1. (30) Let \(S = \text{Span}((1, 0, 1, 0)^T, (0, 1, 0, 1)^T, (1, 2, 3, 4)^T) \).
 a) Find an orthogonal basis for \(S \).
 b) Find a basis for \(S^\perp \).

2. (20) Let \(u_1, u_2, u_3 \) be an orthonormal set in an inner product space \(V \).
 a) Calculate \(||u_1 - 2u_2 + 4u_3|| \).
 b) Show that \(u_1 - 2u_2 \) is orthogonal to \(2u_1 + u_2 \).
 c) Are \(u_1, u_2, u_3 \) linearly independent?
 d) Is \(u_1, u_2, u_3 \) a basis for \(V \)?

3. (25) Let \(L: P_3 \to P_4 \) be the map \(L(p) = xp(x) \).
 a) Show that \(L \) is a linear transformation.
 b) Find the Kernel and Range of \(L \).
 c) Find the matrix of \(L \) with respect to the bases \([x - 1, 1, x^2]\) of \(P_3 \) and \([1, x, x^2, x^3]\) of \(P_4 \).

4. (20) Show that if \(A \) is an \(m \times n \) matrix and \(x \) is in \(N(A^T A) \), then \(x \) is in \(N(A) \).

5. (30) True (always true), False (always false), Maybe (sometimes true and sometimes false, depending on \(A \), \(S \), etc.) or short answer. \(A \) is a \(4 \times 8 \) matrix, and \(S \) is a subspace of a seven dimensional inner product space \(V \). Also \(A \) has rank 3 and \(S \) has dimension 3.
 a) The null space \(N(A) \) has dimension 1.
 b) If \(x \perp y \) and \(y \perp z \) then \(x \perp z \).
 c) Let \(x_1 \) and \(x_2 \) be two different least squares solutions to \(Ax = b \). Then \(Ax_1 = Ax_2 \).
 d) If \([u_1, u_2, u_3]\) is a basis for \(S \), and \(x \perp u_i \) for each \(i \), then \(x \) is in \(S^\perp \).
 e) If \(AB = 0 \) then the column space of \(B \) is contained in \(N(A) \).
 f) If \(B \) and \(C \) are similar matrices then \(\det(B) = \det(C) \).
 g) \(\dim S^\perp = \) ___.
 h) \(\dim N(A^T) = \) ___.
 i) Give an example of an inner product on \(C[0, 2] \).
 j) If \([u_1, u_2, u_3]\) is an orthogonal basis for \(S \), what is the formula for the projection of \(x \) to \(S \)?