
Project 5C

Our goal is to develop algorithms to solve the following typeof “data assimilation” problem. Suppose

we have a differential equation model of the form

d~x
dt

=~f(~x,~c)

where~x is a vector representing the “state” of a system and~c is a vector of parameters. Suppose there

is a solution of the model that we will call the “truth”, but wedon’t know the initial conditions nor the

parameters for this true solution. What we do know are some measurements of the system at various times;

mathematically, suppose we have an observing system of the form

~y(t) = ~h(~x(t)) + ~ε(t), ~ε ∼ N(0, R),

where~ε represents normally distributed measurement errors (withcovariance matrixR) and~h is a function

that expresses the measured quantities in terms of the system state, and we are given the vector of obser-

vations~y at timestn. The problem is to estimate the true system state~x(tn) and the parameters~c from the

sequence of measurements~y(t1),~y(t2), . . .~y(tn), and to do this in “real time”, so that when~y(tn+1) be-

comes available, we estimate~x(tn+1) using our previous estimate of~x(tn) rather than solving the problem

from scratch.

A specific model we will work with is a system of differential equations formulated by meteorologist

Edward Lorenz in 1995:
dxk

dt
= (xk+1 − xk−2)xk−1 − xk + ck

wherek runs from1 to N and indices are taken moduloN ; that is,x
−1 = xN−1, x0 = xN , andxN+1 = x1.

Typically N is on the order of100 and the parametersck are on the order of10 (usuallyck is taken to be

independent ofk). An observing system will be

yk(t) = xk(t) + εk(t)

but the measurements will be given only for some values ofk; part of the problem will be to infer values

for coordinates of the state vector~x that are never measured directly. Goals will include seeing how well

you can estimate~x when you have plenty of high-quality measurements, how much measurement noise your

methods can withstand, how few observations you can get by with, how large anN you can handle, etc.

We’ll start with a simpler model, namely

xn+1 = axn + δn, δn ∼ N(0, b)

with observations of the form

yn = xn + εn, εn ∼ N(0, r).

Your first task will be to learn and apply the Kalman Filter in this scenario to optimally estimatexn from

y1, y2, . . . , yn. Some data will be given to you to start with, but as we go alongyou will start to generate

your own test data sets for your models and algorithms.


