1. (39) Suppose a matrix A has an echelon form
\[
\begin{bmatrix}
1 & 0 & 3 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}
\] and B has an echelon form
\[
\begin{bmatrix}
2 & 2 & 3 & 0 \\
0 & 3 & 2 & 0 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 4
\end{bmatrix}
\]. Answer the following questions. If there is not enough information to give an answer, say so.

a) How many pivots does A have? _______

b) How many pivots does B have? _______

c) How many solutions does $Ax = 0$ have? _______

d) How many solutions does $Bx = 0$ have? _______

e) How many solutions does $Ax = [1 \ 2 \ 3 \ 0]^T$ have? _______

f) How many solutions does $Bx = [1 \ 2 \ 3 \ 0]^T$ have? _______

g) Is the linear transformation $x \mapsto Ax$ one to one? _______

h) Is the linear transformation $x \mapsto Bx$ one to one? _______

i) Is the linear transformation $x \mapsto Ax$ onto? _______

j) Is the linear transformation $x \mapsto Bx$ onto? _______

k) Which of A or B is invertible? _______

l) One solution of $Ax = [1 \ 2 \ 3 \ 4]^T$ is $x = [0 \ 1 \ 0 \ 1]^T$. Find all solutions.

m) One solution of $Bx = [1 \ 2 \ 3 \ 4]^T$ is $x = [0 \ 1 \ 2 \ -1]^T$. Find all solutions.

HONOR PLEDGE: I pledge on my honor that I have not given or received any unauthorized assistance on this examination.

Signature

2. (36)
 a) Suppose A, B, and C are invertible 4×4 matrices. Solve for the 4×4 matrices W, X, Y and Z.
 \[
 \begin{bmatrix}
 X & Y \\
 Z & W
 \end{bmatrix}
 \begin{bmatrix}
 0 & A \\
 B & C
 \end{bmatrix} = I_8
 \]

 b) Find $\begin{bmatrix} 0 & A \\ B & C \end{bmatrix}^{-1}$, with A, B, and C invertible.

 c) Suppose that $T: \mathbb{R}^2 \to \mathbb{R}^3$ is a linear transformation and also $T(\begin{bmatrix} 1 \\ 0 \end{bmatrix}) = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ and $T(\begin{bmatrix} 0 \\ 1 \end{bmatrix}) = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$. Find $T(\begin{bmatrix} 2 \\ -1 \end{bmatrix})$. Also find the standard matrix of T.
3. (25) Let \(\mathbf{v}_1 = [1 \ 2 \ 3 \ 1]^T \), \(\mathbf{v}_2 = [1 \ 0 \ -1 \ 1]^T \), and \(\mathbf{v}_3 = [1 \ 8 \ h \ 1]^T \).

a) Find all \(h \) so that \(\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} \) is linearly dependent.

b) For each \(h \) you found in part a), determine if possible weights \(c_1 \) and \(c_2 \) so that \(\mathbf{v}_3 = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 \).

c) For each \(h \) you found in part a), determine whether or not \(\mathbf{v}_3 \) is in \(\text{Span}\{\mathbf{v}_1, \mathbf{v}_2\} \).