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Abstract

We study a particle moving at unit speed in a channel made by
connected self-similar billiard tables that grow in size by a factor r > 1
from left to right (this model was recently introduced in physics lit-
erature [1, 2]). Let q(T ) denote the position of the particle at time
T . Our main result is the existence of an asymptotic distribution of
q(T )/T as T → ∞ and {ln T/ ln r} → ρ for some 0 ≤ ρ < 1.

1 Introduction.

A billiard is a mechanical model in which a point particle moves in a container
D and bounces off its boundary ∂D. This is a Hamiltonian system preserving
a smooth Liouville measure. The corresponding return map constructed on
∂D (also called the collision map) preserves a smooth measure, too.

If the billiard table D is unbounded and spatially isotropic, as is a peri-
odic Lorentz gas, then billiard dynamics represents a mechanical system in
equilibrium. The billiard particle in a planar periodic Lorentz gas with finite
horizon exhibits a diffusive behavior without drift [6, 13]. If the horizon is
infinite, the diffusion becomes abnormal [5, 18], but the drift is still absent.

In order to induce a non-equilibrium steady state with some transport of
mass (manifested by the particle’s drift), one can apply a constant external
force on the particle [11, 12, 16]. Then the drift may be observed and the
invariant measure (steady state) may become singular. Though one has to
prevent an indefinite acceleration (heat-up) of the particle by introducing
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a thermostat. For example, Gaussian thermostat [11, 12, 16] keeps the ki-
netic energy of the particle constant; the corresponding equations of motion
(between collisions) read

(1.1) q̇ = v v̇ = e − 〈e,v〉〈v,v〉−1v,

where q is the position and v the velocity of the particle, e is the (constant)
external field, and 〈·, ·〉 denotes the scalar product of vectors in R

2. It is easy
to see that 〈v, v̇〉 = 0, thus ‖v‖2 = const.

Planar periodic Lorentz gases with finite horizon where the particle moves
in a small external field e according to (1.1) were studied in [11, 12]. It was
shown that the system had a unique (singular) invariant measure, µe, with
smooth conditional densities on unstable manifolds (i.e., SRB measure), the
average speed of the particle was µe(v) = De + o(e), where D was the
diffusion matrix corresponding to the unperturbed system (with e = 0).

The Gaussian thermostatted dynamics (1.1) can be described by Hamilto-
nian formalism, as was first noticed in [14]. A general theorem by Wojtkowski
[19, 20] states that the billiard table can be transformed by a conformal map-
ping to the so called torsion free connection (called the Weyl connection) so
that the trajectories of (1.1) are mapped onto geodesic lines (trajectories of
the Weyl flow), and the specular character of reflections at the boundary is
preserved. The unit cell of the periodic Lorentz gas is then transformed into
a distorted (asymmetric) domain, see below.

Now consider a unit cell of a periodic Lorentz gas (with finite horizon)
and impose periodic boundary conditions in the y direction but not in the
x direction. Then one gets the so-called Lorentz channel [15], a 1D chain of
identical connected cells. Suppose the particle moves in the Lorentz channel
according to (1.1) under a small horizontal external field e = (e, 0), e > 0.
Then Wojtkowski’s transformation maps the Lorentz channel onto a chain of
connected self-similar dispersing billiard tables that grow in size by a factor
r = exp(e) > 1, see [3], from left to right.

Such a channel of self-similar billiard tables was recently independently
introduced by Barra, Gilbert, and Romo [1], who studied the resulting dy-
namics heuristically and numerically. They made several interesting conjec-
tures on the existence of a singular SRB measure, on the asymptotic drift
of the particle, and on the relation between Lyapunov exponents and the
entropy production rates. Some of their conjectures actually follow from the
results of [11, 12] if one makes use of Wojtkowski’s theorem [19, 20], see the
latest papers [2, 3].
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Here we obtain rigorous results related to some other conjectures made
in [1, 2], specifically those concerned with the asymptotic drift of the particle
in the Barra-Gilbert-Romo (BGR) channel.

2 Statement of the result

To define a BGR channel of self-similar billiard tables we first describe its
fundamental cell D0, see Fig. 1.

We fix an r > 1 (the scaling factor, see below). The cell D0 is made of a
trapezoid with unequal vertical sides of length d

√

3/r and d
√

3r, respectively,
and equal top and bottom sides, here d is the (horizontal) distance between
the vertical sides. Our cell D0 is the trapezoid minus five disks: one of
radius R centered on the intersection of the diagonals, two disks of radius
R
√
r centered on the right hand side vertices, and two disks of radius R/

√
r

centered on the left hand side vertices.
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Figure 1: The cell D0 and the action of F̃ on Ω̃.

Thus our cell is a billiard table bounded by one full circle, four circular
arcs, and four short line segments connecting the endpoints of the arcs. We
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assume that R is large enough to ensure the finite horizon condition (meaning
that every billiard trajectory collides with the circular part of the boundary),
but not too large to prevent the disks from overlapping. This imposes some
restrictions on d and R, see details in [1, Appendix A].

The ratio of the vertical sides of our cell is r > 1. Now we attach to D0

a bigger cell, D1, identical in shape to D0 but scaled by r; we glue the right
side of D0 with the (equal in size) left side of D1. Similarly, we attach to D0 a
smaller cell, D−1, scaled by r−1, gluing the left side of D0 with the right side
of D1. Repeating this procedure gives a chain of self-similar cells Di, i ∈ Z,
and we call D = ∪i∈ZDi the Barra-Gilbert-Romo (BGR) channel (Fig. 2).

Figure 2: The Barra-Gilbert-Romo (BGR) channel.

Observe that the size of Di is proportional to ri, so our cells grow ex-
ponentially from left to right, and the negative ‘half’ of the chain ∪i≤0Di is
actually bounded. Also note that each pair of adjacent circular arcs in the
neighboring cells Di and Di+1 have the same center and radius, thus their
union is a (bigger) circular arc. Furthermore, every circular arc is perpen-
dicular to the adjacent (top or bottom) side of the cell. This all implies that
our billiard table essentially has no corner points (they can be eliminated by
a standard unfolding scheme [13, Section 1.2]), and our dynamics equivalent
to a dispersing billiard with smooth boundary.

We consider a particle moving in D at unit speed and bouncing off ∂D.
Note that the common vertical edge of every pair of neighboring cells Di

and Di+1 is not a part of ∂D, thus the particle is free to move from cell to
cell all across the channel D. We suppose that the initial position q(0) of
the particle is uniformly distributed within D0 and its initial velocity v(0) is
uniformly distributed on the unit circle. Let (q(t), v(t)) denote the state of
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the particle at time t.

Theorem 1. There is ε0 > 0 such that for 1 < r < 1 + ε0 the following
holds. Suppose that Tn → ∞ so that the fractional part { ln Tn

ln r
} → ρ ∈ [0, 1).

Then the distribution of q(Tn)
Tn

converges to a limit (which may depend on ρ).

Our theorem states that the limit distribution of q(Tn)
Tn

, as n→ ∞, exists
but it does not specify how (and if ) it depends on ρ. In particular, it may

be constant, i.e. q(T )
T

may simply converge to a limit as T → ∞.

However, our explicit formulas in Section 5 suggest that the limit of q(Tn)
Tn

has a non-trivial dependence on ρ. In addition, recent computer simula-
tions [4] reveal that the ratio q(T )

T
does not converge to a limit but evolves

periodically, in accordance with our theorem (more precisely, q(T )
T

changes
periodically with respect to the variable lnT ; and its period is ln r).

3 Collision map

The self-similar structure of the BGR channel allows us to reduce the dynam-
ics of the particle in D to the motion of a (model) particle in the fundamental
cell D0. Precisely, if the real particle (q, v) moves in Di, our model particle
(q̃, ṽ) moves in D0 so that

(3.1) q̃ = q∞ + (q − q∞)/ri, ṽ = v/ri,

where q∞ = (−d/(r − 1), 0) is the accumulation point of Di as i → −∞.
We denote by π the projection (3.1) of the phase space M = D × S1 of the
real particle on the phase space M̃ = D0 × R

2 of the model particle. Then
we have Φ̃t ◦ π = π ◦ Φt, where Φt : M → M and Φ̃t : M̃ → M̃ denote the
corresponding phase flows.

The motion of the model particle in D0 is governed by the following rules.
Let ΓL and ΓR denote the left and right (vertical) sides of D0, respectively.
When the particle hits ΓR at a point (d, y) with velocity v, it instantly reap-
pears on ΓL at the point (0, y/r) with velocity v/r. When it hits ΓL at a
point (0, y) with velocity v, it reappears on ΓR at the point (d, yr) with ve-
locity vr. These are ‘periodic’ boundary conditions with rescaling of the y
coordinate and the velocity.

Let Ω denote the cross-section of the phase space M consisting of pair
z = (q, v) where q lies either on the boundary ∂D or on a common vertical side
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of some neighboring cells Di and Di+1 and (for q ∈ ∂D) v is the ‘outgoing’
(postcollisional) velocity vector. We call Ω the (extended) collision space
and denote by F : Ω → Ω the corresponding return map, or the (extended)
collision map.

Then Ω̃ = π(Ω) is a cross-section (the collision space) for the flow Φ̃; it
consists of points z = (q, v) where q ∈ ∂D0 and v points inside D0. We denote
by F̃ : Ω̃ → Ω̃ the corresponding return map; note that F̃n ◦π = π ◦Fn. The
action of F̃ is illustrated in Fig. 1 (b). It is clearly independent of the speed
‖v‖ of the model particle, so we may for simplicity normalize all the velocity
vectors in the space Ω̃.

When the original particle moving in the channel D crosses from one cell
Di into the neighboring cell Di+1 or Di−1, our model particle appears on ΓL

or ΓR, respectively. Accordingly, we define a function ∆ on Ω̃ such that

∆(q, v) =







+1 if q ∈ ΓL

−1 if q ∈ ΓR

0 elsewhere

Let

In =
n

∑

i=1

∆ ◦ F̃ i.

Observe that the original particle, after n reflections (n iterations of F), will
be exactly in the cell DIn.

As we said, Wojtkowski’s theorem [19, 20] allows us to transform the tra-
jectories of the flow Φt into those of the Gaussian thermostatted particle in
a periodic Lorentz channel with finite horizon under a small external field
e = (e, 0) (whose value is determined by r, precisely e = ln r, see [3]). Even
though Wojtkowski’s transformation does not necessarily preserve convexity,
the images of the curved boundaries of D0 will remain convex when ε0 in
Theorem 1 is small enough. While this transformation does not synchro-
nize time between collisions, it certainly establishes a conjugacy between
the corresponding collision maps. Thus the map F̃ : Ω̃ → Ω̃ has all the
same properties as the collision map of the thermostatted particle studied in
[11, 12, 8].

In particular, the map F̃ has a unique SRB measure, µ (invariant proba-
bility measure whose conditional densities on unstable manifolds are smooth),
which is ergodic, mixing, Bernoulli, and positive on open sets. This measure
enjoys exponential decay of correlations, satisfies the central limit theorem,
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and has other strong statistical properties [11, 12, 8]. For r = 1, we recover
the billiard map F̃1 on a (symmetric) fundamental cell of the periodic Lorentz
gas that preserves a smooth measure µ1.

If γ ⊂ Ω̃ is a sufficiently smooth unstable curve and ρ a sufficiently
smooth probability density on it, we call ` = (γ, ρ) a standard pair, see
precise definitions in [9, Section 4] or [13, Chapter 7] (as usual, we only
consider homogeneous stable and unstable curves, on which we can control
distortions, see [8, page 216] or [13, Chapter 5]). We denote by P` the measure
on γ with density ρ. For any function A : Ω̃ → R we put E`(A) =

∫

γ
AdP`.

We say that ` = (γ, ρ) is proper if length(γ) > δ0, where δ0 > 0 is a small
but fixed constant.

A standard family [13, Chapter 7] is a (countable or uncountable) collec-
tion G = {`α} = {(γα, ρα)}, α ∈ A, of standard pairs with a probability factor
measure λG on the index set A. Such a family induces a probability measure
PG on the union ∪αγα (and thus on Ω̃), and we write EG(A) =

∫

Ω̃
AdPG. To

control the size of curves γα in a standard family G, we use

ZG : = sup
ε>0

PG(LG < ε)

ε
= sup

ε>0

∫

P`α

(

x ∈ γα : LG(x) < ε
)

dλG(α)

ε
,

where LG(x) denotes the distance from x ∈ γα to the closer endpoint of the
curve γα. A standard family G is proper if ZG ≤ C0, where C0 is a large
constant (so that any proper standard pair makes a proper standard family).
If a family G is not proper, but ZG <∞ then its image F̃nG will be proper for
n ≥ C1 lnZG, where C1 > 0 is a large constant. In particular, if a standard
pair ` = (γ, ρ) is not proper, then its image F̃n` will be a proper standard
family for n ≥ C1

∣

∣ln |γ|
∣

∣.
For any proper standard family G the iterations of the measure PG under

F̃ weakly converge to µ, so that

EG(A ◦ F̃n) → µ(A),

and the convergence is exponentially fast for Hölder continuous functions.
(For billiards, this fact was proved in [13, Section 7.5], and in our case the
same argument applies, cf. [8].) Moreover, it is proved in [11] that the ther-
mostatted Lorentz particle has a non-zero drift, thus

∆̄ : = µ(∆) > 0.
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More precisely,

∆̄ = De+ o(e) = D(r − 1) + o(r − 1)

where D = 1
2

∑∞
i=−∞ µ1

(

(∆◦F i
1)∆

)

is half the sum of autocorrelations of the
function ∆ in the unperturbed (classical billiard) system.

The functions In have the following standard statistical properties:

Proposition 1 (Central Limit Theorem, see [8]). For any proper stan-
dard family G the sequence n−1/2(In − n∆̄) converges in distribution to a
normal random variable with respect to the measure PG.

Proposition 2 (Large Deviations). For any constant 0 < a < ∆̄ and for
any proper standard family G we have PG(In ≤ an) ≤ c1θ

n
1 for some constants

c1 > 0 and θ1 ∈ (0, 1), which depend on a.

In what follows we have many exponential bounds similar to the one
above, and we will denote by ci > 0 and θi ∈ (0, 1) various constants whose
values are not important.

Proposition 3 (Moderate Deviations). For any constant 1
2
< b < 2

3
and

for any proper standard family G we have PG(|In − n∆̄| > nb) ≤ c2θ
n2b−1

2 .

For the proofs of the last two propositions, see [9, Sections A.3–A.4].
These properties imply that In = n∆̄+O(

√
n) grows linearly in n. On the

other hand, let L(q, v) denote the free path length, i.e. the distance (in D0)
from q ∈ Ω̃ to the next collision (in the ‘extended’ sense as defined above) at
the point q′ ∈ ∂D0, where (q′, v′) = F̃(q, v). Then the time elapsed between
the 0th and the nth collision of the original particle at ∂D will be

(3.2) Sn =
n−1
∑

k=0

rIkL ◦ F̃k.

Thus we should expect that Sn ∼ rIn, and the x-coordinate of the particle
at the nth collision is also q(Sn) ∼ rIn, which indicates that q(Sn) should
be asymptotically proportional to Sn. However, the terms in (3.2) grow
exponentially, so the major contribution comes from the few last terms, which
makes the limit distribution of Sn strongly dependent on that of the few last
terms. (This makes it necessary to impose restrictions on lnT in Theorem 1.)
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Lastly we recall the Growth Lemma (see [9, Section 4.4] or [13, Chapter 5]
or [8]) for the map F̃ . Let G = {`α} = {(γα, ρα)}, α ∈ A, be a standard
family. For n ≥ 1 and x ∈ γα denote by Ln(x) the distance from F̃n(x) to
the closer endpoint of the corresponding component of F̃n(γα).

Proposition 4 (“Growth Lemma”). There exists a constant C1 > 0 such
that for any proper standard family G and n ≥ 1 we have PG(Ln < ε) ≤ C1ε
for all ε > 0. In addition, for every 1 ≤ n1 ≤ n2

(3.3) PG

(

max
n1≤i≤n2

Li < δ0

)

≤ c3θ
n2−n1

3 .

Lastly, for any standard pair ` = (γ, ρ) its image under F̃n is a proper
standard family for all n ≥ A| ln length(γ)|+B, where A,B > 0 are constants
determined by the shape of D0 alone.

4 Advance map

It is convenient to ‘reduce’ the collision map F̃ in a somewhat unusual way.
Consider

Ω̃L = {(q, v) ∈ Ω̃ : q ∈ ΓL}
the part of the collision space restricted to the vertical left side of D0 (recall
that the velocity vectors v always point into D0). Then the map F̃ induced
the first return (Poincaré) map F̃L : Ω̃L → Ω̃L, which preserves the measure
µ (restricted to Ω̃L) and is ergodic.

Furthermore, given z ∈ Ω̃ we denote by

N (z) = min{n ≥ 1: In(z) = 1}

the first collision when the original particle starting in D0 crosses from D0 to
D1. We call the map R : Ω̃L → Ω̃L defined by

R(z) = F̃N (z)(z)

the advance map, as its iterations correspond to the instances when the
original particle advances one cell further to the right. Observe that for
every m ≥ 1

Rm(z) = F̃Nm(z)(z), where Nm(z) = min{n ≥ 1: In(z) = m};
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also note that Nm(z) =
∑m−1

i=0 N (Riz).
It follows from the statistical properties of the map F̃ that the function

N(z), and thus the map R(z), are defined almost everywhere on Ω̃L (with
respect to the Lebesgue measure). Moreover, due large deviations, for any
proper standard family G in Ω̃ we have an exponential tail bound

(4.1) PG(N (z) ≥ n) ≤ PG(Nan(z) ≥ n) ≤ c1θ
n
1 .

Unlike F̃L, the map R is not one-to-one. For example, a point z ∈ Ω̃L

may leave ΓL, enter D0, then (before crossing ΓR) bounce back to ΓL, move
into D−1, then bounce back to ΓL again, cross it at some other point z′ 6= z,
move into D0 and then keep moving to the right and cross ΓR; in that case
R(z) = R(z′). Thus the inverse map R−1 may be multiple-valued. For a
similar reason, many points x ∈ Ω̃ have no preimages under R.

Still the action of R agrees with the hyperbolic structure in Ω̃L in two
important ways. First, N (z) is constant on stable manifolds of the map
F̃ , thus R maps stable manifolds into stable manifolds. Second, R maps
every unstable manifold onto a finite or countable union of (whole) unstable
manifolds; thus the restriction of R−1 onto any unstable manifold W u has
several branches, each of which takes W u into another unstable manifold.

Next we consider a decreasing sequence of subsets Ω̃L ⊃ Λ1 ⊃ Λ2 ⊃ · · ·
defined by Λn = Rn(Ω̃L) and the ‘attractor’ Λ = ∩nΛn. Observe each Λn (as
well as Λ) will be a union of (whole) unstable manifolds of the map F̃ . We
denote by (Λ∗,R∗) the natural extension of (Λ,R), i.e. the set of sequences
Z = {zi}, i ≤ 0, such that zi = R(zi−1) and z0 ∈ Λ, on which the map
R : Λ → Λ induces the left shift R∗ : Λ∗ → Λ∗. We endow Λ∗ with a metric
ρ∗(Z,Z ′) =

∑∞
i=0 λ

i dist(z−i, z
′
−i) for some fixed λ ∈ (0, 1).

Similarly, for each n ≥ 1 we denote by Λ∗
n the set of finite sequences

Z = {zi}, −n ≤ i ≤ 0, such that zi = R(zi−1) for i > −n and z0 ∈ Λn. We
endow Λ∗

n with a metric ρ∗n(Z,Z ′) =
∑n

i=0 λ
i dist(z−i, z

′
−i).

For each m < n we have a natural projection π∗
m from Λ∗

n (and Λ∗)
into Λ∗

m, which is defined by discarding all coordinates zi, i < −m. Then
{π∗

m(Λ∗
n)}∞n=m is a decreasing sequence of sets shrinking to π∗

m(Λ∗); moreover
π∗

m(Λ∗
n) lies in a O(λn)-neighborhood of π∗

m(Λ∗). Note that [π∗
m]−1ρ∗m is a

pseudo-metric on Λ∗ that uniformly converges to ρ∗. Every unstable manifold
W u ⊂ Λm (or W u ⊂ Λ) can be naturally lifted to finitely or countably many
unstable manifolds in Λ∗

m (resp., in Λ∗).
Next we establish a (weaker) analogue of the first part of Growth Lemma

(Proposition 4) for the map R. Given a standard family G on Ω̃, we denote by
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Lm(x) the distance from Rm(x) to the closer endpoint of the corresponding
component of Rm(γα).

Proposition 5 (Weak Growth Lemma). (a) There exists a constant C2

such that for all ε > 0 for any proper standard family G and m ≥ 1 we have
PG(Lm < ε) ≤ C2ε

0.9.
(b) Moreover for proper standard familty G = {`α} for any m and any

m(α) such that m
2
≤ m(α) ≤ 3m

2
we have

PG(Lm(α) < ε) ≤ C2ε
0.9

for all ε > 0.

Clearly it suffices to prove (b). We consider two cases:

Case I: m ≤ ε−0.1. By (4.1) we have PG(Nm ≥ ε−0.1) ≤ c1θ
ε−0.1

1 � ε0.9, and
by Proposition 4

PG

(

min
k≤ε−0.1

Lk ≤ ε
)

≤ C1ε ε
−0.1 = C1ε

0.9,

thus PG(Lm < ε) ≤ (C1 + 1) ε0.9.

Case II: m > ε−0.1. Our goal is to find proper standard pairs `β = (γβ, ρβ)
such that

(a) each γβ is a component of F̃nβ(G) for some nβ > 0, with density ρβ

induced by F̃nβPG;

(b) their preimages F̃−nβ(γβ) are disjoint pieces of the family G;

(c) their total PG-measure is ≥ 1 − ε0.9;

(d) on each F̃−nβ(γβ) we have Nm(α) > nβ and m(α) − Inβ
∈ [0, ε−0.1].

Then we can apply the argument of Case I to each proper standard pair `β,
sum up the resulting estimates, and obtain PG(Lm(α) < ε) ≤ (C1 + 2) ε0.9.

Our construction of {`β} has inductive character. At the first step, we
put m1 = m(α) and n1 = m1/∆̄. It follows from Proposition 3 that

(4.2) PG

(

|In1
−m1| > n0.6

1

)

= O
(

θ
n0.2

1

2

)

� ε0.9
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and

(4.3) PG

(

|Nm1
− n1| > n0.6

1

)

= O
(

θ
n0.1

1

2

)

� ε0.9,

Due (3.3), there is a family of proper standard pairs `′β = (γ′β, ρ
′
β), each being

a component of F̃nβ(G) for some

(4.4) nβ ∈ [n1 − n0.65
1 , n1 − n0.6

1 ],

whose preimages under F̃−nβ are disjoint, and whose total PG-measure is

≥ 1 − c3θ
n0.65

1
−n0.6

1

3 .
Observe that Inβ

is constant on the preimage γ ′′β = F̃−nβ(γ′β) of every
γ′β (because Inβ

is the cell number where Fnβ(γ′′β) lies). Curves on which
Nm1

≤ nβ can be discarded due to (4.3), then we have Inβ
< m1 on every (not

yet discarded) curve. Curves on which Inβ
< m1−2n0.65

1 can be discarded due
to Proposition 3 and (4.4), then we have m1 − Inβ

∈ [0, 2n0.65
1 ]. Now curves

on which m1 − Inβ
∈ [0, ε−0.1] are ‘good’, we include them in our ‘target’

family `β = (γβ, ρβ). On the remaining curves m1 − Inβ
∈ [ε−0.1, 2n0.65

1 ], and
we will deal with them next.

At the second step we apply the above procedure to each remaining proper
standard pair `′β = (γ′β, ρ

′
β) (which was not discarded or added to the ‘target’

family). Precisely, on each `′β we denote m2 = m1 − Inβ
(observe that 0 <

m2 ≤ C3m
0.65
1 for some constant C3 > 0), put n2 = m2/∆̄, and then repeat

our procedure word for word, only changing index 1 to index 2. In the course
of this construction, some images of `′β will be discarded, some added to our
‘target’ family, and some will remain for the third step; the latter will start
by setting m3 = m2 − Inβ

(note again, as before, that m3 ≤ C3m
0.65
2 ), then

setting n3 = m3/∆̄, etc.
In finitely many steps we arrive at 2n0.65

k < ε−0.1, thus no curves will be
left, and our construction will stop (observe that k = O(ln lnm)). The total

measure of all discarded curves will be O
(

θ
n0.1

1

3

)

� ε0.9. This completes the
proof of Proposition 5. �

Corollary 6. Let A and B be the constants of Proposition 4. Then for any
standard pair ` = (γ, ρ) and m > 2A| ln length(γ)| + 2B we have P`(Lm <
ε) ≤ C2ε

0.9 for all ε > 0.

Proof. Let m0 = A| ln length(γ)|+B. By Proposition 4, G = F̃m0` is a proper
standard family and so we can apply Proposition 5(b) with m(α) = m− Im0
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(observe that the last expression depends only on which curve in G our points
lands on). �

In other words, short unstable curves grow under the iterations of R
exponentially fast into standard families that consist of predominantly long
unstable curves. Such properties are instrumental in the construction of SRB
measures for hyperbolic maps with singularities. We turn to that next.

For a standard family G, we denote by Gn = Rn(G) its image and by
PGn = Rn(PG) the corresponding measure on Gn ⊂ Λn. The latter naturally
induces a measure P

∗
Gn

on the ‘extended set’ Λ∗
n as follows: let Πn be the map

Λ → Λ∗
n defined by [Πn(z)]i = Ri+nz; then we set P ∗

Gn
= Πn(PG). All these

measures have absolutely continuous distributions on unstable manifolds.
Lastly note that each R-invariant measure ν on Λ can be naturally lifted to
a R∗-invariant measure ν∗ on Λ∗.

Proposition 7. For every proper standard pair G, the Cesaro averages 1
n

∑n−1
i=0 PGi

weakly converge, as n → ∞, to a unique R-invariant SRB measure ν on Λ.
It is ergodic. It is either mixing or cyclically permutes K ≥ 2 components so
that RK is mixing on each one. Moreover, for each fixed m ≥ 1 the Cesaro
averages 1

n

∑n−1
i=0 π

∗
m(P∗

Gi
) weakly converge to the measure π∗

m(ν∗).

Proof. Our first observation is that the map F̃L : Ω̃L → Ω̃L is ergodic since
it is a first return map of an ergodic transformation. It may not be mixing,
though, but due to general results [17, 21] it is either mixing or cyclically
permutes K ≥ 2 components of Ω̃L (each has measure 1/K), and then F̃K

L

is mixing on each component.
Furthermore, a useful coupling lemma proved for dispersing billiards in [9,

Appendix A], see also [13, Chapter 7], can be easily adapted to the map F̃L

and give a valuable extra information. Namely, for any two standard pairs
˜̀ = (γ̃, ρ̃) and ˜̀̃ = (˜̃γ, ˜̃ρ) in Ω̃L there is a measure preserving map (coupling
map)

ζ :
(

γ̃ × [0, 1],P ˜̀× Leb
)

→
(

˜̃γ × [0, 1],P ˜̃
`
× Leb

)

and a measurable map
Υ: γ̃ × [0, 1] → N

(called coupling time map) such that if ζ(x̃, s̃) = (˜̃x, ˜̃s), then there is m =
m(x̃, ˜̃x) ∈ [0, K − 1] such that the two points

(4.5) F̃Υ(x̃,s̃)+m
L x̃ and F̃Υ(x̃,s̃)

L
˜̃x

13



belong to the same stable manifold of the map F̃L (if F̃L is mixing, then m
is always equal to 0).

This allows us to show that for any standard pairs ˜̀, ˜̀̃ and a continuous
function A on Ω̃L

(4.6)
1

n

n−1
∑

j=0

∫

A(F̃ j
Lx) dP˜̀(x) −

1

n

n−1
∑

j=0

∫

A(F̃ j
Lx) dP ˜̀̃(x) → 0.

Observe that since the two points (4.5) belong to the same stable manifold,

the points Rm̃x̃ and R ˜̃m ˜̃x belong to the same stable manifold (of the map
F̃L) for some m̃, ˜̃m ≥ 0. Thus the argument proving (4.6) also shows that

(4.7)
1

n

n−1
∑

j=0

∫

A(Rjx) dP˜̀(x) − 1

n

n−1
∑

j=0

∫

A(Rjx) dP˜̃
`
(x) → 0.

In turn, (4.7) implies that for any two standard families G̃ and ˜̃G

(4.8)
1

n

n−1
∑

j=0

∫

A(Rjx) dPG̃(x) − 1

n

n−1
∑

j=0

∫

A(Rjx) dPG̃(x) → 0.

Now take any standard family G and let ν be a limit point of Cesaro averages
1
n

∑n−1
i=0 Ri

(

PG

)

. Then ν is invariant under R and absolutely continuous with
respect to unstable leaves, hence it corresponds to a standard family G(ν).

Applying (4.8) with G̃ = G and ˜̃G = G(ν) we prove that in fact

(4.9)
1

n

n−1
∑

j=0

∫

A(Rjx) dPG(x) → ν(A).

In particular, ν is a unique R-invariant measure with smooth densities on
unstable leaves.

Moreover using the fact that the image an unstable curve is a union of
unstable curves it is not difficult to deduce from (4.9) that

(4.10)
1

n

n−1
∑

j=0

∫

φ(x)A(Rjx) dPG(x) → PG(φ)ν(A)

14



first for any piecewise constant function φ, and then for any bounded mea-
surable function φ. In particular

1

n

n−1
∑

j=0

∫

φ(x)A(Rjx) dν(x) → ν(φ)ν(A),

and thus R is ergodic with respect to ν.
Lastly, we address the mixing properties of the map R. It will be mixing

if Rk is ergodic for every k ≥ 2, see [21], otherwise the return times to the
base of Young’s tower will have a common multiple K, see [21, Lemma 5],
and then R will cyclically permute K components, on each of which RK will
be mixing. This proves the first part of Proposition 7.

The second part (involving natural extensions) follows from the first, be-
cause for every continuous function A the convergence of averages 1

n

∑

j EG(A◦
Rj) implies the convergence of 1

n

∑

j EG(A ◦ Rj−m) for every m ≥ 0. �

We note that if K ≥ 2, then all periodic points of R have periods propor-
tional to K (see [21]) and this fact can be used to check mixing of R. Given
a cell D0, if one can find two periodic points for the map R with incommen-
surate (mutually prime) periods then R is in fact mixing. We believe that
this fact can be used to prove that the advance map for BGR channel is in
fact mixing but we do not pursue this point here since mixing is not used in
the proof of our main result.

In fact the foregoing analysis gives more precise conclusions. Namely, if
the measure ν is mixing, we can replace Cesaro averages with just iterations
of PG. If K ≥ 2, we first need to average the first K iterations of our
measure: PḠ = 1

K

∑K−1
i=0 PGi

, this gives us a ‘well balanced’ initial measure
whose iterations will converge to ν. (It is clear that the average measure is
also supported by a standard family, which we denote by Ḡ.)

Corollary 8. For every proper standard pair G the measure PḠn
weakly con-

verges, as n → ∞, to ν, and for each fixed m ≥ 1 the measure π∗
m(P∗

Ḡn
)

weakly converges to π∗
m(ν∗).

Lastly, it is easy to generalize (4.1) as follows: for any proper standard
family G and any m,n ≥ 1 we have

(4.11) PG(N (Rmz) ≥ n) ≤ PG(Nan(Rmz) ≥ n) ≤ c4θ
n
4

15



and due to Proposition 7 we also have

(4.12) ν(N (Rmz) ≥ n) ≤ ν(Nan(Rmz) ≥ n) ≤ c4θ
n
4 .

(Here c4 and θ4 do not depend on m because the estimate in Proposition 5
is uniform.)

5 Proof of Theorem 1

First, for every initial point z ∈ D0 × S1 denote by τ̂ (z) the first time the
trajectory Φt(z) crosses Ω̃L and by π̂(z) = Φτ̂ (z)(z) the crossing point. Then

∣

∣q
(

ΦT (z)
)

− q
(

ΦT (π̂(z))
)
∣

∣ ≤ ψ(z),

where ψ(z) does not depend on T . Thus the limit distribution of q(T )/T will
not be affected if we replace each z with π̂(z); therefore we replace the initial
uniform distribution on D0 × S1 with its image on Ω̃L, i.e. with a smooth
probability distribution, µ0, on Ω̃L. Similarly, given a k ≥ 1 we have

∣

∣q
(

ΦT (z)
)

− q
(

ΦT (Rk(z))
)
∣

∣ ≤ ψk(z),

where ψk(z) does not depend on T . Hence the limit distribution of q(T )/T
will not be affected if we replace each z with Rk(z); thus we can replace µ0

with the average

µ̄0 =
1

K

K−1
∑

i=0

Ri(µ0).

This is also a smooth probability distribution on Ω̃L, so it can be represented
by a proper standard family G in a usual way (e.g., one can foliate Ω̃L with
unstable manifolds of the map F̃), hence µ̄0 = PG. Now, due to Corollary 8,
the measure Rn(µ̄0) = PGn converges to the SRB measure ν.

Next consider the similarity transformation Sr of the phase space M
defined by

Sr(q, v) = (q∞ + (q − q∞)r, v),

cf. (3.1); observe that Sr ◦Φt = Φrt◦Sr. We can always choose the coordinate
frame so that q∞ = 0, this will simplify our formulas.

For z ∈ Ω̃L and n ≥ 1, let τn(z) denote the continuous time elapsed
between the points z and FNn(z)(z), i.e. the time it takes the trajectory
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Φt(z) to reach the left side of the cell Dn. Observe that

τn(z) =
n−1
∑

i=0

τ1(Riz) ri = rn
n

∑

k=1

r−kτ1(R−kRnz).

Now recall that Theorem 1 assumes that lnTn = n ln r + ρ ln r + o(1), i.e.
Tn = rn+ρ+o(1). Therefore

q(Tn(z))/Tn = r−ρ q
(

S−n
r (ΦTn(z))

)

+ o(1)

= r−ρ q
(

Φr−n(Tn−τn(z))(S−n
r (FNn(z)(z)))

)

+ o(1),

because Φτn(z)(z) = FNn(z)(z). Since S−n
r (FNn(z)(z)) = Rn(z), we have

(5.1) q(Tn(z))/Tn = r−ρ q
(

Φrρ

(Φ−r−nτn(z)(Rn(z)))
)

+ o(1).

Now a change of variable Rn(z) 7→ z transforms (5.1) into

(5.2) q(Tn ◦ R−n)/Tn = r−ρ q(Φrρ ◦ Φ−wn) + o(1),

where

(5.3) wn(z) =
n

∑

k=1

r−kτ1(R−kz)

is a function defined on Λ∗
n (we recall that Λ∗

n consists of sequences Z =
{zi}∞i=−n, but here for the ease of notation we identify Z with z = z0). Note
also that our change of variable transforms PG into P

∗
Gn

on Λ∗
n.

Next, due to our finite horizon assumption and (4.11),

(5.4) PG(τ1(Rmz) ≥ M) ≤ c′4θ
M
4

for all m,M > 0 and some constant c′4 > 0, and a similar estimate holds if
we replace PG with ν, according to (4.12). Thus the terms in the sum (5.3)
decay exponentially in k, so the value of wn(z) is mostly determined by the
first few pre-images of z. In fact (5.4) implies an exponential tail bound

(5.5) P
∗
Gn

(wn(z) ≥M) ≤ c5θ
M
5

uniformly in n, and a similar bound holds if we replace P
∗
Gn

with π∗
n(P∗

Gk
) for

any k > n, or with π∗
n(ν∗).
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Also consider the ‘limit’ function

w(z) =

∞
∑

k=1

r−kτ1(R−kz),

which is well defined a.e. on Λ∗. Our tail bounds imply

ν∗
(

|w − wn ◦ π∗
n| ≥ r−nM

)

≤ c6θ
M
6

for all M > 0 and n ≥ 1, and a tail bound similar to (5.5):

ν∗(w ≥ M) ≤ c7θ
M
7 .

Theorem 1 immediately follows from the next proposition:

Proposition 9. Let A be a continuous function on R
2 with compact support.

Then, as n→ ∞, we have

(5.6) EG

(

A(q(Tn)/Tn)
)

→
∫

Λ∗
A

(

r−ρ q(Φrρ−w)
)

dν∗.

The integral here determines the limit distribution of q(Tn)/Tn; observe
its explicit dependence on ρ.

Proof of Proposition 9. According to (5.2),

(5.7) EG

(

A(q(Tn)/Tn)
)

=

∫

Λ∗
n

A
(

r−ρ q(Φrρ−wn)
)

dP∗
Gn

+ o(1).

Observe that the function wn is piecewise continuous, has countably many
domains of continuity, and may be unbounded. We will construct a nicer
approximation to wn as follows.

Our tail bounds imply that for any ε > 0 there is m ≥ 1 such that

ν∗
(

|w − wm ◦ π∗
m| > ε

)

< ε and P
∗
Gn

(

|wn − wm ◦ π∗
m| > ε

)

< ε

uniformly for all n > m. Furthermore, there exists m0 ≥ 1 (that may depend
on m) such that

ν∗
(

Nm ◦ R−m > m0

)

< ε and P
∗
Gn

(

Nm ◦ R−m > m0

)

< ε

18



uniformly for all n > m. Now define a new function on Λ∗
m:

ŵm(z) =

{

wm(z) if Nm(R−mz) ≤ m0

0 if Nm(R−mz) > m0
.

The above estimates show that we can replace both w and wn in (5.6)–(5.7)
with the new function ŵm◦π∗

m, and the errors committed by this replacement
can be made arbitrarily small by choosing an appropriate ε > 0.

Lastly, observe that the function ŵm is bounded and has finitely many
domains of continuity; more precisely, their coordinatewise projections onto
Ω̃L are domains with piecewise smooth boundary consisting of singularity
lines of the map F̃±m0 ; thus the ν∗-measure of the boundary of these domains
is zero. Now the weak convergence claimed in Corollary 8 implies

∫

Λ∗
n

A
(

r−ρ q(Φrρ−ŵm◦π∗
m)

)

dP∗
Gn

→
∫

Λ∗
A

(

r−ρ q(Φrρ−ŵm◦π∗
m)

)

dν∗

(note that Φrρ
is always continuous). This proves Proposition 9.
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