Finite Frames with Applications to Sigma Delta Quantization and MRI

joint work with

Matt Fickus
Alex Powell and Özgür Yılmaz Alfredo Nava-Tudela and Stuart Fletcher Yang B. Wang

Frames $F=\left\{e_{n}\right\}_{n=1}^{N}$ for d-dimensional Hilbert space H, e.g., $H=\mathbb{K}^{d}$, where $\mathbb{K}=\mathbb{C}$ or $\mathbb{K}=\mathbb{R}$.

Frames $F=\left\{e_{n}\right\}_{n=1}^{N}$ for d-dimensional Hilbert space H, e.g., $H=\mathbb{K}^{d}$, where $\mathbb{K}=\mathbb{C}$ or $\mathbb{K}=\mathbb{R}$.

- Any spanning set of vectors in \mathbb{K}^{d} is a frame for \mathbb{K}^{d}.

Frames

Frames $F=\left\{e_{n}\right\}_{n=1}^{N}$ for d-dimensional Hilbert space H, e.g., $H=\mathbb{K}^{d}$, where $\mathbb{K}=\mathbb{C}$ or $\mathbb{K}=\mathbb{R}$.

- Any spanning set of vectors in \mathbb{K}^{d} is a frame for \mathbb{K}^{d}.
- $F \subseteq \mathbb{K}^{d}$ is A-tight if

$$
\forall x \in \mathbb{K}^{d}, A\|x\|^{2}=\sum_{n=1}^{N}\left|\left\langle x, e_{n}\right\rangle\right|^{2}
$$

($A=1$ defines Parseval frames).

- F is unit norm if each $\left\|e_{n}\right\|=1$.

Frames

Frames $F=\left\{e_{n}\right\}_{n=1}^{N}$ for d-dimensional Hilbert space H, e.g., $H=\mathbb{K}^{d}$, where $\mathbb{K}=\mathbb{C}$ or $\mathbb{K}=\mathbb{R}$.

- Any spanning set of vectors in \mathbb{K}^{d} is a frame for \mathbb{K}^{d}.
- $F \subseteq \mathbb{K}^{d}$ is A-tight if

$$
\forall x \in \mathbb{K}^{d}, A\|x\|^{2}=\sum_{n=1}^{N}\left|\left\langle x, e_{n}\right\rangle\right|^{2}
$$

($A=1$ defines Parseval frames).

- F is unit norm if each $\left\|e_{n}\right\|=1$.
- Bessel map - L: $H \longrightarrow \ell^{2}\left(\mathbb{Z}_{N}\right)$,

$$
x \longmapsto\left\{<x, e_{n}>\right\} .
$$

- Frame operator $-S=L^{*} L: H \longrightarrow H$.

Tight frames and applications

Theorem $\left\{e_{n}\right\}_{n=1}^{N} \subseteq \mathbb{K}^{d}$ is an A-tight frame for $\mathbb{K}^{d} \Longleftrightarrow$

$$
S=L^{*} L=A I: \mathbb{K}^{d} \longrightarrow \mathbb{K}^{d} .
$$

Tight frames and applications

Theorem $\left\{e_{n}\right\}_{n=1}^{N} \subseteq \mathbb{K}^{d}$ is an A-tight frame for $\mathbb{K}^{d} \Longleftrightarrow$

$$
S=L^{*} L=A I: \mathbb{K}^{d} \longrightarrow \mathbb{K}^{d}
$$

- Robust transmission of data over erasure channels such as the Internet. [Casazza, Goyal, Kelner, Kovačević]
- Multiple antenna code design for wireless communications. [Hochwald, Marzetta, T. Richardson, Sweldens, Urbanke]
- Multiple description coding. [Goyal, Heath, Kovačević, Strohmer, Vetterli]
- Quantum detection. [Chandler Davis, Eldar, Forney, Oppenheim]

Finite unit norm tight frames (FUN-TFs)

- If $\left\{e_{n}\right\}_{n=1}^{N}$ is a finite unit norm tight frame (A-FUN-TF) for \mathbb{K}^{d}, then $A=N / d$.

Finite unit norm tight frames (FUN-TFs)

- If $\left\{e_{n}\right\}_{n=1}^{N}$ is a finite unit norm tight frame (A-FUN-TF) for \mathbb{K}^{d}, then $A=N / d$.
- Let $\left\{e_{n}\right\}$ be an A-unit norm TF for any separable Hilbert space $H . A \geq 1$, and $A=$ $1 \Leftrightarrow\left\{e_{n}\right\}$ is an ONB for H (Vitali).

Finite unit norm tight frames (FUN-TFs)

- If $\left\{e_{n}\right\}_{n=1}^{N}$ is a finite unit norm tight frame (A-FUN-TF) for \mathbb{K}^{d}, then $A=N / d$.
- Let $\left\{e_{n}\right\}$ be an A-unit norm TF for any separable Hilbert space $H . A \geq 1$, and $A=$ $1 \Leftrightarrow\left\{e_{n}\right\}$ is an ONB for H (Vitali).
- The geometry of finite tight frames:
- The vertices of platonic solids are FUNTFs.
- Points that constitute FUN-TFs do not have to be equidistributed, e.g., Grassmanian frames.
- FUN-TFs can be characterized as minimizers of a "frame potential function" (with Fickus) analogous to

Coulomb's Law.

Frame force and potential energy

$$
\begin{aligned}
& F: S^{d-1} \times S^{d-1} \backslash D \longrightarrow \mathbb{R}^{d} \\
& P: S^{d-1} \times S^{d-1} \backslash D \longrightarrow \mathbb{R}
\end{aligned}
$$

where

$$
P(a, b)=p(\|a-b\|), \quad p^{\prime}(x)=-x f(x)
$$

Frame force and potential energy

$$
\begin{aligned}
& F: S^{d-1} \times S^{d-1} \backslash D \longrightarrow \mathbb{R}^{d} \\
& P: S^{d-1} \times S^{d-1} \backslash D \longrightarrow \mathbb{R}
\end{aligned}
$$

where

$$
P(a, b)=p(\|a-b\|), \quad p^{\prime}(x)=-x f(x)
$$

- Coulomb force

$$
C F(a, b)=(a-b) /\|a-b\|^{3}, \quad f(x)=1 / x^{3}
$$

Frame force and potential energy

$$
\begin{aligned}
& F: S^{d-1} \times S^{d-1} \backslash D \longrightarrow \mathbb{R}^{d} \\
& P: S^{d-1} \times S^{d-1} \backslash D \longrightarrow \mathbb{R}
\end{aligned}
$$

where

$$
P(a, b)=p(\|a-b\|), \quad p^{\prime}(x)=-x f(x)
$$

- Coulomb force

$$
C F(a, b)=(a-b) /\|a-b\|^{3}, \quad f(x)=1 / x^{3}
$$

- Frame force

$$
F F(a, b)=<a, b>(a-b), \quad f(x)=1-x^{2} / 2
$$

- Total potential energy for the frame force

$$
\operatorname{TFP}\left(\left\{x_{n}\right\}\right)=\sum_{m=1}^{N} \Sigma_{n=1}^{N}\left|<x_{m}, x_{n}>\right|^{2}
$$

Characterization of FUN-TFs

For the Hilbert space $H=\mathbb{R}^{d}$ and N, consider

$$
\left\{x_{n}\right\}_{1}^{N} \in S^{d-1} \times \ldots \times S^{d-1}
$$

and

$$
T F P\left(\left\{x_{n}\right\}\right)=\sum_{m=1}^{N} \Sigma_{n=1}^{N}\left|<x_{m}, x_{n}>\right|^{2} .
$$

Theorem Let $N \leq d$. The minimum value of $T F P$, for the frame force and N variables, is N; and the minimizers are precisely the orthonormal sets of N elements for \mathbb{R}^{d}.

Theorem Let $N \geq d$. The minimum value of TFP, for the frame force and N variables, is N^{2} / d; and the minimizers are precisely the FUN-TFs of N elements for \mathbb{R}^{d}.

Characterization of FUN-TFs

For the Hilbert space $H=\mathbb{R}^{d}$ and N, consider

$$
\left\{x_{n}\right\}_{1}^{N} \in S^{d-1} \times \ldots \times S^{d-1}
$$

and

$$
T F P\left(\left\{x_{n}\right\}\right)=\sum_{m=1}^{N} \Sigma_{n=1}^{N}\left|<x_{m}, x_{n}>\right|^{2} .
$$

Theorem Let $N \leq d$. The minimum value of $T F P$, for the frame force and N variables, is N; and the minimizers are precisely the orthonormal sets of N elements for \mathbb{R}^{d}.

Theorem Let $N \geq d$. The minimum value of TFP, for the frame force and N variables, is N^{2} / d; and the minimizers are precisely the FUN-TFs of N elements for \mathbb{R}^{d}.

Problem Find these FUN-TFs analytically, effectively, and computationally.

Imaging equation

- The MR signal (or FID or echo) measured for imaging is

$$
\begin{aligned}
& S(t)=S(k(t))=S\left(k_{x}(t), k_{y}(t), k_{z}(t)\right) \\
& =\iiint \rho(x, y, z) \exp [-2 \pi i<(x, y, z), \\
& \left.\left(k_{x}(t), k_{y}(t), k_{z}(t)\right)>\right] e^{-t / T_{2}} d x d y d z
\end{aligned}
$$

where

$$
k_{x}(t)=\gamma \int_{0}^{t} G_{x}(u) d u
$$

$G_{x}(t)$ is an x-directional time varying gradient and ρ is the spin density function.

Imaging equation

- The MR signal (or FID or echo) measured for imaging is

$$
\begin{aligned}
& S(t)=S(k(t))=S\left(k_{x}(t), k_{y}(t), k_{z}(t)\right) \\
& =\iiint \rho(x, y, z) \exp [-2 \pi i<(x, y, z), \\
& \left.\left(k_{x}(t), k_{y}(t), k_{z}(t)\right)>\right] e^{-t / T_{2}} d x d y d z
\end{aligned}
$$

where

$$
k_{x}(t)=\gamma \int_{0}^{t} G_{x}(u) d u
$$

$G_{x}(t)$ is an x-directional time varying gradient and ρ is the spin density function.

- The imaging equation is a consequence of Bloch's equation for transverse magnetization.
- The imaging equation is a physical Fourier transformer.

Spiral echo planar imaging (SEPI)

- Design gradients G as input to the MR process resulting in the imaging equation.
- Set

$$
\begin{aligned}
G_{x}(t) & =\eta \cos \xi t-\eta \xi t \sin \xi t \\
G_{y}(t) & =\eta \sin \xi t+\eta \xi t \cos \xi t
\end{aligned}
$$

Then $k_{x}(t)=\gamma \eta t \cos \xi t$ and $\quad k_{y}(t)=\gamma \eta t \sin \xi t$. k_{x} and k_{y} yield the Archimedean spiral

$$
\begin{aligned}
& A_{c}=\{(c \theta \cos 2 \pi \theta, c \theta \sin 2 \pi \theta): \theta \geq 0\} \subseteq \widehat{\mathbb{R}}^{2} \\
& \theta=\theta(t)=(1 / 2 \pi) \xi t, c=(1 / \theta) \gamma \eta=2 \pi \gamma \eta / \xi
\end{aligned}
$$

Spiral echo planar imaging (SEPI)

- Design gradients G as input to the MR process resulting in the imaging equation.
- Set

$$
\begin{aligned}
G_{x}(t) & =\eta \cos \xi t-\eta \xi t \sin \xi t \\
G_{y}(t) & =\eta \sin \xi t+\eta \xi t \cos \xi t
\end{aligned}
$$

Then $k_{x}(t)=\gamma \eta t \cos \xi t$ and $\quad k_{y}(t)=\gamma \eta t \sin \xi t$. k_{x} and k_{y} yield the Archimedean spiral

$$
\begin{aligned}
& A_{c}=\{(c \theta \cos 2 \pi \theta, c \theta \sin 2 \pi \theta): \theta \geq 0\} \subseteq \widehat{\mathbb{R}}^{2} \\
& \theta=\theta(t)=(1 / 2 \pi) \xi t, c=(1 / \theta) \gamma \eta=2 \pi \gamma \eta / \xi
\end{aligned}
$$

- S takes values on A_{c}.
- Spiral scanning gives high speed data acquisition at the "Nyquist rate".
- Rectilinear scanning is expensive at the corners.

Fourier frames for $L^{2}(E)$

> Let $E \subseteq \mathbb{R}^{d}$ be closed. The Paley-Wiener space $P W_{E}$ is

$$
P W_{E}=\left\{\varphi \in L^{2}\left(\widehat{\mathbb{R}}^{d}\right): \operatorname{supp} \varphi^{\vee} \subseteq E\right\},
$$

where

$$
\varphi^{\vee}(x)=\int_{\widehat{\mathbb{R}}^{d}} \varphi(\gamma) e^{2 \pi i x \cdot \gamma} d \gamma
$$

Fourier frames for $L^{2}(E)$

Let $E \subseteq \mathbb{R}^{d}$ be closed. The Paley-Wiener space $P W_{E}$ is

$$
P W_{E}=\left\{\varphi \in L^{2}\left(\widehat{\mathbb{R}}^{d}\right): \operatorname{supp} \varphi^{\vee} \subseteq E\right\},
$$

where

$$
\varphi^{\vee}(x)=\int_{\widehat{\mathbb{R}}^{d}} \varphi(\gamma) e^{2 \pi i x \cdot \gamma} d \gamma
$$

Definition Given $\wedge \subseteq \widehat{\mathbb{R}}^{d}$ and $E \subseteq \mathbb{R}^{d}$ with finite Lebesgue measure. Let $e_{-\lambda}(x)=e^{-2 \pi i x \cdot \lambda}$. $\left\{e_{-\lambda}: \lambda \in \Lambda\right\}$ is a frame for $L^{2}(E)$ if
$\forall \varphi \in P W_{E}, A\|\varphi\|_{L^{2}\left(\widehat{\mathbb{R}}^{d}\right)} \leq \sum_{\lambda \in \Lambda}|\varphi(\lambda)|^{2} \leq B\|\varphi\|_{L^{2}\left(\widehat{\mathbb{R}}^{d}\right)}$.
In this case we say that $\Lambda \subseteq \widehat{\mathbb{R}}^{d}$ is a Fourier frame for $L^{2}(E) \subseteq L^{2}\left(\mathbb{R}^{d}\right)$.

Fourier frames for $L^{2}(E)$

Let $E \subseteq \mathbb{R}^{d}$ be closed. The Paley-Wiener space $P W_{E}$ is

$$
P W_{E}=\left\{\varphi \in L^{2}\left(\widehat{\mathbb{R}}^{d}\right): \operatorname{supp} \varphi^{\vee} \subseteq E\right\},
$$

where

$$
\varphi^{\vee}(x)=\int_{\widehat{\mathbb{R}}^{d}} \varphi(\gamma) e^{2 \pi i x \cdot \gamma} d \gamma
$$

Definition Given $\wedge \subseteq \widehat{\mathbb{R}}^{d}$ and $E \subseteq \mathbb{R}^{d}$ with finite Lebesgue measure. Let $e_{-\lambda}(x)=e^{-2 \pi i x \cdot \lambda}$. $\left\{e_{-\lambda}: \lambda \in \Lambda\right\}$ is a frame for $L^{2}(E)$ if
$\forall \varphi \in P W_{E}, A\|\varphi\|_{L^{2}\left(\widehat{\mathbb{R}}^{d}\right)} \leq \sum_{\lambda \in \Lambda}|\varphi(\lambda)|^{2} \leq B\|\varphi\|_{L^{2}\left(\widehat{\mathbb{R}}^{d}\right)}$.
In this case we say that $\Lambda \subseteq \widehat{\mathbb{R}}^{d}$ is a Fourier frame for $L^{2}(E) \subseteq L^{2}\left(\mathbb{R}^{d}\right)$.

Definition $\wedge \subseteq \widehat{\mathbb{R}}^{d}$ is uniformly discrete if there is $r>0$ such that

$$
\forall \lambda, \gamma \in \wedge, \quad|\lambda-\gamma| \geq r .
$$

A theorem of Beurling

Theorem Let $\Lambda \subseteq \widehat{\mathbb{R}}^{d}$ be uniformly discrete, and define

$$
\rho=\rho(\wedge)=\sup _{\zeta \in \mathbb{R}^{d}} \operatorname{dist}(\zeta, \wedge),
$$

where $\operatorname{dist}(\zeta, \wedge)$ is Euclidean distance between ζ and Λ, and $B(0, R) \subseteq \mathbb{R}^{d}$ is closed ball centered at $0 \in \mathbb{R}^{d}$ with radius R. If $R \rho<1 / 4$, then \wedge is a Fourier frame for $P W_{B(0, R)}$.

A theorem of Beurling

Theorem Let $\wedge \subseteq \widehat{\mathbb{R}}^{d}$ be uniformly discrete, and define

$$
\rho=\rho(\wedge)=\sup _{\zeta \in \mathbb{\mathbb { R }}^{d}} \operatorname{dist}(\zeta, \wedge),
$$

where $\operatorname{dist}(\zeta, \wedge)$ is Euclidean distance between ζ and Λ, and $B(0, R) \subseteq \mathbb{R}^{d}$ is closed ball centered at $0 \in \mathbb{R}^{d}$ with radius R. If $R \rho<1 / 4$, then \wedge is a Fourier frame for $P W_{B(0, R)}$.

Remark The assertion of Beurling's theorem implies

$$
\forall f \in L^{2}(B(0, R)), \quad f(x)=\sum_{\lambda \in \Lambda} a_{\lambda}(f) e^{2 \pi i x \cdot \lambda}
$$

in $L^{2}(B(0, R))$, where

$$
\sum_{\lambda \in \Lambda}\left|a_{\lambda}(f)\right|^{2}<\infty .
$$

An MRI problem and mathematical solution

Given any $R>0$ and $c>0$. Consider the Archimedean spiral A_{c}.

We can show how to construct a finite interleaving set $B=\cup_{k=1}^{M-1} A_{k}$ of spirals

$$
A_{k}=\left\{c \theta e^{2 \pi i(\theta-k / M)}: \theta \geq 0\right\}, \quad k=0,1, \ldots, M-1
$$

and a uniformly discrete set $\wedge_{R} \subseteq B$ such that Λ_{R} is a Fourier frame for $P W_{B(0, R)}$. Thus, all of the elements of $L^{2}(B(0, R))$ will have a decomposition in terms of the Fourier frame $\left\{e_{\lambda}: \lambda \in \wedge_{R}\right\}$.

An MRI problem and mathematical solution

Given any $R>0$ and $c>0$. Consider the Archimedean spiral A_{c}.

We can show how to construct a finite interleaving set $B=\cup_{k=1}^{M-1} A_{k}$ of spirals

$$
A_{k}=\left\{c \theta e^{2 \pi i(\theta-k / M)}: \theta \geq 0\right\}, \quad k=0,1, \ldots, M-1
$$

and a uniformly discrete set $\Lambda_{R} \subseteq B$ such that Λ_{R} is a Fourier frame for $P W_{B(0, R)}$. Thus, all of the elements of $L^{2}(B(0, R))$ will have a decomposition in terms of the Fourier frame $\left\{e_{\lambda}: \lambda \in \wedge_{R}\right\}$.

Method Combine Beurling's theorem and trigonometry.

Problem Although Λ_{R} is constructible, this mathematical solution must be effectively finitized and implemented to be of any use.

A first algorithm for implementation

- Given $N>0$, e.g., $N=256$, let $f \in L^{2}\left([0,1]^{2}\right)$.
- Assume f is piecewise constant (from pixel information) on

$$
\begin{aligned}
& {[m / N,(m+1) /(N+1)) \times[n / N,(n+1) / N),} \\
& \text { where } m, n \in\{0,1, \ldots, N-1\} .
\end{aligned}
$$

- Write f lexicographically as $\left\{f_{a_{k}}\right\}$.

A first algorithm for implementation

- Given $N>0$, e.g., $N=256$, let $f \in L^{2}\left([0,1]^{2}\right)$.
- Assume f is piecewise constant on

$$
\begin{aligned}
& {[m / N,(m+1) /(N+1)) \times[n / N,(n+1) / N),} \\
& \text { where } m, n \in\{0,1, \ldots, N-1\} .
\end{aligned}
$$

- Write f lexicographically as $\left\{f_{a_{k}}\right\}$.
- The Fourier transform of $f \in L^{2}\left(\mathbb{R}^{2}\right)$ is

$$
\hat{f}=\sum_{k=0}^{N^{2}-1} f_{a_{k}} H_{a_{k}},
$$

where $e(\lambda)=e^{-2 \pi i \lambda}$ and
$H_{m, n}(\lambda, \gamma)=\frac{-1}{4 \pi^{2} \lambda \gamma} e\left(\frac{m \lambda+n \gamma}{N}\right)\left(e\left(\frac{\lambda}{N}\right)-1\right)\left(e\left(\frac{\gamma}{N}\right)-1\right)$.
Problem Reconstruct $\left\{f_{a_{k}}\right\}$ from given $\hat{f}_{\alpha_{m}}$, where $\alpha_{m}=\left(\lambda_{m}, \gamma_{m}\right), k=0,1, \ldots, N^{2}-1, m=$ $0,1, \ldots, M-1$, and $M \geq N^{2}$.

The role of finite frames in implementation

Let $H=\mathbb{K}^{N^{2}}$ and take $M \geq N^{2}$. Given $\left\{a_{k}\right.$: $\left.k=0,1, \ldots N^{2}-1\right\}$, let $\alpha=(\lambda, \gamma) \in \widehat{\mathbb{R}}^{2}$, and choose $\alpha_{m}, m=0,1,2, \ldots, M-1$.

The role of finite frames in implementation

Let $H=\mathbb{K}^{N^{2}}$ and take $M \geq N^{2}$. Given $\left\{a_{k}\right.$: $\left.k=0,1, \ldots N^{2}-1\right\}$, let $\alpha=(\lambda, \gamma) \in \widehat{\mathbb{R}}^{2}$, and choose $\alpha_{m}, m=0,1,2, \ldots, M-1$.

- Let $x_{m}=\left(H_{a_{0}}\left(\alpha_{m}\right), H_{a_{1}}\left(\alpha_{m}\right), \ldots, H_{a_{N^{2}-1}}\left(\alpha_{m}\right)\right)$.
- Define $L: H \longrightarrow \ell^{2}\left(\mathbb{Z}_{M}\right)=\mathbb{K}^{M}$,

$$
f \longmapsto\left\{<f, x_{m}>\right\}_{m=0}^{M-1} .
$$

- Equivalently, $L=\left(H_{a_{k}}\left(\alpha_{m}\right)\right), M \times N^{2}$.

The role of finite frames in implementation

Let $H=\mathbb{K}^{N^{2}}$ and take $M \geq N^{2}$. Given $\left\{a_{k}\right.$: $\left.k=0,1, \ldots N^{2}-1\right\}$, let $\alpha=(\lambda, \gamma) \in \widehat{\mathbb{R}}^{2}$, and choose $\alpha_{m}, m=0,1,2, \ldots, M-1$.

- Let $x_{m}=\left(H_{a_{0}}\left(\alpha_{m}\right), H_{a_{1}}\left(\alpha_{m}\right), \ldots, H_{a_{N^{2}-1}}\left(\alpha_{m}\right)\right)$.
- Define $L: H \longrightarrow \ell^{2}\left(\mathbb{Z}_{M}\right)=\mathbb{K}^{M}$,

$$
f \longmapsto\left\{<f, x_{m}>\right\}_{m=0}^{M-1} .
$$

- Equivalently, $L=\left(H_{a_{k}}\left(\alpha_{m}\right)\right), M \times N^{2}$.
- $\left\{x_{m}\right\}_{m=0}^{M-1}$ frame for H implies L is a Bessel map and $S=L^{*} L$, an $N^{2} \times N^{2}$ matrix, where L^{*} is the adjoint of $\mathrm{L} . S$ is the frame operator.
- S "reduces" dimensionality since $M \geq N^{2}$.
- The finite frame decomposition of f is

$$
f=S^{-1} L^{*}(L f)
$$

Logic for empirical evaluation of algorithm

- Given high resolution image I, e.g., 1024×1024.
- Downsample I (room for "creativity") to $I_{N}, N \times N$, e.g., $N=128,256$.
- Therefore, I_{N} is the optimal, available image at $N \times N$ level for comparison purposes.

Logic for empirical evaluation of algorithm

- Given high resolution image I, e.g., 1024×1024.
- Downsample I (room for "creativity") to $I_{N}, N \times N$, e.g., $N=128,256$.
- Therefore, I_{N} is the optimal, available image at $N \times N$ level for comparison purposes.
- Calculate $\hat{I}=\sum I_{a_{k}} H_{a_{k}}\left(10^{6}\right.$ terms per $\left.\alpha_{m}\right)$.
- Take $\hat{I}\left(\alpha_{m}\right), m=0,1, \ldots, M-1 \geq N^{2}-1$.
- Set $L I=\hat{I}, M \times 1$
- Implementation gives $\tilde{I}=S^{-1} L^{*} \widehat{I}$.
- Compare $I_{N}-\tilde{I}, N \times N$.

Optimal $N \times N$ approximant

$$
\text { Let } Q=[0,1]^{2} \text { and set }
$$

$\mathcal{S}_{N}=\left\{f(x, y) \in L^{2}(Q): f \sim\left\{f_{a_{k}}: k=0, \ldots, N^{2}-1\right\}\right\}$
Problem Find the optimal \mathcal{S}_{N} approximant for $f \in L^{2}(Q)$.

Optimal $N \times N$ approximant

Let $Q=[0,1]^{2}$ and set
$\mathcal{S}_{N}=\left\{f(x, y) \in L^{2}(Q): f \sim\left\{f_{a_{k}}: k=0, \ldots, N^{2}-1\right\}\right\}$
Problem Find the optimal \mathcal{S}_{N} approximant for $f \in L^{2}(Q)$.

Solution The minimizer of $\|f-g\|_{2}, g \in \mathcal{S}_{N}$ is

$$
f_{a}(x, y)=\sum A(f)_{a_{k}} \mathbf{1}_{a_{k}}(x, y),
$$

where $A(f)_{a_{k}}$ is the average of f over the a_{k} square, $k=0,1, \cdots, N^{2}-1$.

Asymptotic evaluation of algorithm

- Given $f \in L^{2}(Q)$, fix $N(N=128,256)$, and assume we know \hat{f} in k-space.
- Recall $\mathcal{S}_{N}=\left\{g \in L^{2}(Q): g \sim\left\{g_{a_{k}}\right\}\right\}$.
- Take K, M, and
$\left\{\alpha_{m}: m=0, \ldots, M-1\right\} \subseteq[-K, K]^{2} \subseteq \widehat{\mathbb{R}}^{2}$.
- Denote N^{2} data reconstructed by the algorithm from $\left\{\hat{f}\left(\alpha_{m}\right)\right\}$ by

$$
\tilde{f}=\tilde{f}_{M, K,\left\{\alpha_{m}\right\}} \in \mathcal{S}_{N} .
$$

- $\lim \tilde{f}=\sum_{1}^{N^{2}-1} A(f)_{a_{k}} \mathbf{1}_{a_{k}}$.
- The limit as $M, K \longrightarrow \infty$ must be explained.
- Implementation of the Fourier frame algorithm approaches optimal \mathcal{S}_{N} approximant.

Given u_{0} and $\left\{x_{n}\right\}_{n=1}$

$$
\begin{aligned}
& u_{n}=u_{n-1}+x_{n}-q_{n} \\
& q_{n}=Q\left(u_{n-1}+x_{n}\right)
\end{aligned}
$$

First Order $\Sigma \Delta$

A quantization problem

Qualitative Problem Obtain digital representations for class X, suitable for storage, transmission, recovery.

A quantization problem

Qualitative Problem Obtain digital representations for class X, suitable for storage, transmission, recovery.

Quantitative Problem Find dictionary $\left\{e_{n}\right\} \subseteq X$:

1. Sampling

$$
\forall x \in X, \quad x=\sum x_{n} e_{n}, \quad x_{n} \in \mathbb{K}(\mathbb{R} \text { or } \mathbb{C})
$$

[Continuous range \mathbb{K} is not digital.]
2. Quantization. Construct finite alphabet \mathcal{A} and

$$
Q: X \rightarrow\left\{\sum q_{n} e_{n}: q_{n} \in \mathcal{A} \subseteq \mathbb{K}\right\}
$$

such that $\left|x_{n}-q_{n}\right|$ and/or $\|x-Q x\|$ small.

A quantization problem

Qualitative Problem Obtain digital representations for class X, suitable for storage, transmission, recovery.

Quantitative Problem Find dictionary $\left\{e_{n}\right\} \subseteq X$:

1. Sampling

$$
\forall x \in X, \quad x=\sum x_{n} e_{n}, \quad x_{n} \in \mathbb{K}(\mathbb{R} \text { or } \mathbb{C})
$$

[Continuous range \mathbb{K} is not digital.]
2. Quantization. Construct finite alphabet \mathcal{A} and

$$
Q: X \rightarrow\left\{\sum q_{n} e_{n}: q_{n} \in \mathcal{A} \subseteq \mathbb{K}\right\}
$$

such that $\left|x_{n}-q_{n}\right|$ and/or $\|x-Q x\|$ small.

Methods

1. Fine quantization, e.g., PCM.

Take $q_{n} \in \mathcal{A}$ close to given x_{n}. Reasonable in 16-bit (65,536 levels) digital audio.
2. Coarse quantization, e.g., $\Sigma \Delta$. Use fewer bits to exploit redundancy of $\left\{e_{n}\right\}$ when sampling expansion is not unique.

Quantization

$$
\begin{aligned}
\mathcal{A}_{K}^{\delta}= & \{(-K+1 / 2) \delta,(-K+3 / 2) \delta, \ldots,(-1 / 2) \delta, \\
& (1 / 2) \delta, \ldots,(K-1 / 2) \delta\}
\end{aligned}
$$

Quantization

$$
\begin{aligned}
\mathcal{A}_{K}^{\delta}= & \{(-K+1 / 2) \delta,(-K+3 / 2) \delta, \ldots,(-1 / 2) \delta, \\
& (1 / 2) \delta, \ldots,(K-1 / 2) \delta\}
\end{aligned}
$$

Quantization

$$
\begin{aligned}
\mathcal{A}_{K}^{\delta}= & \{(-K+1 / 2) \delta,(-K+3 / 2) \delta, \ldots,(-1 / 2) \delta, \\
& (1 / 2) \delta, \ldots,(K-1 / 2) \delta\}
\end{aligned}
$$

$$
\begin{aligned}
Q(u) & =\underset{q \in \mathcal{A}_{K}^{\delta}}{\arg \min }|u-q| \\
& =q_{u}
\end{aligned}
$$

Setting

Let $x \in \mathbb{R}^{d},\|x\| \leq 1$. Suppose $F=\left\{e_{n}\right\}_{n=1}^{N}$ is a unit norm tight frame for \mathbb{R}^{d}. Thus, we have

$$
x=\frac{d}{N} \sum_{n=1}^{N} x_{n} e_{n}
$$

with $x_{n}=\left\langle x, e_{n}\right\rangle$. Note: $A=N / d$, and $\left|x_{n}\right| \leq 1$.

Goal Find a "good" quantizer, given

$$
\mathcal{A}_{K}^{\delta}=\left\{\left(-K+\frac{1}{2}\right) \delta,\left(-K+\frac{3}{2}\right) \delta, \ldots,\left(K-\frac{1}{2}\right) \delta\right\} .
$$

Setting

Let $x \in \mathbb{R}^{d},\|x\| \leq 1$. Suppose $F=\left\{e_{n}\right\}_{n=1}^{N}$ is a unit norm tight frame for \mathbb{R}^{d}. Thus, we have

$$
x=\frac{d}{N} \sum_{n=1}^{N} x_{n} e_{n}
$$

with $x_{n}=\left\langle x, e_{n}\right\rangle$. Note: $A=N / d$, and $\left|x_{n}\right| \leq 1$.

Goal Find a "good" quantizer, given

$$
\mathcal{A}_{K}^{\delta}=\left\{\left(-K+\frac{1}{2}\right) \delta,\left(-K+\frac{3}{2}\right) \delta, \ldots,\left(K-\frac{1}{2}\right) \delta\right\} .
$$

Example Consider the alphabet $\mathcal{A}_{1}^{2}=\{-1,1\}$, and $E_{7}=\left\{e_{n}\right\}_{n=1}^{7}$, with $e_{n}=\left(\cos \left(\frac{2 n \pi}{7}\right), \sin \left(\frac{2 n \pi}{7}\right)\right)$.

$$
\Gamma_{\mathcal{A}_{1}^{2}}\left(E_{7}\right)=\left\{\frac{2}{7} \sum_{n=1}^{7} q_{n} e_{n}: q_{n} \in \mathcal{A}_{1}^{2}\right\}
$$

PCM

Replace $\quad x_{n} \leftrightarrow q_{n}=\arg \min \left|x_{n}-q\right|$. $q \in \mathcal{A}_{K}^{\delta}$
Then $\tilde{x}=\frac{d}{N} \sum_{n=1}^{N} q_{n} e_{n}$ satisfies

$$
\begin{aligned}
\|x-\tilde{x}\| & \leq \frac{d}{N}\left\|\sum_{n=1}^{N}\left(x_{n}-q_{n}\right) e_{n}\right\| \\
& \leq \frac{d}{N} \frac{\delta}{2} \sum_{n=1}^{N}\left\|e_{n}\right\|=\frac{d}{2} \delta
\end{aligned}
$$

Not good!

PCM

Replace $\quad x_{n} \leftrightarrow q_{n}=\arg \min \left|x_{n}-q\right|$.

$$
q \in \mathcal{A}_{K}^{\delta}
$$

Then $\tilde{x}=\frac{d}{N} \sum_{n=1}^{N} q_{n} e_{n}$ satisfies

$$
\begin{aligned}
\|x-\tilde{x}\| & \leq \frac{d}{N}\left\|\sum_{n=1}^{N}\left(x_{n}-q_{n}\right) e_{n}\right\| \\
& \leq \frac{d}{N} \frac{\delta}{2} \sum_{n=1}^{N}\left\|e_{n}\right\|=\frac{d}{2} \delta
\end{aligned}
$$

Not good! Bennett’s "white noise assumption"

Assume that $\left(\eta_{n}\right)=\left(x_{n}-q_{n}\right)$ is a sequence of independent, identically distributed random variables with mean 0 and variance $\frac{\delta^{2}}{12}$. Then the mean square error (MSE) satisfies

$$
\text { MSE }=E\|x-\tilde{x}\|^{2} \leq \frac{d}{12 A} \delta^{2}=\frac{(d \delta)^{2}}{12 N}
$$

Remarks

1. Bennett's "white noise assumption" is not rigorous, and not true in certain cases.
2. The MSE behaves like C / A. In the case of $\Sigma \Delta$ quantization of bandlimited functions, the MSE is $O\left(A^{-3}\right)$ (Gray, Güntürk and Thao, Bin Han and Chen). PCM does not utilize redundancy efficiently.
3. The MSE only tells us about the average performance of a quantizer.

Remarks

1. Bennett's "white noise assumption" is not rigorous, and not true in certain cases.
2. The MSE behaves like C / A. In the case of $\Sigma \Delta$ quantization of bandlimited functions, the MSE is $O\left(A^{-3}\right)$ (Gray, Güntürk and Thao, Bin Han and Chen). PCM does not utilize redundancy efficiently.
3. The MSE only tells us about the average performance of a quantizer.

Example (continued):

Let $x=\left(\frac{1}{3}, \frac{1}{2}\right), E_{7}=\left\{\left(\cos \left(\frac{2 n \pi}{7}\right), \sin \left(\frac{2 n \pi}{7}\right)\right)\right\}_{n=1}^{7}$. Consider quantizers with $\mathcal{A}=\{-1,1\}$.

Remarks

1. Bennett's "white noise assumption" is not rigorous, and not true in certain cases.
2. The MSE behaves like C / A. In the case of $\Sigma \Delta$ quantization of bandlimited functions, the MSE is $O\left(A^{-3}\right)$ (Gray, Güntürk and Thao, Bin Han and Chen). PCM does not utilize redundancy efficiently.
3. The MSE only tells us about the average performance of a quantizer.

Example (continued):

Let $x=\left(\frac{1}{3}, \frac{1}{2}\right), E_{7}=\left\{\left(\cos \left(\frac{2 n \pi}{7}\right), \sin \left(\frac{2 n \pi}{7}\right)\right)\right\}_{n=1}^{7}$. Consider quantizers with $\mathcal{A}=\{-1,1\}$.

Remarks

1. Bennett's "white noise assumption" is not rigorous, and not true in certain cases.
2. The MSE behaves like C / A. In the case of $\Sigma \Delta$ quantization of bandlimited functions, the MSE is $O\left(A^{-3}\right)$ (Gray, Güntürk and Thao, Bin Han and Chen). PCM does not utilize redundancy efficiently.
3. The MSE only tells us about the average performance of a quantizer.

Example (continued):

Let $x=\left(\frac{1}{3}, \frac{1}{2}\right), E_{7}=\left\{\left(\cos \left(\frac{2 n \pi}{7}\right), \sin \left(\frac{2 n \pi}{7}\right)\right)\right\}_{n=1}^{7}$. Consider quantizers with $\mathcal{A}=\{-1,1\}$.

$\Sigma \Delta$ quantizers for finite frames

Let $F=\left\{e_{n}\right\}_{n=1}^{N}$ be a frame for $\mathbb{R}^{d}, x \in \mathbb{R}^{d}$.
Define $x_{n}=\left\langle x, e_{n}\right\rangle$.

Fix the ordering p, a permutation of $\{1,2, \ldots, N\}$.
Quantizer alphabet \mathcal{A}_{K}^{δ}
Quantizer function $Q(u)=\arg \min |u-q|$

$$
q \in \mathcal{A}_{K}^{\delta}
$$

$\Sigma \Delta$ quantizers for finite frames

Let $F=\left\{e_{n}\right\}_{n=1}^{N}$ be a frame for $\mathbb{R}^{d}, x \in \mathbb{R}^{d}$.
Define $x_{n}=\left\langle x, e_{n}\right\rangle$.

Fix the ordering p, a permutation of $\{1,2, \ldots, N\}$.
Quantizer alphabet \mathcal{A}_{K}^{δ}
Quantizer function $Q(u)=\arg \min |u-q|$

$$
q \in \mathcal{A}_{K}^{\delta}
$$

Define the first-order $\Sigma \Delta$ quantizer with ordering p and with the quantizer alphabet \mathcal{A}_{K}^{δ} by means of the following recursion.

$$
\begin{aligned}
u_{n}-u_{n-1} & =x_{p(n)}-q_{n} \\
q_{n} & =Q\left(u_{n-1}+x_{p(n)}\right)
\end{aligned}
$$

where $u_{0}=0$ and $n=1,2, \ldots, N$.

Stability

The following stability result is used to prove error estimates.

Proposition If the frame coefficients $\left\{x_{n}\right\}_{n=1}^{N}$ satisfy

$$
\left|x_{n}\right| \leq(K-1 / 2) \delta, \quad n=1, \cdots, N,
$$

then the state sequence $\left\{u_{n}\right\}_{n=0}^{N}$ generated by the first-order $\Sigma \Delta$ quantizer with alphabet \mathcal{A}_{K}^{δ} satisfies

$$
\left|u_{n}\right| \leq \frac{\delta}{2}, \quad n=1, \cdots, N .
$$

Stability

The following stability result is used to prove error estimates.

Proposition If the frame coefficients $\left\{x_{n}\right\}_{n=1}^{N}$ satisfy

$$
\left|x_{n}\right| \leq(K-1 / 2) \delta, \quad n=1, \cdots, N,
$$

then the state sequence $\left\{u_{n}\right\}_{n=0}^{N}$ generated by the first-order $\Sigma \Delta$ quantizer with alphabet \mathcal{A}_{K}^{δ} satisfies

$$
\left|u_{n}\right| \leq \frac{\delta}{2}, \quad n=1, \cdots, N .
$$

- The first-order $\Sigma \Delta$ scheme is equivalent to

$$
u_{n}=\sum_{j=1}^{n} x_{p(j)}-\sum_{j=1}^{n} q_{j}, \quad n=1, \cdots, N .
$$

- Stability results lead to tiling problems for higher order schemes.

Error estimate

Definition Let $F=\left\{e_{n}\right\}_{n=1}^{N}$ be a frame for \mathbb{R}^{d}, and let p be a permutation of $\{1,2, \ldots, N\}$. We define the variation σ of F with respect to p by

$$
\sigma(F, p)=\sum_{n=1}^{N-1}\left\|e_{p(n)}-e_{p(n+1)}\right\| .
$$

Error estimate

Definition Let $F=\left\{e_{n}\right\}_{n=1}^{N}$ be a frame for \mathbb{R}^{d}, and let p be a permutation of $\{1,2, \ldots, N\}$. We define the variation σ of F with respect to p by

$$
\sigma(F, p)=\sum_{n=1}^{N-1}\left\|e_{p(n)}-e_{p(n+1)}\right\| .
$$

Theorem Let $F=\left\{e_{n}\right\}_{n=1}^{N}$ be an A-FNTF for \mathbb{R}^{d}. The approximation

$$
\tilde{x}=\frac{d}{N} \sum_{n=1}^{N} q_{n} e_{p(n)}
$$

generated by the first-order $\Sigma \Delta$ quantizer with ordering p and with the quantizer alphabet \mathcal{A}_{K}^{δ} satisfies

$$
\|x-\tilde{x}\| \leq \frac{(\sigma(E, p)+1) d}{N} \frac{\delta}{2} .
$$

Order is important

Let E_{7} be the FUN-TF for \mathbb{R}^{2} given by the 7 th roots of unity. Randomly select 10,000 points in the unit ball of \mathbb{R}^{2}. Quantize each point using the $\Sigma \Delta$ scheme with alphabet $\mathcal{A}_{4}^{1 / 4}$.

Order is important

Let E_{7} be the FUN-TF for \mathbb{R}^{2} given by the 7 th roots of unity. Randomly select 10,000 points in the unit ball of \mathbb{R}^{2}. Quantize each point using the $\Sigma \Delta$ scheme with alphabet $\mathcal{A}_{4}^{1 / 4}$.

The figures show histograms for $\|x-\widetilde{x}\|$ when the frame coefficients are quantized in their natural order (histogram on left)

$$
x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}
$$

and in the order (histogram on right) given by

$$
x_{1}, x_{4}, x_{7}, x_{3}, x_{6}, x_{2}, x_{5}
$$

Even - odd

$$
\begin{aligned}
& E_{N}=\left\{e_{n}^{N}\right\}_{n=1}^{N}, e_{n}^{N}=(\cos (2 \pi n / N), \sin (2 \pi n / N)) \\
& \text { Let } x=\left(\frac{1}{\pi}, \sqrt{\frac{3}{17}}\right) \\
& \qquad x=\frac{d}{N} \sum_{n=1}^{N} x_{n}^{N} e_{n}^{N}, \quad x_{n}^{N}=\left\langle x, e_{n}^{N}\right\rangle .
\end{aligned}
$$

Even - odd

$E_{N}=\left\{e_{n}^{N}\right\}_{n=1}^{N}, e_{n}^{N}=(\cos (2 \pi n / N), \sin (2 \pi n / N))$.
Let $x=\left(\frac{1}{\pi}, \sqrt{\frac{3}{17}}\right)$.

$$
x=\frac{d}{N} \sum_{n=1}^{N} x_{n}^{N} e_{n}^{N}, \quad x_{n}^{N}=\left\langle x, e_{n}^{N}\right\rangle .
$$

Let \widetilde{x}_{N} be the approximation given by the 1st order $\Sigma \Delta$ quantizer using the alphabet $\{-1,1\}$ and the natural ordering p.

The figure shows a log-log plot of $\left\|x-\widetilde{x}_{N}\right\|$.

Improved estimates

$E_{N}=\left\{e_{n}^{N}\right\}_{n=1}^{N}$, Nth roots of unity FUN-TFs for \mathbb{R}^{2}.

Let $x \in \mathbb{R}^{d},\|x\| \leq(K-1 / 2) \delta$.
Quantize $\quad x=\frac{d}{N} \sum_{n=1}^{N} x_{n}^{N} e_{n}^{N}, \quad x_{n}^{N}=\left\langle x, e_{n}^{N}\right\rangle$
using 1 st order $\Sigma \Delta$ scheme with alphabet \mathcal{A}_{K}^{δ}.

Improved estimates

$E_{N}=\left\{e_{n}^{N}\right\}_{n=1}^{N}$, Nth roots of unity FUN-TFs for \mathbb{R}^{2}.

Let $x \in \mathbb{R}^{d},\|x\| \leq(K-1 / 2) \delta$.
Quantize $\quad x=\frac{d}{N} \sum_{n=1}^{N} x_{n}^{N} e_{n}^{N}, \quad x_{n}^{N}=\left\langle x, e_{n}^{N}\right\rangle$
using 1 st order $\Sigma \Delta$ scheme with alphabet \mathcal{A}_{K}^{δ}.

Theorem If N is even and large then

$$
\|x-\widetilde{x}\| \lesssim \frac{\delta \log N}{N^{5 / 4}} .
$$

If N is odd and large then

$$
\frac{\delta}{N} \lesssim\|x-\widetilde{x}\| \leq \frac{(2 \pi+1) d}{N} \frac{\delta}{2} .
$$

Improved estimates

$E_{N}=\left\{e_{n}^{N}\right\}_{n=1}^{N}$, Nth roots of unity FUN-TFs for \mathbb{R}^{2}.

Let $x \in \mathbb{R}^{d},\|x\| \leq(K-1 / 2) \delta$.
Quantize $\quad x=\frac{d}{N} \sum_{n=1}^{N} x_{n}^{N} e_{n}^{N}, \quad x_{n}^{N}=\left\langle x, e_{n}^{N}\right\rangle$
using 1 st order $\Sigma \Delta$ scheme with alphabet \mathcal{A}_{K}^{δ}.

Theorem If N is even and large then

$$
\|x-\widetilde{x}\| \lesssim \frac{\delta \log N}{N^{5 / 4}} .
$$

If N is odd and large then

$$
\frac{\delta}{N} \lesssim\|x-\widetilde{x}\| \leq \frac{(2 \pi+1) d}{N} \frac{\delta}{2} .
$$

- The proof uses the analytic number theory approach developed by Sinan Güntürk.
- The theorem is true more generally, but additional technical assumptions are needed.

Harmonic frames

Zimmermann and Goyal, Kelner, Kovačević, Thao, Vetterli.

- $H=\mathbb{C}^{d}$. An harmonic frame $\left\{e_{n}\right\}_{n=1}^{N}$ for H is defined by the rows of the Bessel map L which is the complex N-DFT $N \times d$ matrix with $N-d$ columns removed.

Harmonic frames

Zimmermann and Goyal, Kelner, Kovačević, Thao, Vetterli.

- $H=\mathbb{C}^{d}$. An harmonic frame $\left\{e_{n}\right\}_{n=1}^{N}$ for H is defined by the rows of the Bessel map L which is the complex N-DFT $N \times d$ matrix with $N-d$ columns removed.
- $H=\mathbb{R}^{d}, d$ even. The harmonic frame $\left\{e_{n}\right\}_{n=1}^{N}$ is defined by the Bessel map L which is the $N \times d$ matrix whose nth row is

$$
\begin{aligned}
e_{n}^{N}= & \sqrt{\frac{2}{d}}\left(\cos \left(\frac{2 \pi n}{N}\right), \sin \left(\frac{2 \pi n}{N}\right), \ldots,\right. \\
& \left.\cos \left(\frac{2 \pi(d / 2) n}{N}\right), \sin \left(\frac{2 \pi(d / 2) n}{N}\right)\right)
\end{aligned}
$$

- Harmonic frames are FUN-TFs.

Harmonic frames

Zimmermann and Goyal, Kelner, Kovačević, Thao, Vetterli.

- $H=\mathbb{C}^{d}$. An harmonic frame $\left\{e_{n}\right\}_{n=1}^{N}$ for H is defined by the rows of the Bessel map L which is the complex N-DFT $N \times d$ matrix with $N-d$ columns removed.
- $H=\mathbb{R}^{d}, d$ even. The harmonic frame $\left\{e_{n}\right\}_{n=1}^{N}$ is defined by the Bessel map L which is the $N \times d$ matrix whose nth row is

$$
\begin{aligned}
e_{n}^{N}= & \sqrt{\frac{2}{d}}\left(\cos \left(\frac{2 \pi n}{N}\right), \sin \left(\frac{2 \pi n}{N}\right), \ldots\right. \\
& \left.\cos \left(\frac{2 \pi(d / 2) n}{N}\right), \sin \left(\frac{2 \pi(d / 2) n}{N}\right)\right)
\end{aligned}
$$

- Harmonic frames are FUN-TFs.
- Let E_{N} be the harmonic frame for \mathbb{R}^{d} and let p_{N} be the identity permutation. Then

$$
\forall N, \sigma\left(E_{N}, p_{N}\right) \leq \pi d(d+1)
$$

Error estimate for harmonic frames

Theorem Let E_{N} be the harmonic frame for \mathbb{R}^{d} with frame bound N / d. Consider $x \in \mathbb{R}^{d}$, $\|x\| \leq 1$, and suppose the approximation \tilde{x} of x is generated by a first-order $\Sigma \Delta$ quantizer as before. Then

$$
\|x-\tilde{x}\| \leq \frac{d^{2}(d+1)+d}{N} \frac{\delta}{2} .
$$

Error estimate for harmonic frames

Theorem Let E_{N} be the harmonic frame for \mathbb{R}^{d} with frame bound N / d. Consider $x \in \mathbb{R}^{d}$, $\|x\| \leq 1$, and suppose the approximation \tilde{x} of x is generated by a first-order $\Sigma \Delta$ quantizer as before. Then

$$
\|x-\tilde{x}\| \leq \frac{d^{2}(d+1)+d}{N} \frac{\delta}{2} .
$$

- Hence, for harmonic frames (and all those with bounded variation),

$$
\operatorname{MSE}_{\Sigma \Delta} \leq \frac{C_{d}}{N^{2}} \delta^{2} .
$$

Error estimate for harmonic frames

Theorem Let E_{N} be the harmonic frame for \mathbb{R}^{d} with frame bound N / d. Consider $x \in \mathbb{R}^{d}$, $\|x\| \leq 1$, and suppose the approximation \tilde{x} of x is generated by a first-order $\Sigma \Delta$ quantizer as before. Then

$$
\|x-\tilde{x}\| \leq \frac{d^{2}(d+1)+d}{N} \frac{\delta}{2} .
$$

- Hence, for harmonic frames (and all those with bounded variation),

$$
\operatorname{MSE}_{\Sigma \Delta} \leq \frac{C_{d}}{N^{2}} \delta^{2}
$$

- This bound is clearly superior asymptotically to

$$
\text { MSE }_{\text {PCM }}=\frac{(d \delta)^{2}}{12 N}
$$

$\Sigma \Delta$ and "optimal" PCM

The digital encoding

$$
\mathrm{MSE}_{\mathrm{PCM}}=\frac{(d \delta)^{2}}{12 N}
$$

in PCM format leaves open the possibility that decoding (reconstruction) could lead to
"MSE

Goyal, Vetterli, Thao (1998) proved

$$
" M S E_{\mathrm{PCM}}^{\mathrm{opt}} " \sim \frac{\widetilde{C}_{d}}{N^{2}} \delta^{2} .
$$

Theorem The first order $\Sigma \Delta$ scheme achieves the asymptotically optimal MSE $_{\text {PCM }}$ for harmonic frames.

