1. (25) For each of the following matrices:
 + Find its eigenvalues and an eigenvector for each eigenvalue.
 + If possible, find a (possibly complex) matrix P and a diagonal matrix D so that the
given matrix equals PDP^{-1}.
 + If possible, find a real matrix Q so that the given matrix is QCQ^{-1} where C is of the
form $C = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$.

 a) $\begin{bmatrix} 4 & 4 \\ -2 & -2 \end{bmatrix}$
 b) $\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$
 c) $\begin{bmatrix} -6 & -15 \\ 3 & 6 \end{bmatrix}$

Answer: The characteristic polynomial of a) is $(4 - \lambda)(-2 - \lambda) - 4(-2) = \lambda^2 - 2\lambda$
so the eigenvalues are 0 and 2. For $\lambda = 2$ the eigenvectors are nonzero vectors in the
null space of $\begin{bmatrix} 2 & 4 \\ -2 & -2 \end{bmatrix}$ so an eigenvector is $(2, -1)^T$. For $\lambda = 0$ the eigenvectors are
nonzero vectors in the null space of $\begin{bmatrix} 4 & 4 \\ -2 & -2 \end{bmatrix}$ so an eigenvector is $(1, -1)^T$. So the
matrix is diagonalizable and equals PDP^{-1} where $P = \begin{bmatrix} 2 & 1 \\ -1 & -1 \end{bmatrix}$ and $D = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$.

It cannot be QCQ^{-1} since its eigenvalues would then be the eigenvalues of C which are
a $\pm b\sqrt{-1}$. The characteristic polynomial of b) is $(1 - \lambda)(1 - \lambda) - 2(0) = (\lambda - 1)^2$ so the
only eigenvalue is 1. The eigenvectors are nonzero vectors in the null space of $\begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix}$ so
an eigenvector is $(1, 0)^T$. It is not diagonalizable since the eigenvalue 1 has multiplicity 2
but its eigenspace is only one dimensional. It is not QCQ^{-1} since the eigenvalues of C are
a $\pm b\sqrt{-1}$ which would mean $a = 1$ and $b = 0$ so C would be diagonal, but the matrix
is not diagonalizable. The characteristic polynomial of c) is $(-6 - \lambda)(6 - \lambda) - 3(-15) = \lambda^2 + 9$ so the eigenvalues are $\pm 3\sqrt{-1}$. For $\lambda = 3\sqrt{-1}$ the eigenvectors are nonzero vectors
in the null space of $\begin{bmatrix} -6 - 3\sqrt{-1} & -15 \\ 3 & 6 - 3\sqrt{-1} \end{bmatrix}$ so an eigenvector is $(6 - 3\sqrt{-1}, -3)^T$ or
more simply $(-2 + \sqrt{-1}, 1)^T$. For $\lambda = -3\sqrt{-1}$ an eigenvector is the complex conjugate,
$(-2 - \sqrt{-1}, 1)^T$. So the matrix is PDP^{-1} with $P = \begin{bmatrix} -2 + \sqrt{-1} & -2 - \sqrt{-1} \\ 1 & 1 \end{bmatrix}$ and
$D = \begin{bmatrix} 3\sqrt{-1} & 0 \\ 0 & -3\sqrt{-1} \end{bmatrix}$. It is also QCQ^{-1} where $Q = \begin{bmatrix} -2 & 1 \\ 1 & 0 \end{bmatrix}$ has columns which are
the real and imaginary parts of the eigenvectors.

2. (20) A 5 × 5 matrix A has three eigenvalues 1, 3, and 6. The eigenspace of A
corresponding to $\lambda = 1$ is three dimensional.
 a) What is the characteristic polynomial of A?

Answer: We know that $\lambda = 1$ has multiplicity ≥ 3. So since it has degree 5 the only
possibility is $-(\lambda - 1)^3(\lambda - 3)(\lambda - 6)$. (The minus sign comes because the coefficient
of λ^n in Lay’s version of the characteristic polynomial is $(-1)^n$ for an $n \times n$ matrix. I did not take off points if you got the sign wrong.)

b) Must A be diagonalizable? Why or why not?

 Answer: Since the eigenspace dimensions all equal the multiplicities we know A must be diagonalizable.

c) Must A be invertible? Why or why not?

 Answer: Since 0 is not an eigenvalue, the null space of A is trivial, so A is invertible.

d) Find the ranks of the matrices A, $A - I_5$ and $A - 3I_5$.

 Answer: Since A is invertible, $\text{rank}(A) = 5$. The eigenspace for $\lambda = 1$ is the null space of $A - I_5$ so $\text{rank}(A - I_5) = 5 - \text{dim}(\text{Null}(A - I_5)) = 2$. Likewise, $\text{rank}(A - 3I_5) = 5 - \text{dim}(\text{Null}(A - 3I_5)) = 4$ since the eigenspace for $\lambda = 3$ has dimension at most the multiplicity 1.

3. (15) Suppose A is a 3×3 matrix so that

\[
\begin{bmatrix}
1 & 1 \\
0 & 1
\end{bmatrix}
= \begin{bmatrix}
2 & 2 \\
0 & 0
\end{bmatrix},
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
= \begin{bmatrix}
-1 & 0 \\
0 & -1
\end{bmatrix},
\]

and so that

\[
\begin{bmatrix}
0 & 1 \\
0 & 0
\end{bmatrix}
\]

is in the null space of A.

a) What are the eigenvalues of A?

 Answer: Since $A \begin{bmatrix}
1 & 1 \\
0 & 0
\end{bmatrix} = \begin{bmatrix}
2 & 0 \\
0 & 0
\end{bmatrix}$ we know 2 is an eigenvalue, since $A \begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
-1 & 0 \\
0 & -1
\end{bmatrix}$ we know -1 is an eigenvalue, and since $A \begin{bmatrix}
0 & 1 \\
0 & 0
\end{bmatrix} = \begin{bmatrix}
0 & 0 \\
0 & 0
\end{bmatrix}$ we know 0 is an eigenvalue.

 Since A is 3×3 it has at most 3 eigenvalues so the eigenvalues are 2, -1, and 0.

b) Determine A. (You may leave your answer as a product of matrices and their inverses.)

 Answer: We know from part a) that $A = PD P^{-1}$ where $P = \begin{bmatrix}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{bmatrix}$ and

\[
D = \begin{bmatrix}
2 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]

c) Determine A^k for any integer $k > 0$. (You may leave your answer as a product of matrices and their inverses.)

 Answer: We know $A^k = PD^k P^{-1}$ where P and D are as in part b), so

\[
A^k = P \begin{bmatrix}
2^k & 0 & 0 \\
0 & (-1)^k & 0 \\
0 & 0 & 0
\end{bmatrix} P^{-1}
\]
4. (10) Let \(T : \mathbb{P}_2 \to \mathbb{P}_2 \) be the linear transformation which takes a polynomial \(p(t) \) to \(tp'(t) \). Find the matrix \([T]_B\) of \(T \) with respect to the basis \(B = \{1, t, t^2\} \).

Answer: \(T(1) = t \cdot 1' = 0, T(t) = t \cdot t' = t, \) and \(T(t^2) = t \cdot (t^2)' = 2t^2. \) So \([T]_B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \).

5. (15) Suppose \(B = P^{-1}AP \).

a) Then by definition, \(A \) is ________ to \(B \).

Answer: similar

b) Show that if \(x \) is an eigenvector of \(A \) with eigenvalue \(\lambda \), then \(P^{-1}x \) is an eigenvector of \(B \) with eigenvalue \(\lambda \).

Answer: We are given that \(x \neq 0 \) and \(Ax = \lambda x \). If \(P^{-1}x = 0 \) then \(x = PP^{-1}x = P(0) = 0 \), a contradiction, so \(P^{-1}x \neq 0 \). Now \(BP^{-1}x = P^{-1}APP^{-1}x = P^{-1}Ax = P^{-1}(\lambda x) = \lambda P^{-1}x \), so \(P^{-1}x \) is an eigenvector of \(B \) with eigenvalue \(\lambda \).

c) Show that \(\det A = \det B \).

Answer:

\[
\det(B) = \det(P^{-1}AP) = \det(P)\det(A)\det(P^{-1}) = \det(P)\det(A)(1/\det(P)) = \det(A)
\]

6. (15) Same as a problem on Test 2.