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Estimating N release from climate warming
Assuming that (1) annual heterotrophic respiration in unmanipulated tundra is roughly
equal to total plant production (150 gCm22 yr21) as it is in many mature ecosystems, (2)
that soil respiration responds to temperature change with a Q10 of 2, and (3) the depth-
weighted average C:N ratio of SOM is 26 (Supplementary Information), then the
projected 3 8C temperature increase1 should result in themineralization of 7 gNm22 yr21.
A 7 8C temperature increase should result in themineralization of 9.4 gNm22 yr21. This is
a conservative estimate of temperature stimulation of N release because respiration in soils
from cold regions tends to be highly sensitive to temperature, often responding to
temperature change with Q10 values greater than 2 (ref. 30). Nevertheless, these simple
calculations show that our rate of N addition is similar in magnitude to potential N release
from climate warming.
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Some Pacific island societies, such as those of Easter Island and
Mangareva, inadvertently contributed to their own collapse by
causing massive deforestation1–7. Others retained forest cover
and survived3,8,9. How can those fateful differences be explained?
Although the answers undoubtedly involve both different cul-
tural responses of peoples and different susceptibilities of
environments, how can one determine which environmental
factors predispose towards deforestation and which towards
replacement of native trees with useful introduced tree species?
Here we code European-contact conditions and nine environ-
mental variables for 81 sites on 69 Pacific islands from Yap in the
west to Easter in the east, and from Hawaii in the north to New
Zealand in the south. We thereby detect statistical decreases in
deforestation and/or forest replacement with island rainfall,
elevation, area, volcanic ash fallout, Asian dust transport and
makatea terrain (uplifted reef), and increases with latitude, age
and isolation. Comparative analyses of deforestation therefore
lend themselves to much more detailed interpretations than
previously possible. These results might be relevant to similar
deforestation-associated collapses (for example, Fertile Crescent,
Maya and Anasazi) or the lack thereof (Japan and highland New
Guinea) elsewhere in the world.
All Pacific islands suitable for agriculture were occupied before

European arrival by colonists originating ultimately from Asia,
mostly in a wave of Polynesians and their Lapita ancestors from
1200 BC to AD 1200 (refs 2, 10, 11). They cleared land and cut trees,
especially for agriculture, timber and fuel. Early European visitors
observed that forest cover varied greatly between islands, from
totally deforestedwith almost all original tree species extinct (Easter,
Necker and Nihoa) to extensive forests (Samoa, Taveuni and
Bismarck Archipelago). Forests seen by early Europeans also varied
greatly in composition, from ones still dominated by native species
to others whose native species had been largely replaced by intro-
duced species valuable for arboriculture.
From accounts of early European visitors, we coded five-point

scales for deforestation (in which 1 represented virtually no de-
forestation and 5 complete deforestation) and for forest replace-
ment (in which 1 represented virtually no replacement and 5
complete replacement) (see Methods and Supplementary Table S1
for details). Deforestation and replacement proved to be correlated,
but they measure different things and the correlation is not tight
(Spearman correlation r ¼ 0.43, p , 0.001, in our data set of 81
entries). For 12 of our 69 islands we coded two different locations on
the island (usually windward and leeward coasts) because of very
different rainfall values often associated with different degrees of
deforestation. Thus, our full data set had 69 þ 12 ¼ 81 entries. We
also analysed a reduced data set of 69 entries, which excluded 12
large islands of northern Melanesia and New Zealand, because we
wondered whether those 12 islands might be driving some con-
clusions, but results were similar.
We performed four types of statistical analysis (see Methods) for

both data sets, relating our two outcome variables (deforestation
and replacement) to nine independent variables discussed below.
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The first statistical analysis was the calculation of bivariate Spear-
man correlations (Supplementary Tables S2–S6), and the corre-
sponding bivariate regression coefficients, among the two outcomes
and the nine independent variables. The second analyses were
multivariate regression analyses12, to take account of correlations
among the independent variables. The third were multivariate tree
models to divide the data, by recursive binary partitioning based on
potentially more than one independent variable, into groups each
homogenous in outcome value within the group but maximally
contrasting in outcome value between groups13. Unlikemultivariate
analysis, this approach seeks sets of explanatory variables that might
interact conditionally instead of acting independently. The last
analysis was the examination of residuals (actual values minus
model-predicted values) from the best-fit multiple regression and
tree models, to identify data points fitted poorly by the models
and thereby suggesting other explanatory factors besides those
incorporated into the models.
Tables 1 and 2 summarize the results of the first three types of

statistical analysis. (Conclusions drawn from residuals are men-
tioned in the text below.) Signs of significant effects were mostly
consistent between the analysis types. Effects on deforestation and
on forest replacement had the same sign for six independent
variables and opposite signs for one variable (latitude), whereas
makatea and dust significantly affected forest replacement but not
deforestation.
We now explain each independent variable whose possible role

we had proposed at the outset, and the results for that variable. Two
variables—rainfall, and latitude as a surrogate for temperature—
were chosen because rainfall and temperature are primary determi-
nants of plant growth rates. We reasoned that deforestation

should be less severe in areas where tree regrowth rates can keep
pace with logging rates. A third variable, makatea, was chosen for
reasons given below. Three variables—island age, volcanic ash fall-
out and Asian dust fallout—were proposed to influence soil nutrient
levels; regrowth is rapid on nutrient-rich soils (but those are also the
soils preferred by farmers). The remaining three variables—
elevation, area and distance—were proposed to have multiple
indirect effects.

High rainfall was inversely associated with deforestation in all
analyses (Table 1), and with replacement in one analysis (Table 2).
That is, dry islands were more likely than wet islands to end up
deforested. On 8 of the 12 islands for whichwe separately coded two
locations, one location was much drier and also more deforested
than the other, thereby offering a controlled natural experiment
within an island. These effects are as expected; rainfall is often the
most important single determinant of plant growth rates. In
addition, low rainfall increases forest vulnerability to fire and
hence to the formation of deforested grassland and fernland14.

Deforestation increased with latitude in all analyses, as expected
from the decrease in temperature and hence in plant growth rates
with latitude. In contrast, forest replacement decreased with lati-
tude, undoubtedly because two of the most important introduced
trees (breadfruit and Tahitian chestnut) are tropical species whose
cultivation decreases with latitude.

Parts of 7 of our 69 islands consist of a terrain called makatea.
This uplifted reef formation of sharp, fissured coral bears little soil
and is painfully difficult to walk on. Not surprisingly, all seven
islands provide controlled natural experiments: makatea terrain
retained forests, whereas non-makatea terrain became deforested.
Our statistical analysis therefore showed low forest replacement

Table 1 Significant predictors of deforestation

Independent variable Bivariate regression Multivariate regression Tree

81 69 81, A 69 81, no A 81 69
...................................................................................................................................................................................................................................................................................................................................................................

Rainfall (log) 21.9*** 21.6*** 21.3*** 21.3*** 21.03** 2, 1 2, 3
Latitude þ0.066*** þ0.092*** þ0.034** þ0.07*** þ0.03* þ, 2 þ, 1
Makatea
Age þ0.53† þ0.53† þ0.29† þ, 2
Tephra 20.46*** 20.37*** 20.61† 20.79* 2, 3
Dust
Elevation (log) 20.42* 20.25† 20.45** 20.46**
Area (log) 20.31** 20.24† 20.26*** 2, 2
Distance (log) þ0.22*** þ0.18† þ0.20† 2, 3
Variance accounted for 0.62 0.75 0.59 0.65 0.72
...................................................................................................................................................................................................................................................................................................................................................................

The Methods section explains the nine independent variables and the bivariate regression, multivariate regression and multivariate tree analyses. Numbers in the two bivariate columns are bivariate
regression coefficients; numbers in the multivariate columns are the corresponding multivariate regression coefficients. The signs in the tree columns are the sign of the relationship between deforestation
and that independent variable; numbers in the tree columns denote the sequence in which predictor variables enter the tree (earlier-entering predictors, with lower numbers, are more important). Levels of
statistical significance are as follows: ***,P , 0.0001; **, P , 0.001; *,P , 0.01; †, P , 0.05. Cells left blank failed to reach significance at P , 0.05. We used as alternatives a full data set of 81 entries
and a reduced data set with 69 of those entries (numbers ‘81’ and ‘69’ in the first row). Multivariate regression of the full set with all nine independent variables (81,A) was repeated after dropping area
as an independent variable (81, no A); that repetition was unnecessary for the 69-entry set because area proved not to be a significant predictor of deforestation in that set.

Table 2 Significant predictors of forest replacement

Independent variable Bivariate regression Multivariate regression Tree

81 69 81, A 69, A 81, no A 69, no A 81 69
...................................................................................................................................................................................................................................................................................................................................................................

Rainfall (log) 20.45†
Latitude 20.03** 20.03* 20.04*** 20.03†
Makatea 21.0† 21.88*** 21.45**
Age þ0.49* þ0.56*** 20.27* þ0.27† 20.32* 20.21‡
Tephra 20.58*** 20.34*** 20.72*** 20.48*** 20.94*** 20.74*** 2, 2 2, 2
Dust 20.003*** 20.002*** 20.002*** 20.001‡ 20.002*** 20.002**
Elevation (log) 20.84*** 20.45*** 20.58† 20.28† 21.2*** 20.96***
Area (log) 20.63*** 20.43*** 20.28* 20.27* 21, 2 2, 1
Distance (log) þ0.18* þ0.15† þ0.15† þ0.12§
Variance accounted for 0.86 0.73 0.84 0.73 0.74 0.67
...................................................................................................................................................................................................................................................................................................................................................................

As Table 1, but for forest replacement instead of deforestation. Levels of statistical significance are as follows: ***, P , 0.0001; **, P , 0.001; *, P , 0.01; †, P , 0.05; ‡, P ¼ 0.06; §, P ¼ 0.07. Cells left
blank failed to reach significance at P , 0.05.
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associated with makatea, which is difficult to use for arboriculture.
Our first three types of statistical analysis failed to show a significant
association between makatea and deforestation, probably because
the signal from just seven islands was too weak to emerge statisti-
cally in the whole data set. However, that association did appear
in our statistical residuals: two of our islands with the highest
percentage ofmakatea (Makatea Island andNiue) had the highest or
nearly the highest negative residuals in both the multiple regression
and tree analyses; that is, they were less deforested than expected just
from effects of our other independent variables.

Island or terrain age is relevant because soil nutrients become lost
from volcanic surfaces with time, especially by rain leaching15,16.
This effect, too, emerges from controlled natural experiments
within islands: on Easter Island the oldest surface, the Poike
Peninsula, became deforested several centuries before the younger
remainder of the island7. In our statistical analyses deforestation
increased with age, but the relation of forest replacement to age was
inconsistent.

Those lost soil nutrients might become restored in three ways:
volcanic ash fallout (aerial tephra), continental dust fallout and
nesting seabird guano. The so-called Andesite line divides Pacific
islands geographically into two groups: those whose volcanoes eject
tephra carried by winds for up to 1,000 km and those whose
volcanoes instead release lava with little aerial tephra. We did not
realize this effect when we began our project, and it provided the
biggest surprise: islands west of or near the Andesite line (that is, in
or near the zone of aerial tephras) emerged with lower deforestation
and forest replacement in all our types of non-residual statistical
analyses.

Soil nutrients are also replenished by dust carried eastwards in the
atmosphere from Central Asia15–17. That dust fallout declines east-
wards and southeastwards in the Pacific. Forest replacement
decreased with increasing dust fallout. (We suspect a role of
correlated geographical factors rather than of dust itself.) We
could not detect an effect of dust on deforestation, but it might
help to explain why our two islands farthest from Central Asia and
hence with the lowest dust fallout, Easter and Mangareva, had
among the largest positive residuals from our multiple regression
model (that is, more deforested than predicted by our best-fit
model).

Elevation was inversely associated with deforestation and forest
replacement: high islands supported more forest and more native
trees than low islands. This effect also emerges from natural
experiments: virtually all high islands are forested with native
trees at high elevation, even if they are deforested or support mainly
introduced trees at low elevation. At least four factors are probably
involved: orographic rain is generated at high elevations, descends
in streams and thus makes the lowlands effectively wetter than
indicated by lowland rainfall; nutrients and soil eroded at high
elevation are similarly carried in streams to the lowlands; oro-
graphic rain captures atmospheric dust; and agriculture (hence land
clearance) decreases with elevation because of cool temperatures
(unfavourable for tropical crops), steep slopes and difficult access.

Area was inversely associated with deforestation and forest
replacement: large islands retained more forest and more native
tree species than small islands. Multiple factors probably contribute,
including the fact that larger islands have greater habitat and tree
species diversity (hence higher likelihood of some species being
spared from logging), tracts of inaccessible land, and lower per-
imeter/area ratios (hence fewer coastal resources to support human
population).

Distance (isolation from other islands) was positively associated
in multiple regression analyses with deforestation and forest
replacement, which tended to be most severe on remote islands.
Reasons might include people on islands near other islands having
the options of emigrating, trading or raiding instead of staying at
home and having an impact on the forests, and low diversity in tree

species on remote islands decreasing the likelihood of any tree
species being spared.
We can now reconsider why Easter Island4 suffered almost the

most extreme deforestation and consequent social and population
collapse of any Pacific island, even though the Polynesians who
colonized Easter colonized hundreds of other islands without
wreaking such extreme impacts. Our study suggests part of the
answer to be Easter’s extreme environmental fragility predisposing
towards deforestation: of our 69 islands, it has the lowest tephra and
dust fallout, the second greatest isolation and third highest latitude
and no makatea, and is relatively low, small and dry. On the basis of
those independent variables, our multiple regression and tree
models predict correctly that Easter should have the third highest
deforestation score, exceeded only by Necker and Nihoa, which also
ended up completely deforested. That is, Easter’s collapse was not
because its people were especially improvident but because they
faced one of the Pacific’s most fragile environments.
Finally, we note seven avenues for refining our analysis. First,

effects of island age, tephra fallout and dust fallout interact in a
complex manner with rainfall: for example, nutrient leaching with
age, and hence nutrient replenishment by tephra or dust, should be
more significant on wetter islands16. Second, our measures of
tephra, dust and age should be refined. Third, we lack a measure
of nutrient inputs in seabird guano. Fourth, large-scale deforesta-
tion in the continental moist tropics can reduce convection and
rainfall and thus cause positive feedback on the initial deforestation
rate, but it is uncertain whether the same cycle operates on small
islands. Fifth, a possible role of time since first colonization should
be reconsidered; our preliminary analysis failed to detect a role.
Sixth, although we have examined contributions of environmental
differences to differences in deforestation and replacement, social
differences surely also contribute, as Kirch discussed3. Indeed, our
residual analyses suggest this conclusion: Tikopia and Tonga, whose
societies Kirch noted as employing especially effective protective
measures against deforestation, had two of the most negative
residuals unexplained by our regression equations based solely on
environmental factors, whereas Mangareva—cited by Kirch to
illustrate ineffective social measures—had one of the highest posi-
tive residuals. Easter also had a high positive residual, which might
reflect social pressures driving deforestation for transporting its
famous stone statues. Last, our analysis could be extended to other
societies, elsewhere in the world, noted either for deforestation or
lack thereof; we think that we can discern straightforward exten-
sions to the Anasazi, Japan, highland New Guinea, the Fertile
Crescent and other cases1,6,8,9. A

Methods
Values of the variables
The variables used are shown in Supplementary Table S1. Deforestation was scored on a
five-point scale. A score of 1 represented no deforestation (no examples in our database;
sole Pacific examples are some islands abandoned long ago or never settled by humans). A
score of 2 meant densely forested; primary forests at higher elevation or on very steep
slopes; mainly secondary forests with some introduced species at low elevations; no fire-
associated vegetation. A score of 3 was as for 2 but with mainly introduced species in
lowland secondary forests; much fire-associated grassland/fernland on ridges, slopes, and
plateaus. A score of 4 indicated largely deforested; forests mainly on coastal plain, valley
floors, and very steep slopes; fire-associated grassland/fernland covering all ridges and
most slopes and plateaus. A score of 5 represented almost completely deforested; fire-
associated grassland/fernland covering almost all areas not used as cropland.

Forest replacement was also scored on a five-point scale. A score of 1 indicated that
introduced tree species comprised less than 10% of all tree individuals; 2, introduced tree
species comprised 25–50% of forest tree individuals up to 600m and less than 10% above
600m; 3, introduced tree species comprised 50–75% of forest tree individuals up to 600m
and less than 10% above 600m, with less land above 600m than islands with a score of 2; 4,
as 3 but introduced tree species comprised 75–100% of forest tree individuals up to 600m;
5, there were few trees, and forest was mostly replaced by grasses and shrubs.

Sources for assessing deforestation and forest replacement were the earliest available
first-hand descriptions by European visitors to each island (usually in the early-contact
period), supplemented by paleoecological studies (pollen analysis).

We began with two alternative values for A (area) andD (distance): A of the individual
island, or of all islands within 50 km; and D to nearest high island whose area is more than
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25%, ormore than 75%, ofA of the target island.We then discarded the secondmeasure in
each case because of its high correlation with the first measure (r ¼ 0.94 for the A
measures; r ¼ 0.66 for the D measures).

Lowland rainfall values were taken from atlases, journal articles, technical reports and
other sources. Windward and leeward coasts were coded separately on 12 islands.

Our data table lists latitudes of island midpoints north or south of the Equator, but
initial analyses showed no differences between effects of latitudes north or south; our
subsequent analyses therefore used the absolute value of latitude without regard to
whether north or south.

Makatea surface area as a percentage of total island surface area was estimated from
geological maps.

Ages of volcanic rocks on islands were coded as follows: 1, young (less than 20,000 yr
old); 2, intermediate (20,000–1,000,000 yr old); 3, old (more than 1,000,000 yr old); X, no
exposed volcanic rock. These cutoffs were chosen on the basis of rates of nutrient leaching
from volcanic rocks16. Islands formed from mosaics of terrains of different ages were
assigned average values: for example, old islands with some young lava flows were scored
(3 þ 1)/2 ¼ 2. Sources were journal articles based on K–Ar dating of volcanic rock.

Aerial tephra fallout was scored as follows: 1, low (islands more than 1,000 km east of
the Andesite line); 2, moderate (islands east of the Andesite line but within 1,000 km of it);
3, high (islands west of the Andesite line).

Asian dust fallout values were taken or interpolated from refs 16 and 17 plus comments
by J. Prospero.

Statistical analyses
Bivariate Spearman correlation coefficients, associated probability values (P) and the
corresponding bivariate regression coefficients were calculated between the two outcome
variables and nine independent variables.

Multivariate regression of each outcome variable on the independent variables
employed robust linear regression methods12 that minimized the absolute unsigned
difference (not the squared difference) between observed and model-predicted values to
yield least absolute deviation estimates of regression coefficients. We employed this
method because the outcome variables are scored on a five-point scale and do not follow a
gaussian distribution. Conventional multiple regression that instead minimizes the
squared difference is in principle best for continuous measures and gaussian distributions;
however, in practice robust and conventional multiple regression yielded virtually
identical final models for our data sets (Supplementary Table S7). Initially, all independent
variables were included in the model, and then variables with P . 0.15 were eliminated
iteratively by backwards stepdown robust regression. Variables retained in the final models
had P # 0.05, or P , 0.0001 in half of the cases. Log transforms were made on A, D,
elevation and rainfall to obtain distributions more symmetrical and much closer to
gaussian. These transformations also created a more linear relation to the outcomes.

Whereas multivariate regression assumes effects of independent variables to be linear,
additive and non-interacting, the classification tree method does not make those
assumptions and thus lends itself to detecting possible interactions13. Recursive binary
partitioning is used to predict outcome scores by creating a tree consisting of groups of
data points with outcome scores as different as possible between groups, and as similar as
possible within groups. Each value of each independent variable is used to split the data
into two groups provisionally, and that independent variable value is selected that creates
the largest between-group difference relative to within-group variability. The process is
repeated, splitting each such group into two further groups, until the final groups are
‘pure’ (all outcome values identical), sample sizes within a group are too small (less than
five), and/or the mean difference between groups is not significant at the P , 0.1 level. In
practice, all of our groups differed at least at P , 0.03, and usually at P , 0.0001. Variables
entering the tree at earlier (higher) steps are more important than those entering at later
(lower) steps.

Before reporting ‘final’ multiple regression and tree models for each data set (full or
reduced) with or without A as an independent variable, we calculated model-predicted
values of the two outcome variables at each data point, and computed and examined each
residual value (predicted value minus actual value). Histograms and normal probability
plots of these residual values showed that these errors had a bivariate symmetric unimodal
distribution, demonstrating that the robust parametric approach was reasonable despite
our semiquantitative deforestation and replacement scales.

For further details see Supplementary Methods.
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Sperm competition occurs when a female copulates with two or
more males and the sperm of those males compete within the
female’s reproductive tract to fertilize her eggs1,2. The frequent
occurrence of sperm competition has forced males of many
species to develop different strategies to overcome the sperm of
competing males1,3. A prevalent strategy is for males to increase
their sperm investment (total number of sperm allocated by a
male to a particular female) after detecting a risk of sperm
competition1,3,4. It has been shown that the proportion of
sperm that one male contributes to the sperm pool of a female
is correlated with the proportion of offspring sired by that
male5,6. Therefore, by increasing his sperm investment a male
may bias a potential sperm competition in his favour5,7,8. Here we
show that male meadow voles, Microtus pennsylvanicus, increase
their sperm investment when they mate in the presence of
another male’s odours. Such an increase in sperm investment
does not occur by augmenting the frequency of ejaculations, but
by increasing the amount of sperm in a similar number of
ejaculations.

Increases in sperm investment in response to a risk of sperm
competition have been reported in many groups of animals, such as
insects9,10, fish11 and birds12. In mammals, similar reports are only
indirect, in that risk of sperm competition was cued by the fact that
males had not guarded the female before copulatory behaviour13,14.
Although mate guarding is an evolutionary response to minimize
the risk of sperm competition, males ultimately assess particular
risks of sperm competition in relation to other conspecific males5.
Malesmay directly determine if anothermale has recently copulated
with a particular female, for example, by detecting the presence of
semen in her reproductive tract15. Often, however, a male may not
know whether a female has copulated previously or whether a
female will copulate with other males after he abandons her. In such
cases, the most obvious way for a male to assess the risk of sperm
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