Simple Quadrature Rules

Single Panel Midpoint Rule
\[
\int_a^b f(x)dx = (b - a)f(\frac{a + b}{2}) + E_M(f)
\]
where
\[
E_M(f) = \frac{(b - a)^3}{24}f''(\xi)
\]
for some \(\xi\) in the interval \([a, b]\).

Composite Midpoint Rule. Let \(h = (b - a)/n\), and \(x_j = a + j \cdot h, \ j = 0, \ldots, n\) and let \(s_j = (1/2)(x_{j-1} + x_j), j = 1, \ldots, n\) be the midpoint of each subinterval. Then
\[
\int_a^b f(x)dx = h[f(s_1) + f(s_2) + \cdots + f(s_n)] + E_M(f, h)
\]
where
\[
E_M(f, h) = \frac{h^2(b - a)}{24}f''(\eta)
\]
for some \(\eta\) in the interval \([a, b]\).

Single Panel Trapezoid Rule
\[
\int_a^b f(x)dx = \frac{h}{2}(f(a) + f(b)) + E_T(f)
\]
where
\[
E_T(f) = -\frac{(b - a)^3}{12}f''(\xi)
\]
for some \(\xi\) in the interval \([a, b]\).

Composite Trapezoid Rule
\[
\int_a^b f(x)dx = \frac{h}{2}[f(x_0) + 2f(x_1) + 2f(x_2) + \cdots + 2f(x_{n-1}) + f(x_n)] + E_T(f, h)
\]
where
\[
E_T(f, h) = -\frac{h^2(b - a)}{12}f''(\eta)
\]
for some \(\eta\) in the interval \([a, b]\).

Single Panel Simpson Rule
\[
\int_a^b f(x)dx = \frac{h}{6}[f(a) + 4f(\frac{a + b}{2}) + f(b)] + E_S(f)
\]
where
\[
E_S(f) = -\frac{(b - a)^5}{2880}f^{(4)}(\xi)
\]
Composite Simpson Rule Assume n is even. Then

$$
\int_a^b f(x) \, dx = \frac{h}{3} [f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + \cdots + 4f(x_{n-1}) + f(x_n)] + E_S(f, h)
$$

where

$$
E_S(f, h) = -\frac{(b-a)h^4}{180} f^{(4)}(\eta)
$$

for some η in $[a, b]$.

Simpson’s rule is related to the trapezoid rule and the midpoint rule by the equation

$$
S(f) = \frac{2}{3} M(f) + \frac{1}{3} T(f).
$$

The midpoint rule and the trapezoid rule are both exact on polynomials of degree ≤ 1, but not exact on x^2. Hence the midpoint rule and trapezoid rule and both of order 2. Simpson’s rule is exact is exact on polynomials of degree ≤ 3, but not on x^4. Hence Simpson’s rule is of order 4.

Estimates of the error. Use $T_n(f)$ to denote $T(f, h)$ where $h = (b-a)/n$. From the form of the error for T_n, assuming f'' changes slowly, we can deduce that

$$
|E_T(f, n)| \approx \frac{4}{5} |T_n(f) - T_{2n}(f)|.
$$

Note that we can write

$$
T_{2n}(f) = \frac{1}{2} T_n((f) + \frac{h}{2} [f(s_1) + \cdots + f(s_n)]
$$

where s_j is the midpoint of the n^{th} subinterval.

For Simpson’s rule we can deduce that

$$
|E_S(f, n)| \approx \frac{16}{15} |S_n(f) - S_{2n}(f)|.
$$

We can get a new rule of higher order by forming an average of $S(f, n)$ and $S(f, 2n)$. In fact,

$$
Q(f) = \frac{16 S(f, 2n) - S(f, n)}{15}
$$

has order 6. It is a five point Newton Cotes rule.

Gaussian Quadrature

We begin with a three point rule on $[-1, 1]$. Let

$$
Q(g) = A_1 g(t_1) + A_2 g(t_2) + A_3 g(t_3).
$$
We want to choose the weights \(A_1, A_2, A_3 \) and the nodes \(t_1, t_2, t_3 \) so as to maximize the order of \(Q \). To economize in the derivation, we shall assume some symmetry: We take \(t_1 = -t_3 \) and \(t_2 = 0 \), and \(A_1 = A_3 \). Thus our rule becomes

\[
Q(g) = A_1 g(-t_3) + A_2 g(0) + A_1 g(t_3).
\]

With this symmetry, we have that for any power \(t^p \) with \(p \) odd, \(Q(t^p) = 0 = \int_{-1}^{1} t^p dt \). Thus we shall determine \(A_1, A_2 \) and \(t_3 \) by requiring that \(Q \) be exact on the even powers \(g(t) \equiv 1, g(t) = t^2 \) and \(g(t) = t^4 \). This yields the equations

\[
Q(1) = A_1 + A_2 + A_1 = \int_{-1}^{1} 1 dt = 2
\]

or

\[
2A_1 + A_2 = 2. \tag{1}
\]

\[
Q(t^2) = A_1 t_3^2 + A_1 t_3^2 = \int_{-1}^{1} t^2 dt = 2/3
\]

or

\[
A_1 t_3^2 = 1/3. \tag{2}
\]

Finally we require that

\[
Q(t^4) = A_1 t_3^4 + A_1 t_3^4 = \int_{-1}^{1} t^4 dt = 2/5
\]

or

\[
A_1 t_3^4 = 1/5. \tag{3}
\]

Dividing equation (3) by equation (2), we find \(t_3^2 = 3/5 \), whence \(t_3 = \sqrt{3/5} \). Substitution of this value of \(t_3 \) into (2) yields \(A_1 = 5/9 \), and finally (1) yields \(A_2 = 8/9 \). Hence our three-point Gaussian quadrature rule is

\[
G_3(g) = \frac{5}{9} g(-\sqrt{3/5}) + \frac{8}{9} g(0) + \frac{5}{9} g(\sqrt{3/5}).
\]

It has order 6 because it integrates exactly \(g(t) = 1, t, t^2, t^3, t^4 \), but not \(g(t) = t^5 \). Use the map \(\varphi(t) = a + \frac{(b-a)}{2} (t + 1) \) to make the change of variable from \([-1, 1]\) to \([a, b]\). If \(f \) given on \([a, b]\), set \(g(t) = f(\varphi(t)) \). Then

\[
G_3(f) = G_3(g) = \frac{(b-a)}{2} \frac{5}{9} f(\varphi(-\sqrt{3/5}) + \frac{8}{9} f(\varphi(0)) + \frac{5}{9} f(\varphi(\sqrt{3/5}))
\]

and the error is

\[
E_3(f) = \left[\frac{(b-a)}{2} \right] \frac{1}{15750} f^{(6)}(\eta).
\]

There are Gaussian quadrature rules of all orders. If there are \(n \) weights and \(n \) nodes to be chosen, there are \(2n \) degrees of freedom, and we can choose them so that \(G_n \) integrates all polynomials of degree \(\leq 2n - 1 \), but not of degree \(2n \). Hence \(G_n \) is order \(p = 2n \). The nodes of \(G_n \) are the zeros of the Legendre polynomial \(\theta_n \) of degree \(n \). The weights and nodes for Gaussian quadrature can easily be found on the web.
Lobatto quadrature

Lobatto quadrature using 4 points is a rule similar to Gaussian quadrature but which uses the end points of the interval. On the interval \([-1, 1]\), the rule is

\[
L_4(g) = A_1 g(-1) + A_2 g(-t_1) + A_2(t_1) + A_1 g(1).
\]

Because of symmetry, \(L_4\) is already exact on all odd powers \(t^p\). We impose the conditions that \(L_4\) be exact on the polynomials \(1, t^2\) and \(t^4\). This yields the equations

\[
A_1 + A_2 = 1
\]

\[
A_1 + A_1 t_1^2 = \frac{1}{3}
\]

and

\[
A_1 + A_2 t_1^4 = \frac{1}{5}.
\]

The solutions for \(A_1, A_2\) and \(t_1\) yield the Lobatto rule

\[
L_4(g) = \frac{1}{6} g(-1) + \frac{5}{6} g(-\sqrt{1/5}) + \frac{5}{6} g(\sqrt{1/5}) + \frac{1}{6} g(1).
\]

The Lobatto rule \(L_4\) has order \(p = 6\). There are Lobatto rules of all orders. The interior nodes \(t_i, i = 1, \ldots, n - 2\) are the zeros of the derivatives \(\theta_n'\) of the Legendre polynomials \(\theta_n\).