1. [20] Find the area of the region enclosed by the curve \(r = \sqrt{\sin \theta} \).
2. [20] Let D be the region in the uv plane bounded by $u = v^2$ and $u = v + 2$. Let S be the surface parameterized by $\mathbf{r}(u,v) = (u + v)\mathbf{i} + (u - v)\mathbf{j} + 2v\mathbf{k}$ for (u,v) in D. Find the surface area of S.
3. [40] Let D be the region in the first octant inside the sphere $x^2 + y^2 + z^2 = 16$ and outside the cylinder $x^2 + y^2 = 4$. Suppose D has mass density $\delta(x, y, z) = (x + 2y)z$. Write down, but do not evaluate, integrals giving the total mass of D
 a) in rectangular coordinates.
 b) in cylindrical coordinates.
 c) in spherical coordinates.
4. [20] Let \(R \) be the region bounded by the lines \(2x - y = 1, 2x - y = 2, x = 2y, \) and \(\frac{x - 2y}{2x - y} = \pi/2. \) Find
\[
\int \int_R (2x - y) \sin \left(\frac{x - 2y}{2x - y} \right) dA
\]