1. [25] Let C be the line segment from $(1, 2, 3)$ to $(4, 0, 2)$.
 a) Find $\int_C x \, dy$.

 b) Find $\int_C x \, ds$.

 HONOR PLEDGE: I pledge on my honor that I have not given or received any unauthorized assistance on this examination.

 Signature __
2. [25] Let \(\mathbf{F}(x, y, z) = (3y + yze^{xz})\mathbf{i} + (3x + e^{xz})\mathbf{j} + yxe^{xz}\mathbf{k} \).

a) Show that \(\mathbf{F} \) is conservative.

b) Calculate \(\int_{C} \mathbf{F} \cdot d\mathbf{r} \) where \(C \) is the curve parameterized by
\[\mathbf{r}(t) = (t^2 - \sqrt{3 + t^2})\mathbf{i} - t\cos(\pi t)\mathbf{j} + (t^6 - 1)\mathbf{k} \] for \(-1 \leq t \leq 1\).

c) Calculate \(\int_{C} \mathbf{F} \cdot d\mathbf{r} \) where \(C \) is the circle in the plane \(z = 3 \) with center \((1, 2, 3)\) and radius 4, oriented clockwise when viewed from above.
3. [25] Let R be the region bounded by the paraboloids $y = 2x^2 + 2z^2$ and $y = 12 - x^2 - z^2$.
Let $\mathbf{F}(x, y, z) = \sin(yz)\mathbf{i} + (z - y)\mathbf{j} + e^{xy}\mathbf{k}$. Let Σ be the boundary of R, oriented outwards.
Calculate $\iint_{\Sigma} \mathbf{F} \cdot \mathbf{n} \, dS$.

4. [25] Let Σ be the portion of the paraboloid $z = x^2 + y^2$ below the plane $z = x$. Let $\mathbf{F}(x, y, z) = xy^2 \mathbf{i} - z^2 \mathbf{j} + e^z \mathbf{k}$.

a) Without using Stokes' Theorem, set up (but do not evaluate) $\int \int_\Sigma \text{curl} \mathbf{F} \cdot \mathbf{n} \, dS$.

b) Evaluate $\int \int_\Sigma \text{curl} \mathbf{F} \cdot \mathbf{n} \, dS$ by any (correct) method you wish.