∣δ−(ω+
1 , ω+

2 , ω−
3 ) − δ−(ω̄+

1 , ω̄+
2 , ω̄−

3 )
∣

∣

∣ ≤ C37

√

dθ(ω
+
1 , ω̄+

1 ) + dθ(ω
+
2 , ω̄+

2 ) + dθ(ω
−
3 , ω̄−

3 )

and
∣

∣

∣δ−(ω−
1 , ω−

2 , ω+
3 ) − δ−(ω̄−

1 , ω̄−
2 , ω̄+

3 )
∣

∣

∣ ≤ C37

√

dθ(ω
−
1 , ω̄−

1 ) + dθ(ω
−
2 , ω̄−

2 ) + dθ(ω
+
3 , ω̄+

3 ).
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Corollary 5. ([S]) Choose for any i a sequence ω(i) such than (ω(i))0 = i.
Set T+(ω) = δ+(ω(i)−, ω−, ω(i)+), τ+(ω) = τ(ω)+T+(ω)−T+(σω), T+(ω) =
δ+(ω+, ω(i)+, ω(i)−), τ−(ω) = τ(ω) + T−(ω) − T−(σω). Then τ+ ∈ C+√

θ
(Σ),

τ− ∈ C−√
θ
(Σ).

Proof of Proposition 4: By the discussion above we may assume that
τ ∈ C+

θ (Σ). Consider τ−(ω) = τ(ω) − T−(ω) + T−(σω). τ− does not depend
on ωj, j > 0 by Corollary 5. On the other hand

ϕ(ω, ω̄) = δ−(ω+, ω̄+, ω̄−) − δ−(ω+, ω̄+, ω−). (6)

Thus ϕ ≡ 0 just means that δ−(ω+
1 , ω+

2 , ω−
3 ) does not depend on the third

variable. Hence τ− does not depend on ωj, j < 0 as well and we are done.
3. The result. The aim of this appendix is to prove the following result.
Theorem 4. If gt is not rapidly mixing then the lower box counting dimen-
sion of the range of ϕ vanishes:

BD(Range(ϕ)) = 0.

Proof: By the discussion in Section 1 we may assume that τ ∈ C+
θ (Σ). By

Theorem 2 we can find sequances {bk} and {hk} satisfing conditions (2.v).
Let N be some large natural number which we assume to be a a multiple of
n(β, bk). Take some ω = ω−ω+, ω̄ = ω̄−ω̄+ and moreover let ω− = ωΩξN ,
ω̄− = ω̄Ωξ̄N where ξN and ξ̄N are words of length N. Inequalities

|e−ibkτN (ξN ω+)hk(ξNω+) − hk(ω
+)| ≤ N |bk|

−α,

|e−ibkτN (ξ̄N ω+)hk(ξ̄Nω+) − hk(ω
+)| ≤ N |bk|

−α

imply that

|e−ibkτN (ξN ω+)hk(ξNω+) − e−ibkτN (ξ̄N ω+)hk(ξ̄Nω+)| ≤ 2N |bk|
−α.

Using (2.v) once more we get

∣

∣

∣

∣

∣

exp
(

ibk[τN(ξNω+) − τ(ξ̄Nω+)]
)

−
hk(ξ̄N)

hk(ξN)

∣

∣

∣

∣

∣

≤ C38

(

N |bk|
−α + |bk|

α5θN
)

.
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Similarly

∣

∣

∣

∣

∣

exp
(

ibk[τN(ξN ω̄+) − τ(ξ̄N ω̄+)]
)

−
hk(ξ̄N)

hk(ξN)

∣

∣

∣

∣

∣

≤ C38

(

N |bk|
−α + |bk|

α5θN
)

.

Thus
∣

∣

∣exp
(

ibk

[

τN(ξNω+) − τN (ξ̄Nω+) − τN (ξN ω̄+) + τN (ξ̄N ω̄+)
])∣

∣

∣

≤ C39

(

N |bk|
−α + |bk|

α5θN
)

.

In view of (6) this gives

|exp(ibkϕ(ω, ω̄)) − 1| ≤ C39

(

N |bk|
−α + |bk|

α5θN
)

.

Choose N ∼ α ln |bk|
ln(θ−1)

, then

|exp(ibkϕ(ω, ω̄)) − 1| ≤ C40|bk|
α5−α.

If also |ϕ| ≤ M then

Range(ϕ) ⊂
⋃

|m|≤M|bk|

2π

[

2πm

|bk|
− C41|bk|

α5−α,
2πm

|bk|
+ C41|bk|

α5−α

]

,

which implies BD(Range(ϕ)) ≤ (α − α5)
−1. Since α is arbitrary, Theorem 4

is proven.
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