
CHAPTER 3. THE COMPLETENESS THEOREM

1. Introduction

In this Chapter we prove Gödel’s Completeness Theorem for first order
logic.

Theorem 1.1. (Completeness Theorem) Let Σ ⊆ SnL.

(a) Σ is satisfiable iff Σ is consistent.
(b) For any θ ∈ SnL, Σ ⊢ θ iff Σ |= θ.

By Soundness (Theorem 8.2 in Chapter 2) we know the left to right
implications of both (a) and (b). Recall also Lemma 6.2 and Theorem 9.4
from Chapter 2 which assert that Σ |= θ iff (Σ∪ {¬θ}) is not satisfiable and
that Σ ⊢ θ iff (Σ ∪ {¬θ}) is not consistent. Therefore part (b) of Theorem
1.1 follows from part (a). So it suffices the establish the following result.

Theorem 1.2. (Model Existence) Let Σ ⊆ SnL be consistent. Then Σ is
satisfiable, (i.e., Σ has a model).

As in sentential logic the argument for Theorem 1.2 will involve maximal
consistent sets of sentences (see below), but we will have to expand the orig-
inal consistent set by “adding witnesses”, a novel and important technique
introduced by Leon Henkin in 1949.

The following definition is verbally the same as in sentential logic.

Definition 1.1. A set Γ ⊆ SnL is maximal consistent iff it is consistent
and for every θ ∈ SnL either θ ∈ Γ or ¬θ ∈ Γ.

The lemma allowing us to extend consistent sets to maximal consistent
sets is stated and proved exactly as in sentential logic.

Lemma 1.1. Let Σ ⊆ SnL be consistent and let θ ∈ SnL. Then either
(Σ ∪ {θ}) or (Σ ∪ {¬θ}) is consistent.

We next note that Finiteness is established exactly as for sentential logic.

Theorem 1.3. Let Σ ⊆ SnL.

(a) For any θ ∈ SnL, Σ ⊢ θ iff there is some finite Σ0 ⊆ Σ such that
Σ0 ⊢ θ.

(b) Σ is consistent iff every finite Σ0 ⊆ σ is consistent.

Finally the result on the existence of maximal consistent sets, due to
Lindenbaum, is also stated and proved just as in sentential logic.

Theorem 1.4. Let Σ ⊆ SnL be consistent. Then there is some maximal
consistent Γ ⊆ SnL such that Σ ⊆ Γ.
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Note that Γ is not usually uniquely determined by Σ. For example, if both
Σ ∪ {θ} and Σ ∪ {¬θ} are consistent, then there will be maximal consistent
sets Γ1 containing Σ ∪ {θ} and Γ2 containing Σ ∪ {¬θ}.

2. Adding “Witnesses”

In sentential logic we could define a (unique) truth assignment from a
maximal consistent set Γ and then show that it satisfied Γ. In first order
logic, however, a maximal consistent set does not determine any structure –
to determine a structure we need to know what the universe of the structure
is and how the non-logical symbols of the language are interpreted on this
set.

Given a consistent set Σ ⊆ SnL, we first expand the language L to L′

by adding constant symbols ci and find a maximal consistent set Γ ⊆ SnL′

which also has the property that for every formula ψ(x) of L′, ∀xψ(x) ∈ Γ
iff ψ(ci) ∈ Γ for every i. We will then be able to define an L′-structure A′

such that every element of the universe is named by some constant sysmbol
and which satisfies Γ.

To simplify the presentation we assume that the only non-logical symbol
of the langauge L is a binary relation symbol R. We start with a consistent
set Σ ⊆ SnL. We define the language L′ = L∪{c1 : i ∈ N}. The consistency
of Σ is not affected by this change since the set Σ says nothing about the
added constants.

We next list all formulas of L′ with just one free variable as
ψ1(x), ψ2(x), . . . , ψn(x), . . . for all n ∈ N.

(The formulas need not have the same free variable; we use x for whatever
the free variable in question is). We define a sequence of sets of sentences
of L′, beginning with Σ, as follows:

let ci1 be the first constant not appearing in ψ1(x), let θ1 be (∃xψ1(x) →
ψ1(ci1), and let Σ1 = Σ ∪ {θ1}. We claim that Σ1 is consistent. Otherwise,
Σ ⊢ ¬θ1, hence Σ ⊢ ∃xψ1(x) and Σ ⊢ ¬ψ1(ci1). But then, by Generalization
on Constants (Theorem 9.3 in Chapter 2), we would have Σ ⊢ ∀x¬ψ1(x),
and so Σ is inconsistent (remembering that ∃x means ¬∀x¬).

We continue in this way, at the nth stage adding some sentence θn of the
form ∃xψn(x) → ψn(cin) to obtain a consistent set Σn. By Theorem 1.3 the
union of all of these sets is a consistent set Σ′.

Now we apply Theorem 1.4 to obtain a maximal consistent Γ ⊆ SnL′ such
that Σ′ ⊆ Γ.

We claim that Γ has the following properties:

(i) for every θ ∈ SnL, ¬θ ∈ Γ iff θ /∈ Γ,
(ii) for every ϕ, θ ∈ SnL, (ϕ→ θ) ∈ Γ iff either ¬ϕ ∈ Γ or θ ∈ Γ,
(iii) for every ψ(x) ∈ FmL, ∀xψ(x) ∈ Γ iff ψ(cn) ∈ Γ for every n ∈ N.

This claim is easily proved using the following Lemma.

Lemma 2.1. Let Γ be maximal consistent. Then for any sentence θ, θ ∈ Γ
iff Γ ⊢ θ.
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3. Defining a Structure from Γ

So, given Γ obtained as in the preceding section, we define an L′-structure
A′ from Γ as follows:

the universe A′ of the structure is N;
cn

A′

= n for every n ∈ N;
RA′

(k, n) holds iff R(ck, cn) ∈ Γ.
We obtain the following result.

Theorem 3.1. Let Γ and A′ be as above Then for every sentence θ of L′

in which = does not occur, A′ |= θ iff θ ∈ Γ.

Proof. (outline) We prove this by induction. The base case is R(ck, cn),

which holds due to the definition of RA′

. The inductive steps for the con-
nectives are clear from parts (i) and (ii) of the Claim at the end of the
preceding section. The inductive step for ∀ is clear from part (iii) of the

Claim and the fact that A′ = N = {cn
A′

: n ∈ N}. �

To define a structure which will also model the sentences in Γ which
contain = we need to allow for the possibility that ck = cn ∈ Γ for some
k 6= n. We choose the logical axioms for = to guarantee that Γ has the
following additional properties:

(iv) ck = ck ∈ Γ, if ck = cn ∈ Γ then cn = ck ∈ Γ, and if ck = cn, cn =
cm ∈ Γ then ck = cm ∈ Γ;

(v) if R(ck, cn), ck = cl, and cn = cm ∈ Γ then R(cl, cm) ∈ Γ.

We define a structure B′ as follows:
the universe B′ of B′ is {k ∈ N : ck 6= cl ∈ Γ for all l < k}:

cn
B′

is the least k such that (ck = cn) ∈ Γ;

RB′

(k, l) holds iff R(ck, cl) ∈ Γ.
We then have the following, proved like Theorem 3.1 using the additional

properties (iv) and (v) to check that equality statements in Γ are true in B′.

Theorem 3.2. For every θ ∈ SnL′. B′ |= θ iff θ ∈ Γ.

Since Σ ⊆ Γ we have shown that the original Σ has a model, establishing
Theorem 1.2.

Example. We illustrate the Henkin method with a simplified example. Let
Σ = {∀y∃xR(y, x)}. Instead of listing all formulas ψ(x) of L′ we consider
only the formulas ψn(x) defined as R(cn, x). Then θ1 is (∃xR(c1, x) →
R(c1, c2)), and in general θn is (∃xR(cn, x) → R(cn, cn+1)), so Σ′ is

{∀y∃x(R(x, y)} ∪ {(∃xR(cn, x) → R(cn, cn+1)) : n ∈ N}.
Now let Γ ⊆ SnL′ be maximal consistent and contain Σ′. Then Γ ⊢

∃xR(cn, x) for every n ∈ N (since (∀y∃xR(y, x) → ∃xR(cn, x)) is an instance
of Axiom 2). Therefore Γ ⊢ R(cn, cn+1), and so R(cn, cn+1) ∈ Γ by Lemma
2.1, for every n ∈ N. Thus A′ |= ∀y∃xR(y, x), as desired, since A′ = N.
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4. The Compactness Theorem

Just as in Sentential Logic, the Compactness Theorem is an immediate
consequnce of Finiteness and the Completeness Theorem.

Theorem 4.1. (Compactness Theorem) Let Σ be a set of sentences of L.

(a) If Σ |= ϕ then there is some finite Σ0 ⊆ Σ such that Σ0 |= ϕ.
(b) If every finite Σ0 ⊆ Σ has a model then Σ has a model.

This result has many amazing applications and is of fundamental impor-
tance to the research area of Model Theory. We give two examples.

Theorem 4.2. Let θ ∈ SnL. Assume that A |= θ for every A with an
infinite universe A. Then there is some integer n such that A |= θ for every
A whose universe A contains at least n elements.

Proof. For every k ∈ N there is a sentence σk which holds of a structure iff the
universe of the structure contains at least k elements. Let Σ = {σk : k ∈ N}.
Then A |= Σ iff the universe of A is infinite. Therefore the hypothesis of the
Theorem implies that Σ |= θ. By Compactness there is some finite Σ0 ⊆ Σ
such that Σ0 |= θ. There must be a largest integer n such that σn ∈ Σ0, and
this n is then as desired. �

Theorem 4.3. Let L be the language whose only non-logical symbol is a
binary relation symbol <. Let A be the L-structure (N, <). Then there is
some B = (B,<B) such that B |= θ for every θ true on A, but B contains
“infinite” elements, that is elements b with infinitely many elements in B
preceding it in the order <B.

Proof. For every n ∈ N there is a formula ϕn(x) of L which holds of an
element iff there are at least n elements preceding it. Let c be a constant
symbol and let L′ = L ∪ {c}. We define the set Σ of L′-sentences as

{θ ∈ SnL : A |= θ} ∪ {ϕn(c) : n ∈ N}.

If B′ |= Σ then B = (B′, <B′

) is as desired, since cB
′

is an “infinite” element
of B′. Every finite Σ0 ⊆ Σ has a model A′ = (N, <, n0) where n0 is a
sufficiently large element of N, so Σ has a model by Compactness. �


