1. (15) Find the volume of the parallelepiped determined by the vectors $(0, 1, 3)$, $(1, 2, -1)$, and $(2, 5, 7)$. Or, if you wish, for extra credit you may find the 4 dimensional volume of the 4 dimensional parallelepiped determined by the vectors $(0, 1, 3, 7)$, $(1, 2, -1, 0)$, $(0, 0, 2, 6)$ and $(2, 5, 7, 1)$ in \mathbb{R}^4.

2. (20) Suppose A is a matrix with row echelon form

$$\begin{pmatrix}
1 & 3 & 4 & 5 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

a) How many solutions x are there to $Ax = (1, 2, 3)^T$?

b) Does A have an inverse? If so, what is it, if not, why not?

c) Find all solutions to $Ax = 0$.

3. (20) Let $S \subset \mathbb{R}_{2 \times 2}$ be the set of upper triangular matrices.

a) Show that S is a subspace of $\mathbb{R}_{2 \times 2}$.

b) Find v_1, v_2, v_3 so that $S = \text{Span}\{v_1, v_2, v_3\}$.

4. (20) We’ll call a square matrix P a projection matrix if $P^2 = P$. Suppose P is a projection matrix and let $Q = I - P$.

a) Show that Q is a projection matrix also.

b) Let $a = (3, -4)^T \in \mathbb{R}_{2 \times 1}$. Find $\text{proj}_a(1, 2)$, the projection of $(1, 2)$ to a.

c) Find a matrix M so that $Mb = \text{proj}_a b$ for all vectors $b \in \mathbb{R}_{2 \times 1}$.

d) Show that your matrix M is a projection matrix.

5. (25) Short answer. A and B are nonsingular 7×7 matrices. Answer any five of the following six questions. Be sure to clearly indicate which ones you are answering.

a) $(AB)^{-1} =$

b) $((A^T - 2B)(I + B))^T =$ (Multiply out and simplify as much as possible,)

c) $\det(AB) =$

d) $\det(A + B) =$

e) The triangular inequality says ____________.

f) Adding twice the second row to the third row of a 3×4 matrix is the same as multiplying it on the ____________ by the matrix ____________.