MATH642. COMPLEMENTS TO "INTRODUCTION TO DYNAMICAL SYSTEMS" BY M. BRIN AND G. STUCK

DMITRY DOLGOPYAT

1.3. Expanding Endomorphisms of the circle. Let $E_{10}: S^{1} \rightarrow S^{1}$ be given by $E_{10}(x)=10 x \bmod 1$.

Exercise 1. Show that there exists a point x such that E_{10}-orbit of x is neither eventually periodic nor dense.
1.5. Quadratic maps. Let $q_{\mu}(x)=\mu x(1-x)$. It has fixed points 0 and $1-\frac{1}{\mu}$. Observe that $q_{\mu}^{-1}(0)=\{0,1\}, q_{\mu}^{-1}\left(1-\frac{1}{\mu}\right)=\left\{1-\frac{1}{\mu}, \frac{1}{\mu}\right\}$.

Lemma 1. Consider the map $f: x \rightarrow a x^{2}+b x+c, a \neq 0$. Then either for all x we have $x_{n} \rightarrow \infty$ as $n \rightarrow \infty$ or f is conjugated to some $q_{\mu}, \mu>0$.

Proof. By changing coordinates $x \rightarrow-x$ if necessary we can assume that $a<0$. Then $f(x)<x$ for large $|x|$. Consider two cases
(1) $f(x)<x$ for all x. Then x_{n} is decreasing so it either has a finite limit or goes to $-\infty$. Since f has no fixed points the second alternative holds.
(2) $f(x)=x$ has two (maybe coinciding solutions) x_{1} and x_{2}. let x_{3} be the solution of $f\left(x_{3}\right)=f\left(x_{1}\right)$ and x_{4} be the solution of $f\left(x_{4}\right)=$ $f\left(x_{2}\right)$. We have

$$
x_{1}+x_{2}=-\frac{b-1}{a}, \quad x_{1}+x_{3}=-\frac{b}{a}, \quad x_{2}+x_{4}=-\frac{b}{a} .
$$

Hence $\left(x_{3}-x_{1}\right)+\left(x_{4}-x_{2}\right)=-\frac{2}{a}>0$. So either $x_{3}>x_{1}$ or $x_{4}>x_{2}$. In the first case make a change of coordinates $y=\frac{x-x_{1}}{x_{3}-x_{1}}$. In this coordintes f takes the form $y \rightarrow g(y)$ where g is quadratic with negative leading term. Also $g(0)=0, g(1)=g(0)=0$. Thus $g=q_{\mu}$ for some μ. In the second case make a change of coordinates $y=\frac{x-x_{2}}{x_{4}-x_{2}}$.

Exercise 2. Let $\mu=4$. Then $I=[0,1]$ is invariant. Show that
(a) If $x \notin I$ then $q_{4}^{n}(x) \rightarrow-\infty$.
(b) Show that the changes of variables $y=2 x-1, y=\cos z$ conjugate $\left.q_{4}\right|_{I}$ to a piecewise linear map.

Lemma 2. If $0<\mu<1 x \in \mathbb{R}$ then either
(1) $q_{\mu}^{n}(x) \rightarrow-\infty$ or
(2) $q_{\mu}^{n}(x) \rightarrow 0$ or
(3) $q_{\mu}^{n}(x)=1-\frac{1}{\mu}, n \geq 2$.

Proof. There are several cases to consider. (1) $x<1-\frac{1}{\mu}$, (2) $1-\frac{1}{\mu}<$ $x<0$, (3) $0<x<1$, (4) $1<x<\frac{1}{\mu}, x>\frac{1}{\mu}$. We consider case (2), others are similar. In this case by induction $x_{n}<x_{n+1}<0$. Let $y=\lim _{n \rightarrow \infty} x_{n}$. Then $q_{\mu}(y)=\lim _{n \rightarrow=i n f t y} x_{n+1}=y$. So y is fixed. Also $y>x_{0}>1-\frac{1}{\mu}$ since we are in case (2). It follows that $y=0$.
Exercise 3. Complete the proof of Lemma 2.
1.6 Gauss map. Let A be 2×2 matrix. Since $A(0)=0$ and A moves lines to lines, it acts on the projective line. Let P_{A} denote this action. Coordinatizing projective space, by making the coordinate of a line its intersection with $\{y=1\}$ we get

$$
P_{A}(x)=\frac{a x+b}{c x+d}, \quad x \in \mathbb{R} \bigcup\{\infty\} \quad \text { if } \quad A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) .
$$

Note that $P_{A} P_{B}=P_{A B}$.
Exercise 4. Describe the dynamics of P_{A}. When is P_{A} conjugated to a rotation?

Let $f(x)=\{1 / x\}$. Hence $x_{1}=(1 / x)-a_{1}$ for some $a_{1} \in \mathbb{N}$. Thus

$$
x=\frac{1}{a_{1}+x_{1}}=P\left(\begin{array}{cc}
0 & 1 \\
1 & a_{1}
\end{array}\right)^{x_{1}}
$$

Continuing we get

$$
x=P\left(\begin{array}{cc}
0 & 1 \\
1 & a_{1}
\end{array}\right)^{x_{1}=P}\left(\begin{array}{cc}
0 & 1 \\
1 & a_{1}
\end{array}\right)^{P}\left(\begin{array}{cc}
0 & 1 \\
1 & a_{2}
\end{array}\right)^{x_{2}=\cdots=P_{M_{n}} x_{n}}
$$

where

$$
M_{n+1}=M_{n}\left(\begin{array}{cc}
0 & 1 \\
1 & a_{n+1}
\end{array}\right) .
$$

Denoting the elements of M_{n}

$$
M_{n}=\left(\begin{array}{cc}
A_{n} & p_{n} \\
B_{n} & q_{n}
\end{array}\right)
$$

we get $A_{n}=p_{n-1}, B_{n}=q_{n-1}$ and

$$
p_{n+1}=p_{n-1}+a_{n+1} p_{n}, \quad q_{n+1}=q_{n-1}+a_{n+1} q_{n} .
$$

Exercise 5. $q_{n} \geq f_{n}$ where f_{n} is the n-th Fibonacci number.

Exercise 6. Find all x such that $q_{n}=f_{n}$.
Lemma 3. $p_{n-1} q_{n}-q_{n-1} p_{n}=(-1)^{n}$.
Proof.

$$
\operatorname{det}\left(M_{n}\right)=\prod_{j=1}^{n} \operatorname{det}\left(\begin{array}{cc}
0 & 1 \\
1 & a_{j}
\end{array}\right)
$$

Lemma 4. $\frac{p_{n}}{q_{n}} \rightarrow x, n \rightarrow \infty$. Moreover

$$
\left|x-\frac{p_{n}}{q_{n}}\right| \leq \frac{1}{q_{n}^{2}}
$$

Proof. We have

$$
\begin{array}{rlrl}
\left|x-\frac{p_{n}}{q_{n}}\right| & =\left|\frac{p_{n-1} x_{n}+p_{n}}{q_{n-1} x_{n}+q_{n}}-\frac{p_{n}}{q_{n}}\right| & =\frac{x\left|p_{n-1} q_{n}-q_{n-1} p_{n}\right|}{q_{n}\left(q_{n-1} x_{n}+q_{n}\right)} \\
& =\frac{x}{q_{n}\left(q_{n-1} x_{n}+q_{n}\right)} & & (\text { by Lemma } 3) \\
& \leq \frac{1}{q_{n}^{2}} & & \left(\text { since } \quad 0 \leq x_{n} \leq 1\right) .
\end{array}
$$

Thus for every number $|x-p / q| \leq 1 / q^{2}$ has infinitely many solutions.
Lemma 5. Suppose that x is an irrational number satisfying the quadratic equation

$$
F(x)=a x^{2}+b x+c=0
$$

with integer coefficients. When there is a constant C such that $\mid x-$ $p / q \left\lvert\, \geq \frac{C}{q^{2}}\right.$.
Proof. Consider two cases
(1) $|x-p / q|>1$. Then $|x-p / q|>1 / q^{2}$ since $q>1$.
(2) $|x-p / q| \leq 1$. Decompose $F(z)=a(z-x)(z-y)$ where y is the second root of F. Then

$$
\begin{equation*}
F\left(\frac{p}{q}\right)=\frac{a p^{2}+b p q+c q^{2}}{q^{2}} \geq \frac{1}{q^{2}} \tag{1}
\end{equation*}
$$

since the denominator is a non-zero integer. On the other hand

$$
\left|y-\frac{p}{q}\right| \leq|y|+\left|\frac{p}{q}\right| \leq|y|+|x|+1
$$

we have

$$
\begin{equation*}
\left|F\left(\frac{p}{q}\right)\right| \leq|a|\left|x-\frac{p}{q}\right|\left|y-\frac{p}{q}\right| \leq|a|\left|x-\frac{p}{q}\right|(|y|+|x|+1) \tag{2}
\end{equation*}
$$

(1) and (2) imply the result.

Exercise 7. Let x be an irational root of an equation $F(z)=a_{m} z^{m}+$ $a_{m-1} z^{m-1}+\ldots a_{1} z+a_{0}=0$. Prove that there exists a constant C such that $|x-p / q| \geq C / q^{m}$.

Lemma 3 implies

$$
\frac{p_{n}}{q_{n}}-\frac{p_{n+1}}{q_{n+1}}=\frac{(-1)^{n+1}}{q_{n} q_{n+1}} \quad \frac{p_{n+1}}{q_{n+1}}-\frac{p_{n+2}}{q_{n+2}}=\frac{(-1)^{n}}{q_{n+1} q_{n+1}}
$$

so

$$
\frac{p_{n}}{q_{n}}-\frac{p_{n+1}}{q_{n+1}}=\frac{(-1)^{n+1}}{q_{n+1}}\left(\frac{1}{q_{n}}-\frac{1}{q_{n+2}}\right) .
$$

Corollary 6. $p_{2 k} / q_{2 k}$ is increasing, $p_{2 k+1} / q_{2 k+1}$ is decreasing. In particular

$$
\frac{p_{2 k}}{q_{2 k}}<x<\frac{p_{2 k+1}}{q_{2 k+1}} .
$$

Observe that $f(0)$ is not defined.
Lemma 7. The orbit of x contains 0 if and only if x is rational.
Proof. If $x_{n}=0$ then $x=p_{n} / q_{n}$. Conversely if x is rational then $f(x)$ is rational with smaller denominator.

Theorem 1. x is eventually periodic if and only if it is a quadratic irrational.

Proof. (1) Observe that if x satisfies a quadratic equation then $a x^{2}+$ $b x+c$ then x_{n} satisfies the equation $A_{n} x_{n}^{2}+B_{n} x_{n}+C_{n}=0$ where

$$
\begin{array}{lr}
A_{n}= & a p_{n-1}^{2}+b p_{n-1} q_{n-1}+c \\
B_{n}= & 2 a p_{n-1} p_{n}+b\left(p_{n-1} q_{n}+q_{n-1} p_{n}\right)+2 c q_{n-1} q_{n} \\
C_{n}= & a p_{n}^{2}+b p_{n} q_{n}+c
\end{array}
$$

We claim that A_{n}, B_{n} and C_{n} are uniformly bounded so they must eventually repeat giving eventual periodicity of x. Indeed using the notation of Lemma 5 we get

$$
\begin{align*}
\left|C_{n}\right| & =q_{n}^{2}|F(p / q)|=q_{n}^{2}|a||x-p / q||y-p / q| \\
& \leq q_{n}^{2}|a|(|y|+1)|x-p / q| \tag{|x|<1}\\
& \leq|a|(|y|+1) \tag{Lemma5}
\end{align*}
$$

Likewise $\left|A_{n}\right| \leq|a|(|y|+1)$.
Exercise 8. Show (e.g. by induction) that $b^{2}-4 a c=B_{n}^{2}-4 A_{n} C_{n}$.
Hence

$$
\left|B_{n}\right| \leq \sqrt{\left|b^{2}-4 a c\right|+4 a^{2}(|y|+1)^{2}}
$$

Thus x is eventually periodic.
(2) If x is periodic then for some n

$$
x=\frac{p_{n-1} x+p_{n}}{q_{n-1} x+q_{n}} .
$$

Hence x satisfies the equation

$$
q_{n-1} x^{2}+\left(q_{n}-p_{n-1}\right) x-p_{n}=0 .
$$

Next if

$$
x=\frac{p_{m-1} y+p_{m}}{q_{m-1} y+q_{m}}
$$

with y periodic then y satisfies a quadratic equation an a computation similar to the one done part (1) shows that x satisfies a quadratic equation as well.

5.12 Markov partitions.

Exercise 9. Show that any linear hyperbolic automorhism of \mathbb{T}^{2} has a Markov partition.

Exercise 10. Show that no Markov partition of \mathbb{T}^{2} gives a full shift.
Hint. Compare periodic points.

2.4 Expansive transformations.

Exercise 11. Show that no isometry of infinite compact metric space is expansive.

2.8 Applications of topological dynamics.

Exercise 12. Let $T_{1}, T_{2} \ldots T_{N}$ be commuting homeomorphisms of a compact metrix space X. Prove that there exist $x \in X$ and a sequence $n_{k} \rightarrow \infty$ such that $d\left(x, T_{j}^{n_{k}} x\right) \rightarrow 0$ for all j.

Hint. Let $F(x)=\inf _{n \geq 1} \max _{j} d\left(x, T_{j} x\right)$. Let $A_{\varepsilon}=\{F<\varepsilon\}$. Show that A_{ε} is open and dense.
3.3 The Perron-Frobenius Theorem. A subset $K \subset$ reals d is called a cone if for any $v \in K, \lambda>0 \lambda v \in K$. Let K be a convex closed cone satisfying
(K1) $K \bigcap(-K)=\{0\}$ and
(K2) Any vector u in \mathbb{R}^{d} can be represented as $u=v_{1}-v_{2}$ with $v_{j} \in K$.

Lemma 8. Any line l containing points inside K intersects the boundary of K.

Proof. Take two points $v, u \in K \bigcap K$. Then $l=\left\{z_{t}=t u+(1-t) v\right\}$. Rewrite $z_{t}=v+t(u-v)$. Let $z_{t} \in K$ for all positive t. Since K is a cone, $(v / t)+u-v \in K$ and since K is closed $u-v \in K$. Likewise if $z_{t} \in K$ for all negative t then $v-u \in K$. By (K2) both inclusions can not be true.

Let \tilde{K} be a subset of the $\mathbb{R P}^{d-1}$ consisting of directions having representatives in K. Define a distance on \tilde{K} as follows. If $\tilde{u}_{1}, \tilde{u}_{2}$ are rays in K choose $b \in \tilde{u}_{1}, c \in u_{2}$ and let l be the line through b and c. Let a and d be the points where l crosses the boundary of K such that a, b, c, d is the correct order on this line and let t be an affine parameter on l. Define

$$
d_{K}\left(u_{1}, u_{2}\right)=\ln \left(\frac{\left(t_{c}-t_{a}\right)\left(t_{d}-t_{b}\right)}{\left(t_{b}-t_{a}\right)\left(t_{d}-t_{c}\right)}\right) .
$$

To see that this distance correctly defined it is enough to consider the case of the plane since d_{K} only depends on the section of K be the plane containing u_{1} and u_{2}. Now let v_{1} and v_{2} are two vectors on the boundary of the cone and u is a vector on the line joining v_{1} and v_{2}. Thus $u=t v_{1}+(1-t) v_{2}$. Now if we consider another line say through v_{1}^{\prime} and v_{2}^{\prime} then this line crosses the ray through u at a point $\bar{u}=s v_{1}^{\prime}+(1-s) v_{2}^{\prime}$. Denoting by \times the vector product we get

$$
\left(v_{2}+t\left(v_{1}-v_{2}\right)\right) \times\left(v_{2}^{\prime}+s\left(v_{1}^{\prime}-v_{2}^{\prime}\right)\right)=0
$$

Thus

$$
s=\frac{v_{2}^{\prime} \times\left(v_{2}+t\left(v_{1}-v_{2}\right)\right)}{\left(v_{2}+t\left(v_{1}-v_{2}\right)\right) \times\left(v_{1}^{\prime}-v_{2}^{\prime}\right)} .
$$

That is, the map between the affine parameters corresponding to different lines is fractional linear. Since fractional linear maps preserve the cross ratio d_{K} is correctly defined.

Exercise 13. Let K be the cone of vecors with non-negative components and

$$
K_{L}=\left\{u \in K: \max _{i} u_{i} \leq L \min _{i} u_{i} .\right\}
$$

Show that K_{L} has finite d_{K}-diameter.
Theorem 2. Let A be a matrix with positive entries. Then
(a) A has a positive eigenvalue λ;
(b) The corresponding eigenvector v is positive;
(c) All other eigenvalues have absolute value less than λ;
(d) There are no other positive eigenvectors.

Lemma 9. Let P_{A} be the projecive transformation defined by A. Then there exists $\tilde{v} \in \tilde{K}$ and $\theta<1$ such that $P_{A}(\tilde{v})=\tilde{v}$ and for all $\tilde{u} \in \tilde{K}$

$$
\begin{equation*}
\operatorname{dist}\left(P_{A}^{n} \tilde{u}, \tilde{v}\right) \leq \operatorname{Const} \theta^{n} \tag{3}
\end{equation*}
$$

Proof of Theorem 2. Let \tilde{v} be as in Lemma 9 and v be a positive vector projecting to \tilde{v}. Then $P_{A}(\tilde{v})=(\tilde{v})$ means that $A(v)=\lambda(v)$, so A has positive eigenvector. Take i such that $v_{i} \neq 0$. Then $\lambda=(A v)_{i} / v_{i}$ is positive. Also it v^{\prime} is another positive eigenvector then $P_{A}\left(\tilde{v}^{\prime}\right)=\left(\tilde{v}^{\prime}\right)$ contradicting Lemma 9, so there are no other positive eigenvectors.

We can assume without the loss of generality that $\|v\|=1$. Next we claim that for for all $u \in \mathbb{R}^{d}$ there exist the limit

$$
\begin{equation*}
l(u)=\lim _{n \rightarrow \infty} \frac{\left\|A^{n}(u)\right\|}{\lambda^{n}} \tag{4}
\end{equation*}
$$

and moreover

$$
\begin{equation*}
\left\|A^{n} u-l(u) \lambda^{n} v\right\| \leq \text { Const } \lambda^{n} \theta^{n} \tag{5}
\end{equation*}
$$

Indeed assume first that $u \in K$. denote $S(\tilde{u})=\frac{\|A u\|}{\|u\|}$ (this definition is clearly independent of the choice of the vector projecting to \tilde{u}. We have

$$
\begin{gathered}
\left\|A^{n} u\right\|=\|u\| \prod_{j=0}^{n-1} \frac{\left\|A^{j+1} u\right\|}{\left\|A^{j} u\right\|}=\|u\| \prod_{j=0}^{n-1} S\left(P_{A}^{j}(u)\right) \\
=\left(\|u\| \lambda^{n}\right) \prod_{j=0}^{n-1} \frac{S\left(P_{A}^{j}(u)\right)}{S(v)}=\left(\|u\| \lambda^{n}\right) \exp \left[\sum_{j=0}^{n-1}\left(\ln S\left(P_{A}^{j}(u)\right)-\ln S(v)\right)\right] .
\end{gathered}
$$

Since S is Lipshitz we have

$$
\begin{equation*}
\left|\ln S\left(P_{A}^{j}(u)\right)-\ln S(v)\right| \leq \mathrm{Const} \theta^{j} \tag{6}
\end{equation*}
$$

which proves (4) with $l(u)=\|u\| \prod_{j=0}^{\infty}$. Moreover the exponential convergence of (6) implies $\left\|A^{n} u\right\|=l(u) \lambda^{n}\left(1+O\left(\theta^{n}\right)\right)$. Now by Lemma 9 we have

$$
\frac{A^{n} u}{\left\|A^{n} u\right\|}=v+O\left(\theta^{n}\right)
$$

This proofs (5) for positive vectors. Now (5) in general case follows by (K2). From the properties of limit it follows that l is a linear functional. Let $L=\operatorname{Ker}(l)$. Then L is $d-1$ dimensional hypersurface and since $l(A(u))=\lambda l(u), L$ is A-invariant. Thus all other eigenvectors lie in L. It follows from (5) that

$$
\left\|\left.A^{n}\right|_{L}\right\| \leq \operatorname{Const} \lambda^{n} \theta^{n}
$$

so all eigenvalues are less than $\lambda \theta$ in asbsolute value.

Proof of Lemma 9. For any u in K we have

$$
\min _{i j} A_{i j} \max _{j} u_{j} \leq(A u)_{i} \leq d \max _{i j} A_{i j} \max _{j} u_{j}
$$

so $A(u) \in K_{L}$ with $L=d \frac{\max _{i j} A_{i j}}{\min _{i j} A_{i j}}$. Now K_{L} is compact in both dist and d_{K} metrics so it is enough to establish (3) for d_{K}.

Lemma 10. Given D there exists $\theta<1$ such that for and d for any linear map $A: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$, such that $A(K) \subset K$ and $P_{A}(\tilde{K})$ has diameter less than D in $\tilde{K} d\left(P_{A} \tilde{v}_{1}, P_{A} \tilde{v}_{2}\right) \leq \theta d\left(\tilde{v}_{1}, \tilde{v}_{2}\right)$.

Proof of Lemma 10. Since the definition of $d_{K}\left(\tilde{v}_{1}, \tilde{v}_{2}\right)$ deepends only on the section of K by the plane through v_{1} and v_{2} it is enough to establish the result for linear map from plane to plane. Now on the plane we can use y / x as a coordinate for the point (x, y). In this case $\tilde{K}=[0, \infty]$ and P_{A} is a fractional linear transformation. Also for $z_{1}<z_{2}$

$$
\begin{equation*}
d_{K}\left(z_{1}, z_{2}\right)=\ln \left(\frac{z_{2}-0}{z_{1}-0} \lim _{z \rightarrow \infty} \frac{z_{1}-z}{z_{2}-z}\right)=\ln \frac{z_{2}}{z_{1}}=\int_{z_{1}}^{z_{2}} \frac{d z}{z} \tag{7}
\end{equation*}
$$

So we have to prove that any fractional linear transformation s from $[0, \infty]$ to itself such that $s(\infty) / s(0)<e^{D}$ contracts distance (7) by a factor which depoends only on D. Since dilations preserve (7) we can assume that $s(\infty)=1$ thus we have

$$
w:=s(z)=\frac{z+a}{z+b}
$$

with $a / b>e^{-K}$. We have

$$
\frac{d w}{d z}=\frac{b-a}{(z+b)^{2}}
$$

so that

$$
\frac{d w}{w}=\frac{z(b-a)}{(z+a)(z+b)} \frac{d z}{z}
$$

But

$$
\frac{z(b-a)}{(z+a)(z+b)} \leq \frac{b-a}{b}<1-e^{-D} .
$$

It follows that

$$
\begin{aligned}
& d_{K}\left(s\left(z_{1}\right), s\left(z_{2}\right)\right)=\int_{w_{1}}^{w^{2}} \frac{d w}{w}=\int_{z_{1}}^{z_{2}} \frac{z}{w} \frac{d w}{d z} \frac{d z}{z} \\
& <\left(1-e^{-D}\right) \int_{z_{1}}^{z_{2}} \frac{d z}{z}<\left(1-e^{-D}\right) d\left(z_{1}, z_{2}\right)
\end{aligned}
$$

(3) follows from Lemma 10 and contraction mapping principle.

Theorem 3. Let A be the matrix with non-negative entries such that for all i, j there exists n such that $A_{i j}^{n}>0$. Then there exist lambda >0 and c such that
(a) $\lambda e^{2 \pi i r / c}$ are eigenvalues of A.
(b) A^{c} has c linearly independent positive eigenvectors with eigenvalues λ^{c}.
(c) All other eigenvalues have absolute value less than λ
(d) There are no other positive eigenvectors.

Proof. Let $Z_{i j}=\left\{n: A_{i j}^{n}>0\right.$. Observe that $Z_{i j}+Z_{j k} \subset Z_{i k}$ in particular $Z_{i i}$ are semigroups.

Lemma 11. If $a, b \in Z_{i i}$ let $q=\operatorname{gcd}(a, b)$. Then for large $N N q \in Z_{i i}$.
Proof. We have $q=m a-n b$ for some $m, n \in \mathbb{N}$. Write $N=L b+k$ then $N q=(L q-n) b+m k a$.

Corollary 12. Let c_{i} be the greatest common divisor of all numbers in $Z_{i i}$. Then $Z_{i i}=c_{i} \mathbb{N}$-finitely many numbers.

Proof. Let $c_{i}^{(1)}$ be any number in $Z_{i i}$. Then $c_{i}^{(1)} \mathbb{N}$ is in $Z_{i i}$ and if there are no other numbers in $Z_{i i}$ then we are done. Otherwise if $b_{i}^{(1)} \in Z_{i i}-c_{i}^{(1)} \mathbb{N}$ then let $c_{i}^{(2)}=\operatorname{gcd}\left(c_{i}^{(1)}, b_{i}^{(1)}\right)$. Then $c_{i}^{(2)} \mathbb{N}-$ a finite set is in $Z_{i i}$ and if there are no other numbers in $Z_{i i}$ then we are done. Otherwise if $b_{2}^{(1)} \in Z_{i i}-c_{i}^{(2)} \mathbb{N}$ then let $c_{i}^{(3)}=\operatorname{gcd}\left(c_{i}^{(2)}, b_{i}^{(2)}\right)$ etc. Since $c_{i}^{(k)}$ is decreasing it must stabilize.

Lemma 13. (a) Any two numbers in $Z_{i j}$ are comparable mod c_{i}.
(b) Any two numbers in $Z_{j i}$ are comparable $\bmod c_{i}$.
(c) $c_{i}=c$ do not depend on i.

Proof. (a) Let $n^{\prime}, n^{\prime \prime} \in Z_{i j}, n \in Z_{j i}, m \in Z_{j j}$ then $n+n^{\prime}=n+n^{\prime \prime}=$ $n+n^{\prime}+m \bmod c_{i}$. This prove (a) and (c). (b) is similar to (a).

Let $V_{m}=\left\{i: Z_{1 i}=m \bmod c\right\}, L_{m}=\operatorname{span}\left(e_{i}, i \in V_{m}\right\}$. Then There exists N such that $A_{i j}^{N}>0$ if and only if i and j belong to the same V_{m}. Thus by Theorem $2 A^{N}$ has uniques eigenvector v_{1} on L_{1} with positive eigenvalue ν. Let $v_{i}=A^{i-1} v_{1}$. Since A commutes with A^{N} v_{i} are eigenvectors of A^{N} and since A has non-negative entries v_{i} are non-negative. Also $v_{i} \in L_{i \bmod c}$. In particular by uniqueness of the positve eigenvector $A^{c} v_{1}=\bar{\nu} v_{1}$. Let $\lambda=\bar{\nu}^{1 / c}$. Then $A^{c}\left(v_{i}\right)=\lambda^{c}\left(v_{i}\right)$. Let $w_{r}=\sum_{j=1}^{c} \frac{e^{-2 \pi i j r / c}}{\lambda^{j}} v_{j}$. Then $A w_{r}=e^{2 \pi j r / c} w_{r}$. Finally by Theorem 2 all other eigenvalues of A^{N} are less than $\nu=\lambda^{N}$ in absolute value. Theorem 3 is proven.

4.10 Weak Mixing.

Let U be a unitary operator and ϕ be a unit vector. Let

$$
R_{n}=<U^{n} \phi, \phi>
$$

Lemma 14. There is a probability measure σ_{ϕ} on $[0,1]$ such that

$$
R_{n}=\int e^{2 \pi i u} d \sigma(u)
$$

Proof. For $0<\rho<1$ let

$$
f(u, \rho)=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} R_{n-m} e^{2 \pi i(m-n)} \rho^{n+m}
$$

Since $R_{n-m}=<U^{n} \phi, U^{m} \phi>$ it follows that

$$
f(u, \rho)=\left\|\sum_{n} \rho^{n} e^{-2 \pi i u} U^{n} \phi\right\|^{2}
$$

is a real positive number. Estimateing terms in () by their absolute values we get $|f| \leq(1-\rho)^{-2}$. Thus $f \in L^{\infty}(d u) \subset L^{2}(d u)$. Let us examine its Fourier series. We have

$$
f=\sum_{k} R_{k} e^{-2 \pi i u} \sum_{m} \rho^{k+2 m}=\sum_{k} e^{-2 \pi k} R_{k} \rho^{k}\left(1-\rho^{2}\right)^{-1} .
$$

Consider measures

$$
d \sigma_{\rho}=\left(1-\rho^{2}\right) f(u, \rho) d u
$$

We have

$$
\int e^{2 \pi i u} d \sigma_{\rho}(u)=R_{k} \rho^{k}
$$

Hence as $\rho \rightarrow 1$

$$
\int e^{2 \pi i u} d \sigma_{\rho}(u) \rightarrow R_{k}
$$

Since linear combinattions of $e^{2 \pi i u}$ are dense in $C\left(S^{1}\right)$ it follows that for any continuous function A

$$
\int A(u) d \sigma_{\rho}(u) \rightarrow \sigma(A)
$$

Exercise 14. Consider a full two shift with Bernoulli measure (that is the measure of each cylinder of size n is $\left.(1 / 2)^{n}\right)$ and let

$$
\phi(x)=\sqrt{2}\left(I_{x_{0}=1, x_{1}=1}-I_{x_{0}=0, x_{1}=0}\right) .
$$

Find the spectral measure of ϕ with respect to $U(\phi)=\phi(\sigma x)$.

Exercise 15. Let $\Phi_{n}(u)=\frac{1}{n^{2}} \sum_{j, k=1}^{n} e^{2 \pi i(j-k) u}$. Show that $\Phi_{n}(u) \rightarrow 0$, if $u \neq 0$ (and $\left.\Phi_{n}(0)=1\right)$.

5.1 Expanding endomorphisms.

Let $f: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ be a map such that $\left|f^{\prime}\right| \geq \theta^{-1}$ for some $\theta<1$. We call such map expanding. Given any diffeomorphism of \mathbb{S}^{1} let $\bar{g}: \mathbb{R} \rightarrow \mathbb{R}$ be its lift, that is $\pi \circ \bar{g}=g \circ \pi$, where $\pi: \mathbb{R} \rightarrow \mathbb{S}^{1}$ is the natural projection. Define $\operatorname{deg}(g)=\bar{g}(x+1)-\bar{g}(x)$ (this number is easily seen to be independent of x and the lift $\bar{g})$. Let L be the space of maps $\bar{\tau}: \mathbb{R}^{1} \rightarrow \mathbb{R}^{1}$ which are lifts of degree 1 maps. That is $\bar{\tau}-x$ is periodic. We endow L with the distance

$$
d\left(\bar{\tau}_{1}, \bar{\tau}_{2}\right)=\sup _{x \in \mathbb{R}}\left|\bar{\tau}_{1}(x)-\bar{\tau}_{2}(x)\right|=\max _{x \in[0,1]}\left|\bar{\tau}_{1}(x)-\bar{\tau}_{2}(x)\right| .
$$

Lemma 15. Let f be an expanding map and g be a map of the same degree. Then given any two lifts \bar{f} and \bar{g} there is unique $\bar{\tau} \in L$ such that $\bar{f} \circ \bar{\tau}=\bar{\tau} \circ \bar{g}$.
Proof. $\bar{\tau}$ must satisfy $\bar{\tau}(x)=\bar{f}^{-1}(\bar{\tau}(\bar{g}(x)))$. Define $\mathcal{K}: L \rightarrow L$ by $\mathcal{K}(\bar{\tau})(x)=\bar{f}^{-1}(\bar{\tau}(\bar{g}(x)))$. Since f is expanding it follows from the Intermidiate Value Theorem that $\left|\bar{f}^{-1}\left(x_{1}\right)-\bar{f}^{-1}\left(x_{2}\right)\right| \leq \theta\left|x_{1}-x_{2}\right|$. Hence $d\left(\mathcal{K}\left(\bar{\tau}_{1}\right), \mathcal{K}\left(\bar{\tau}_{1}\right)\right) \leq \theta d\left(\bar{\tau}_{1}, \bar{\tau}_{2}\right)$. Now the result follows from the contraction mapping principle.

Theorem 4. Any two expanding maps of the same degree are topologically conjugated.
Proof. Let \bar{f}_{1} and \bar{f}_{2} be lifts of two expanding maps. By Lemma 15 there are maps $\bar{\tau}_{1}, \bar{\tau}_{2}$ such that $\bar{\tau}_{1} \circ \bar{f}_{1}=\bar{f}_{2} \circ \bar{\tau}_{1}$ and $\bar{\tau}_{2} \circ \bar{f}_{2}=\bar{f}_{1} \circ \bar{\tau}_{2}$. Let $\bar{\tau}=\bar{\tau}_{2} \circ \bar{\tau}_{1}$. Then $\bar{\tau} \circ \bar{f}_{1}=\bar{f}_{1} \circ \bar{\tau}$. By uniquesness part of Lemma 15 $\bar{\tau}_{2} \circ \bar{\tau}_{1}=$ id. Likewise $\bar{\tau}_{1} \circ \bar{\tau}_{2}=\mathrm{id}$.

Exercise 16. Show that this conjugacy is typically NOT C^{1}.

