
Eric Slud, Stat 430 Fall 2008

Simple Linear Regression — Formulas & Theory

The purpose of this handout is to serve as a reference for some stan-
dard theoretical material in simple linear regression. As a text reference,
you should consult either the Simple Linear Regression chapter of your Stat
400/401 (eg the currently used book of Devore) or other calculus-based statis-
tics textbook (e.g., anything titled ‘Engineering Statistics’), or a standard
book on Linear Regression like

Draper, N. and Smith, H. (1981) Applied Linear Regression,
2nd edition. John Wiley: New York.

The model is

Yi = a0 + b0Xi + εi, 1 ≤ i ≤ n, εi
iid∼ N (0, σ2) (1)

where the constant real parameters (a0, b0, σ
2
0) are unknown. The pa-

rameters (a, b) are estimated by maximum likelihood, which in the case
of normally distributed iid errors as assumed here is equivalent to choos-
ing a, b in terms of {(Xi, Yi)}n

i=1 by least squares, i.e. to minimize∑n
i=1 (Yi − a − bXi)

2, which results in:

b̂ =
s.cov(X,Y )

s.var(X)
=

sXY

s2
X

, â = Ȳ − b̂X̄ (2)

where

X̄ =
1

n

n∑

i=1

Xi , Ȳ =
1

n

n∑

i=1

Yi , s2
X =

1

n − 1

n∑

i=1

(Xi − X̄)2

and

s2
Y =

1

n − 1

n∑

i=1

(Yi − Ȳ )2 , sXY =
1

n − 1

n∑

i=1

(Yi − Ȳ )(Xi − X̄)

The predictors and residuals for the observed responses Yi are given
respectively by

Predictori = Ŷi = â + b̂Xi , Residuali = ε̂i = Yi − Ŷi
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The standard (unbiased) estimator of σ2 is the Mean Residual Sum of
Squares (per degree of freedom) given by

σ̂2 = MRSS =
1

n − 2

n∑

i=1

(Yi − Ŷi)
2

Confidence intervals for estimated parameters are all based on the fact
that the least squares estimates â, b̂ and the corresponding predictors of (the
mean of) Yi are linear combinations of the independent normally distributed
variables εj, j = 1, . . . , n, and the general formula for any sequence of
constants uj, j = 1, . . . , n,

n∑

j=1

uj εj ∼ N (0 , σ2
n∑

j=1

u2
j) (3)

We use this formula below with various choices for the vector u = {uj}n
j=1.

Under the model (1), with true parameters (a0, b0, σ
2
0), we first calculate

from (2) that

b̂ − b0 =

∑n
j=1 {Yj − Ȳ − b0(Xj − X̄)}(Xj − X̄)

∑n
j=1 (Xj − X̄)2

=
1

(n − 1) s2
X

n∑

j=1

(εj + a0 + b0X̄ − Ȳ )(Xj − X̄) =
n∑

j=1

cj εj

(since
∑n

j=1 (Xj − X̄) = 0), where

cj =
Xj − X̄

(n − 1)s2
X

with sum of squares

∑n
j=1(Xj − X̄)2

(n − 1)2 s4
X

=
1

(n − 1)s2
X

Therefore, by (3), we have

b̂ − b0 =
n∑

j=1

Xj − X̄

(n − 1) s2
X

εj ∼ N
(
0,

σ2

(n − 1)s2
X

)
(4)

Next, using

â − a0 = Ȳ − b̂X̄ − a0 =
1

n

n∑

j=1

(εj − (b̂ − b0) X̄) =
n∑

j=1

uj εj
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where

uj =
1

n
− X̄(Xj − X̄)

(n − 1)s2
X

with sum of squares
1

n
+

X̄2

(n − 1) s2
X

we find

â− a0 =
n∑

j=1

(1

n
− X̄(Xj − X̄)

(n − 1) s2
X

)
εj ∼ N

(
0, σ2{1

n
+

X̄2

(n − 1)s2
X

}
)
(5)

Similarly,

â − a0 + (b̂ − b0)Xi =
n∑

j=1

(1

n
+

(Xi − X̄)(Xj − X̄)

(n − 1) s2
X

)
εj (6)

∼ N
(
0, σ2

{1

n
+

(Xi − X̄)2

(n − 1) s2
X

})

and finally

Yi − â − b̂Xi =
n∑

j=1

(
δji − 1

n
− (Xi − X̄)(Xj − X̄)

(n − 1) s2
X

)
εj (7)

∼ N
(
0, σ2

{
1 − 1

n
− (Xi − X̄)2

(n − 1)s2
X

})

where in the last display we have used the Kronecker delta δji defined equal
to 1 if i = j and equal to 0 otherwise.

A further item of theoretical background is the expression of the sum of
squared errors in a form allowing us to find that it is independent of b̂ and
is distributed as a constant times χ2

n−2. For that, note first that

SSE =
n∑

j=1

(Yj − â− b̂Xj)
2 =

n∑

j=1

(
(Yj − Ȳ ) − b̂(Xj − X̄)

)2
(8)

We used this equation in class to show, by expanding the square in the last
summation, that

SSE = (n − 1) s2
Y (1 − r̂2) , r̂ =

sXY

sX sY

= b̂
sX

sY
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Continuing with the formula (8) for SSE, we find via (4) that with uj = cj =
(Xj − X̄)/((n − 1)s2

X),

SSE =
n∑

j=1

(εj − ε̄ − (b̂ − b0)(Xj − X̄))2

=
n∑

j=1

(
εj − ε̄ − (Xj − X̄)

n∑

k=1

Xk − X̄

(n − 1)s2
X

εk

)2

=
n∑

j=1

(εj − ε̄)2 − 1

(n − 1) s2
X

( n∑

j=1

εj (Xj − X̄)
)2

= e′
(
I − 1

n
11′ − (n − 1)s2

Xcc′
)
e (9)

where ε̄ = n−1 ∑n
j=1 εj and e denotes the n-vector with components εj.

Since the (jointly) normally distributed variables c′e and ε̄ = 1′e/n and
the components of (I − 1

n
11′ − (n− 1)s2

Xcc′)e are uncorrelated, they are
actually independent, and the quadratic form (9) can be proved to have the
property

SSE

σ2
0

= (n − 2)
σ̂2

σ2
0

∼ χ2
n−2 (10)

An important aspect of this proof is the observation that the matrix
M = I − 1

n
11′ − (n−1)s2

Xcc′ is a projection matrix, that is, is symmetric
and idempotent , which means that M2 = M , and the quadratic form (9) is
equal to (Me)′ (Me). The independence of (â, b̂) and Me is confirmed
by checking that the covariances are 0:

Cov(Me, 1′e) = σ2
0 M1 = 0 , Cov(Me, c′e) = σ2

0 Mc = 0

The independence of (â, b̂) and σ̂2 then immediately implies, by definition
of the t-distribution, that

(b̂ − b0)
√

n − 1
sX

σ̂
∼ tn−2 ,

â− a0

σ̂

{1

n
+

X̄2

(n − 1) s2
X

}−1/2
∼ tn−2

(11)
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Finally, we turn to the definitions of confidence intervals and the CLM
and CLI confidence and prediction intervals constructed and plotted by SAS.
The main ingredient needed in the justification of these is the result (11)
just proved. The confidence and prediction intervals say that each of the
following statements has probability 1 − α under the model (1):

b0 ∈ b̂ ± tn−2,α/2

σ̂

sX

√
n − 1

(12)

a0 ∈ â ± tn−2,α/2 σ̂
(1

n
+

1

(n − 1)s2
X

)1/2
(13)

a0 + b0X0 ∈ â + b̂X0 ± tn−2,α/2 σ̂
(1

n
+

(X0 − X̄)2

(n − 1)s2
X

)1/2
(14)

Yi ∈ â + b̂Xi ± tn−2,α/2 σ̂
(
1 − 1

n
− (Xi − X̄)2

(n − 1)s2
X

)1/2
(15)

The confidence intervals (12) and (13) are exactly as used by SAS in
determining p-values for the significance of coefficients a, b (in testing the
respective null hyptheses that b = 0 or that a = 0.) The interval (14) is
what SAS calculates in generating the CLM upper and lower confidence limits
that it calculates and plots at location Xi either within PROC GPLOT or PROC
REG. The interval (15) is only a retrospective prediction interval within which
we should have found Yi with respect to its predictor Ŷi but it is NOT what
SAS calculates in generating the CLI upper and lower individual-observation
prediction limits at location Xi either within PROC GPLOT or PROC REG.

Prediction intervals are meant to capture not the observations
already seen but rather any new observations Y ′

i which would be
collected at the previous locations Xi or at brand-new locations
X0 . So we discuss next the corrected formula for prediction
interval which SAS actually calculates.

We are interested sometimes, especially as part of diagnostic checking
and model-building, in making prediction intervals for values Y0 (not yet
observed) corresponding to values X0 which were not in fact part of the
dataset. The thing to understand is that formula (15) is not applicable to
this situation because it refers to observations Yi which were already used
as part of the model-fitting that resulted in â, b̂. If Y0 = a0 + b0X0 + ε0

with a0, b0 the same as before but with ε0 ∼ N (0, σ2
0) independent of all
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the data already used, then

Y0 − â − b̂X0 ∼ N
(
0 , σ2

{
1 +

1

n
+

(X0 − X̄)2

(n − 1) s2
X

})
(16)

and with probability 1 − α,

Y0 ∈ â + b̂X0 ± tn−2,α σ̂
(
1 +

1

n
+

(X0 − X̄)2

(n − 1) s2
X

)1/2
(17)

So when we make prediction intervals for brand-new points not observed in
the dataset, we use formula (17). Once more, to re-cap and correct a
previous mis-statement: formula (17) not (15) is the one which
SAS uses in calculating prediction intervals for Proc Reg output
files with keywords L95 or U95 or which Proc GPLOT plots using
the I=RLCLI95 symbol declaration option.
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