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Frames

Frames F = {en}N
n=1 for d-dimensional Hilbert

space H, e.g., H = Kd, where K = C or K = R.

• Any spanning set of vectors in Kd is a frame

for Kd.

• F ⊆ Kd is A-tight if

∀x ∈ K
d, A‖x‖2 =

N∑

n=1

|〈x, en〉|
2

(A=1 defines Parseval frames).

• F is normalized (uniform) if each ‖en‖ = 1.

• Bessel map – L : H −→ ℓ2(ZN),

x 7−→ {< x, en >}.

• Frame operator – S = L∗L : H −→ H.
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Tight frames and applications

Theorem {en}N
n=1 ⊆ Kd is an A-tight frame

for Kd ⇐⇒

S = L∗L = AI : K
d −→ K

d.

• Robust transmission of data over erasure

channels such as the Internet. [Casazza,

Goyal, Kelner, Kovačević]

• Multiple antenna code design for wireless

communications. [Hochwald, Marzetta, T.

Richardson, Sweldens, Urbanke]

• Multiple description coding. [Goyal, Heath,

Kovačević, Strohmer, Vetterli]

• Quantum detection. [Chandler Davis, El-

dar, Forney, Oppenheim]
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Finite unit norm tight frames (FUN-TFs)

• If {en}N
n=1 is a finite unit norm tight frame

(A-FUN-TF) for Kd, then A = N/d.

• Let {en} be an A-unit norm TF for any

separable Hilbert space H. A ≥ 1, and A =

1 ⇔ {en} is an ONB for H (Vitali).

• The geometry of finite tight frames:

– The vertices of platonic solids are FUN-

TFs.

– Points that constitute FUN-TFs do not

have to be equidistributed, e.g., Grass-

manian frames.

– FUN-TFs can be characterized as min-

imizers of a “frame potential function”

(with Fickus) analogous to

Coulomb’s Law.
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Frame force and potential energy

F : Sd−1 × Sd−1 \ D −→ R
d

P : Sd−1 × Sd−1 \ D −→ R,

where

P (a, b) = p(‖a − b‖), p′(x) = −xf(x)

• Coulomb force

CF (a, b) = (a−b)/‖a − b‖3, f(x) = 1/x3

• Frame force

FF (a, b) =< a, b > (a−b), f(x) = 1−x2/2

• Total potential energy for the frame force

TFP ({xn}) = ΣN
m=1Σ

N
n=1| < xm, xn > |2
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Characterization of FUN-TFs

For the Hilbert space H = Rd and N , consider

{xn}
N
1 ∈ Sd−1 × ... × Sd−1

and

TFP ({xn}) = ΣN
m=1Σ

N
n=1| < xm, xn > |2.

Theorem Let N ≤ d. The minimum value of

TFP , for the frame force and N variables, is N ;

and the minimizers are precisely the orthonor-

mal sets of N elements for Rd.

Theorem Let N ≥ d. The minimum value

of TFP , for the frame force and N variables,

is N2/d; and the minimizers are precisely the

FUN-TFs of N elements for Rd.

Problem Find these FUN-TFs analytically, ef-

fectively, and computationally.
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Imaging equation

• The MR signal (or FID or echo) measured

for imaging is

S(t) = S(k(t)) = S(kx(t), ky(t), kz(t))

=
∫ ∫ ∫

ρ(x, y, z) exp[−2πi < (x, y, z),

(kx(t), ky(t), kz(t)) >]e−t/T2dx dy dz

where

kx(t) = γ
∫ t

0
Gx(u)du.

Gx(t) is an x-directional time varying gra-

dient and ρ is the spin density function.

• The imaging equation is a consequence of

Bloch’s equation for transverse magnetiza-

tion.

• The imaging equation is a physical Fourier

transformer.
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Spiral echo planar imaging (SEPI)

• Design gradients G as input to the MR pro-

cess resulting in the imaging equation.

• Set

Gx(t) = η cos ξt − ηξt sin ξt

Gy(t) = η sin ξt + ηξt cos ξt.

Then kx(t) = γηt cos ξt and ky(t) = γηt sin ξt.

kx and ky yield the Archimedean spiral

Ac = {(cθ cos 2πθ, cθ sin 2πθ) : θ ≥ 0} ⊆ R̂
2,

θ = θ(t) = (1/2π)ξt, c = (1/θ)γη = 2πγη/ξ.

• S takes values on Ac.

• Spiral scanning gives high speed data ac-

quisition at the “Nyquist rate”.

• Rectilinear scanning is expensive at the cor-

ners.
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Fourier frames for L2(E)

Let E ⊆ Rd be closed. The Paley-Wiener space

PWE is

PWE =
{
ϕ ∈ L2(R̂d) : supp ϕ∨ ⊆ E

}
,

where

ϕ∨(x) =
∫

R̂d
ϕ(γ)e2πix·γdγ.

Definition Given Λ ⊆ R̂d and E ⊆ Rd with fi-

nite Lebesgue measure. Let e−λ(x) = e−2πix·λ.

{e−λ : λ ∈ Λ} is a frame for L2(E) if

∀ϕ ∈ PWE, A‖ϕ‖
L2(R̂d)

≤
∑

λ∈Λ

|ϕ(λ)|2 ≤ B‖ϕ‖
L2(R̂d)

.

In this case we say that Λ ⊆ R̂d is a Fourier

frame for L2(E) ⊆ L2(Rd).

Definition Λ ⊆ R̂d is uniformly discrete if there

is r > 0 such that

∀λ, γ ∈ Λ, |λ − γ| ≥ r.
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A theorem of Beurling

Theorem Let Λ ⊆ R̂d be uniformly discrete,

and define

ρ = ρ(Λ) = sup
ζ∈R̂d

dist(ζ,Λ),

where dist(ζ,Λ) is Euclidean distance between

ζ and Λ, and B(0, R) ⊆ Rd is closed ball cen-

tered at 0 ∈ Rd with radius R. If Rρ < 1/4,

then Λ is a Fourier frame for PWB(0,R).

Remark The assertion of Beurling’s theorem

implies

∀f ∈ L2(B(0, R)), f(x) =
∑

λ∈Λ

aλ(f)e2πix·λ

in L2(B(0, R)), where

∑

λ∈Λ

|aλ(f)|2 < ∞.
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An MRI problem and mathematical solution

Given any R > 0 and c > 0. Consider the

Archimedean spiral Ac.

We can show how to construct a finite inter-

leaving set B = ∪M−1
k=1 Ak of spirals

Ak =
{
cθe2πi(θ−k/M) : θ ≥ 0

}
, k = 0,1, . . . , M−1,

and a uniformly discrete set ΛR ⊆ B such that

ΛR is a Fourier frame for PWB(0,R). Thus,

all of the elements of L2(B(0, R)) will have a

decomposition in terms of the Fourier frame

{eλ : λ ∈ ΛR}.

Method Combine Beurling’s theorem and trigonom-

etry.

Problem Although ΛR is constructible, this

mathematical solution must be effectively fini-

tized and implemented to be of any use.
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A first algorithm for implementation

• Given N > 0, e.g., N = 256, let f ∈ L2([0,1]2).

• Assume f is piecewise constant (from pixel

information) on

[m/N, (m+1)/(N +1))× [n/N, (n+1)/N),

where m, n ∈ {0,1, . . . , N − 1}.

• Write f lexicographically as {fak}.

• The Fourier transform of f ∈ L2(R2) is

f̂ =
N2−1∑

k=0

fakHak,

where e(λ) = e−2πiλ and

Hm,n(λ, γ) =
−1

4π2λγ
e(

mλ + nγ

N
)(e(

λ

N
)−1)(e(

γ

N
)−1).

Problem Reconstruct {fak} from given f̂αm,

where αm = (λm, γm), k = 0,1, . . . , N2−1, m =

0,1, . . . , M − 1, and M ≥ N2.
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The role of finite frames in implementation

Let H = KN2
and take M ≥ N2. Given {ak :

k = 0,1, . . . N2 − 1}, let α = (λ, γ) ∈ R̂2, and

choose αm, m = 0,1,2, . . . , M − 1.

• Let xm = (Ha0(αm), Ha1(αm), . . . , Ha
N2−1

(αm)).

• Define L : H −→ ℓ2(ZM) = KM ,

f 7−→ {< f, xm >}M−1
m=0.

• Equivalently, L = (Hak(αm)), M × N2.

• {xm}M−1
m=0 frame for H implies L is a Bessel

map and S = L∗L, an N2 × N2 matrix,

where L∗ is the adjoint of L. S is the frame

operator.

• S “reduces” dimensionality since M ≥ N2.

• The finite frame decomposition of f is

f = S−1L∗(Lf).
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Logic for empirical evaluation of algorithm

• Given high resolution image I, e.g., 1024×1024.

• Downsample I (room for “creativity”) to

IN , N × N , e.g., N = 128,256.

• Therefore, IN is the optimal, available im-

age at N×N level for comparison purposes.

• Calculate Î =
∑

IakHak (106 terms per αm).

• Take Î(αm), m = 0,1, . . . , M − 1 ≥ N2 − 1.

• Set LI = Î, M × 1

• Implementation gives Ĩ = S−1L∗Î.

• Compare IN − Ĩ, N × N .
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Optimal N × N approximant

Let Q = [0,1]2 and set

SN =
{
f(x, y) ∈ L2(Q) : f ∼ {fak : k = 0, . . . , N2 − 1}

}

Problem Find the optimal SN approximant for

f ∈ L2(Q).

Solution The minimizer of ‖f − g‖2, g ∈ SN is

fa(x, y) =
∑

A(f)ak1ak(x, y),

where A(f)ak is the average of f over the ak

square, k = 0,1, · · · , N2 − 1.
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Asymptotic evaluation of algorithm

• Given f ∈ L2(Q), fix N (N = 128,256),

and assume we know f̂ in k-space.

• Recall SN =
{
g ∈ L2(Q) : g ∼ {gak}

}
.

• Take K, M , and

{αm : m = 0, . . . , M − 1} ⊆ [−K, K]2 ⊆ R̂
2.

• Denote N2 data reconstructed by the al-

gorithm from {f̂(αm)} by

f̃ = f̃M,K,{αm} ∈ SN .

• lim f̃ =
∑N2−1

1 A(f)ak1ak.

• The limit as M, K −→ ∞ must be explained.

• Implementation of the Fourier frame algo-

rithm approaches optimal SN approximant.



+ + +D Q
xn qn

-

un= un-1 + xn-qn

First Order Σ∆

Given u0 and {xn}n=1

un= un-1 + xn-qn
qn= Q(un-1 + xn)



A quantization problem

Qualitative Problem Obtain digital represen-

tations for class X, suitable for storage, trans-

mission, recovery.

Quantitative Problem Find dictionary {en} ⊆ X:

1. Sampling

∀x ∈ X, x =
∑

xnen, xn ∈ K (R or C)

[Continuous range K is not digital.]

2. Quantization. Construct finite alphabet A and

Q : X → {
∑

qnen : qn ∈ A ⊆ K}

such that |xn − qn| and/or ‖x − Qx‖ small.

Methods

1. Fine quantization, e.g., PCM.

Take qn ∈ A close to given xn. Reasonable

in 16-bit (65,536 levels) digital audio.

2. Coarse quantization, e.g., Σ∆.

Use fewer bits to exploit redundancy of

{en} when sampling expansion is not unique.
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Quantization

Aδ
K = {(−K + 1/2)δ, (−K + 3/2)δ, . . . , (−1/2)δ,

(1/2)δ, . . . , (K − 1/2)δ}

Q(u) = argmin
q∈Aδ

K

|u − q|

= qu
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Setting

Let x ∈ Rd, ‖x‖ ≤ 1. Suppose F = {en}N
n=1 is a

unit norm tight frame for Rd. Thus, we have

x =
d

N

N∑

n=1

xnen

with xn = 〈x, en〉. Note: A = N/d, and |xn| ≤ 1.

Goal Find a “good” quantizer, given

Aδ
K = {(−K +

1

2
)δ, (−K +

3

2
)δ, . . . , (K −

1

2
)δ}.

Example Consider the alphabet A2
1 = {−1,1},

and E7 = {en}7n=1, with en = (cos(2nπ
7 ), sin(2nπ

7 )).

ΓA2
1
(E7) = {2

7

∑7
n=1 qnen : qn ∈ A2

1}
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PCM

Replace xn ↔ qn = argmin
q∈Aδ

K

|xn − q|.

Then x̃ =
d

N

N∑

n=1

qnen satisfies

‖x − x̃‖ ≤
d

N
‖

N∑

n=1

(xn − qn)en‖

≤
d

N

δ

2

N∑

n=1

‖en‖ =
d

2
δ

Not good!

Bennett’s “white noise assumption”

Assume that (ηn) = (xn − qn) is a sequence

of independent, identically distributed random

variables with mean 0 and variance δ2

12. Then

the mean square error (MSE) satisfies

MSE = E‖x − x̃‖2 ≤
d

12A
δ2 =

(dδ)2

12N
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Remarks

1. Bennett’s “white noise assumption” is not
rigorous, and not true in certain cases.

2. The MSE behaves like C/A. In the case
of Σ∆ quantization of bandlimited func-
tions, the MSE is O(A−3) (Gray, Güntürk
and Thao, Bin Han and Chen). PCM does
not utilize redundancy efficiently.

3. The MSE only tells us about the average
performance of a quantizer.

Example (continued)

Let x = (1
3, 1

2), E7 = {(cos(2nπ
7 ), sin(2nπ

7 ))}7n=1.
Consider quantizers with A = {−1,1}.
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Σ∆ quantizers for finite frames

Let F = {en}N
n=1 be a frame for Rd, x ∈ Rd.

Define xn = 〈x, en〉.

Fix the ordering p, a permutation of {1,2, . . . , N}.

Quantizer alphabet Aδ
K

Quantizer function Q(u) = argmin
q∈Aδ

K

|u − q|

Define the first-order Σ∆ quantizer with or-

dering p and with the quantizer alphabet Aδ
K

by means of the following recursion.

un − un−1 = xp(n) − qn

qn = Q(un−1 + xp(n))

where u0 = 0 and n = 1,2, . . . , N .
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Stability

The following stability result is used to prove

error estimates.

Proposition If the frame coefficients {xn}N
n=1

satisfy

|xn| ≤ (K − 1/2)δ, n = 1, · · · , N,

then the state sequence {un}N
n=0 generated by

the first-order Σ∆ quantizer with alphabet Aδ
K

satisfies

|un| ≤
δ

2
, n = 1, · · · , N.

• The first-order Σ∆ scheme is equivalent to

un =
n∑

j=1

xp(j) −
n∑

j=1

qj, n = 1, · · · , N.

• Stability results lead to tiling problems for

higher order schemes.
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Error estimate

Definition Let F = {en}N
n=1 be a frame for

Rd, and let p be a permutation of {1,2, . . . , N}.

We define the variation σ of F with respect to

p by

σ(F, p) =
N−1∑

n=1

‖ep(n) − ep(n+1)‖.

Theorem Let F = {en}N
n=1 be an A-FNTF for

Rd. The approximation

x̃ =
d

N

N∑

n=1

qnep(n)

generated by the first-order Σ∆ quantizer with

ordering p and with the quantizer alphabet Aδ
K

satisfies

‖x − x̃‖ ≤
(σ(E, p) + 1)d

N

δ

2
.
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Order is important

0 0.05 0.1 0.15 0.2 0.25
0  

0.1

0.2

Approximation Error

R
e

la
ti
v
e

 F
re

q
u

e
n

c
y

0 0.05 0.1 0.15 0.2 0.25
0  

0.1

0.2

Approximation Error
R

e
la

ti
v
e

 F
re

q
u

e
n

c
y

Let E7 be the FUN-TF for R2 given by the 7th

roots of unity. Randomly select 10,000 points

in the unit ball of R2. Quantize each point

using the Σ∆ scheme with alphabet A
1/4
4 .

The figures show histograms for ||x − x̃|| when

the frame coefficients are quantized in their

natural order (histogram on left)

x1, x2, x3, x4, x5, x6, x7

and in the order (histogram on right) given by

x1, x4, x7, x3, x6, x2, x5.
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Even – odd
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EN = {eN
n }N

n=1, eN
n = (cos(2πn/N), sin(2πn/N)).

Let x = (1
π ,

√
3
17).

x =
d

N

N∑

n=1

xN
n eN

n , xN
n = 〈x, eN

n 〉.

Let x̃N be the approximation given by the 1st

order Σ∆ quantizer using the alphabet {−1,1}

and the natural ordering p.

The figure shows a log-log plot of ||x − x̃N ||.
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Improved estimates

EN = {eN
n }N

n=1, Nth roots of unity FUN-TFs

for R2.

Let x ∈ Rd, ||x|| ≤ (K − 1/2)δ.

Quantize x =
d

N

N∑

n=1

xN
n eN

n , xN
n = 〈x, eN

n 〉

using 1st order Σ∆ scheme with alphabet Aδ
K.

Theorem If N is even and large then

||x − x̃|| .
δ logN

N5/4
.

If N is odd and large then

δ

N
. ||x − x̃|| ≤

(2π + 1)d

N

δ

2
.

• The proof uses the analytic number theory

approach developed by Sinan Güntürk.

• The theorem is true more generally, but ad-

ditional technical assumptions are needed.
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Harmonic frames

Zimmermann and Goyal, Kelner, Kovačević,

Thao, Vetterli.

• H = Cd. An harmonic frame {en}N
n=1 for H

is defined by the rows of the Bessel map L
which is the complex N-DFT N × d matrix

with N − d columns removed.

• H = Rd, d even. The harmonic frame

{en}N
n=1 is defined by the Bessel map L

which is the N × d matrix whose nth row is

eN
n =

√
2

d

(
cos(

2πn

N
), sin(

2πn

N
), . . . ,

cos(
2π(d/2)n

N
), sin(

2π(d/2)n

N
)

)

• Harmonic frames are FUN-TFs.

• Let EN be the harmonic frame for Rd and

let pN be the identity permutation. Then

∀N, σ(EN , pN) ≤ πd(d + 1).
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Error estimate for harmonic frames

Theorem Let EN be the harmonic frame for

Rd with frame bound N/d. Consider x ∈ Rd,

‖x‖ ≤ 1, and suppose the approximation x̃ of x

is generated by a first-order Σ∆ quantizer as

before. Then

‖x − x̃‖ ≤
d2(d + 1) + d

N

δ

2
.

• Hence, for harmonic frames (and all those

with bounded variation),

MSEΣ∆ ≤
Cd

N2
δ2.

• This bound is clearly superior asymptoti-

cally to

MSEPCM =
(dδ)2

12N
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Σ∆ and “optimal” PCM

The digital encoding

MSEPCM =
(dδ)2

12N

in PCM format leaves open the possibility that

decoding (reconstruction) could lead to

“MSEopt
PCM” ≪ O(

1

N
).

Goyal, Vetterli, Thao (1998) proved

“MSEopt
PCM” ∼

C̃d

N2
δ2.

Theorem The first order Σ∆ scheme achieves

the asymptotically optimal MSEPCM for har-

monic frames.




