MATH642 Homework problems.

1. Let Z be the space of continuous maps $\alpha : \mathbb{R} \to \mathbb{R}$ such that $\alpha(x) - x$ is 1-periodic, that is

$$\alpha(x+1) = \alpha(x) + 1.$$

Introduce the distance on Z by

$$d(\alpha_1, \alpha_2) = \sup_{x \in \mathbb{R}} |\alpha_1(x) - \alpha_2(x)| = \sup_{x \in [0,1]} |\alpha_1(x) - \alpha_2(x)|.$$

Show that (Z, d) is a complete metric space.

2. Consider the map of \mathbb{T}^d given by $f(x) = A(x) \mod \mathbb{Z}^d$ where A is a matrix with integer entries such that $\det A \neq 0$. Show that f preserves the Lebesgue measure on \mathbb{T}^d .

3. Consider the map of \mathbb{T}^2 given by

$$f(x) = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} x \mod \mathbb{Z}^2.$$

(a) Let e_s be the eigenvector with eigenvalue less than 1. Show that if p is a periodic point then for each c the set of limit points of the forward orbit of $p + ce_s$ consists of the orbit of p.

(b) Show that there exists a point whose forward orbit is not dense and the set of its limit points is **not** a periodic orbit.

4. Let $G(x) = \{1/x\}$ be the Gauss map. Suppose that x satisfies $Ax^2 + Bx + C = 0$. Then $x_n = G^n(x)$ satisfies

$$A_n x_n^2 + B_n x_n + C_n = 0$$

where

$$A_n = Ap_{n-1}^2 + Bp_{n-1}q_{n-1} + Cq_{n-1}^2,$$

$$B_n = 2Ap_np_{n-1} + B(p_nq_{n-1} + q_np_{n-1}) + 2Cq_nq_{n-1},$$

$$C_n = Ap_n^2 + Bp_nq_n + Cq_n^2.$$

Show that

$$B_n^2 - 4A_n C_n = B^2 - 4AC.$$

5. Let $X = \mathbb{R} \cup \infty$ with natural topology (that is opens set containing ∞ contain $\{|x| > M\}$ for some M). Let $f(x) = \frac{ax+b}{cx+d}$. Describe the limit points of the orbits of f.

Hint. The answer depends on how many fixed points f has.

6. Let $\frac{p_n}{q_n}$ be the n-th partial convergent to x. That is if $G^n(x) = x_n$ then

$$x = \frac{p_{n-1}x_n + p_n}{q_{n-1}x_n + q_n}.$$

Suppose that $q_n = f_n$ -the n-th Fibonacci number. Find x.

7. Let f be the circle rotation on angle α and let $S = [0, \alpha)$. Show that the induced map on S is conjugated to rotation on angle $\{1/\alpha\}$.

8. Show that no isometry of infinite compact metric space is expansive.

9. Show that expanding maps of the circe and linear hyperbolic automorphisms of \mathbb{T}^2 are expansive.

10. Consider a linear automorphism of \mathbb{T}^2 given by $f(x) = A(x) \mod 1$. Show that if the spectrum of A lies on the unit circle, then $h_{top}(f) = 0$.

11. Let v be the eigenvector of matrix A with eigenvalue λ . Show that the following are equivalent

(i) v is the only generalized eigenvector of A with eignvalue λ and the rest of the Sp(A) is contained inside a disc of radius strictly smaller than $|\lambda|$;

and

(ii) There is a neighbourhood U(v) such that for each $u \in U$

 $\angle (A^n u, v) \to 0.$

12. Let A be the linear map of \mathbb{R}^d defined by the condition

 $A(e_i) = e_{(i+1) \mod d}$

where $\{e_i\}$ is the standard basis in \mathbb{R}^d . Show that

$$Sp(A) = \{e^{2\pi ki/d}\}_{k=0}^{d-1}$$

13. Show that Hilbert distance satisfies the triangle inequality.

14. Let ω be a fixed point of a primitive substitution. Prove that for each word W there is a limiting frequency p_W such that if $N(\omega, W, n_1, n_2)$ be the number of appearances of W in ω between places n_1 and n_2 then

$$\lim_{n_2-n_1\to+\infty}\frac{N(\omega,W,n_1,n_2)}{n_2-n_1}=p_W$$

15. Prove that there are only countably many isomorphism classes of sofic shifts.

16. (a) Show that finite unions of Lebesgue spaces is a Lebesgue space.(b) Show that finite products of Lebesgue spaces is a Lebesgue space.

17. Show that a compact manifold equipped with a smooth measure is a Lebesgue space.

18. Consider an equation $\dot{x} = X(x)$ where X is a smooth complete divergence free vector field. Define

 $B^+ = \{x : Orb^+(x) \text{ is bounded}\}, \quad B^- = \{x : Orb^-(x) \text{ is bounded}\}$

 $E^{+} = \{x : Orb^{+}(x) \text{ tends to infinity}\}, \quad E^{-} = \{x : Orb^{-}(x) \text{ tends to infinity}\}$ $O^{\pm} = \mathbb{R}^{d} - (B^{\pm} \cup E^{\pm}).$

Show that $B^- \cap O^+$, $B^+ \cap O^-$, $E^- \cap O^+$, and $E^+ \cap O^-$ have zero measure.

19. Let T be a measurable map preserving a probability measure μ . Let f be a measurable function such that $\mu(x : f(x) \neq 0) > 0$). Suppose that for almost every x we have $f(Tx) = \lambda f(x)$ for some constant λ . Show that $|\lambda| = 1$.