Finite Frames with Applications to Sigma Delta Quantization and MRI

joint work with

Matt Fickus Alex Powell and Özgür Yılmaz Alfredo Nava-Tudela and Stuart Fletcher Yang B. Wang

Frames $F = \{e_n\}_{n=1}^N$ for *d*-dimensional Hilbert space *H*, e.g., $H = \mathbb{K}^d$, where $\mathbb{K} = \mathbb{C}$ or $\mathbb{K} = \mathbb{R}$.

Frames $F = \{e_n\}_{n=1}^N$ for *d*-dimensional Hilbert space *H*, e.g., $H = \mathbb{K}^d$, where $\mathbb{K} = \mathbb{C}$ or $\mathbb{K} = \mathbb{R}$.

• Any spanning set of vectors in \mathbb{K}^d is a *frame* for \mathbb{K}^d .

Frames $F = \{e_n\}_{n=1}^N$ for *d*-dimensional Hilbert space *H*, e.g., $H = \mathbb{K}^d$, where $\mathbb{K} = \mathbb{C}$ or $\mathbb{K} = \mathbb{R}$.

• Any spanning set of vectors in \mathbb{K}^d is a *frame* for \mathbb{K}^d .

• $F \subseteq \mathbb{K}^d$ is A-tight if

$$\forall x \in \mathbb{K}^d, \ A \|x\|^2 = \sum_{n=1}^N |\langle x, e_n \rangle|^2$$

(A=1 defines Parseval frames).

• F is unit norm if each $||e_n|| = 1$.

Frames $F = \{e_n\}_{n=1}^N$ for *d*-dimensional Hilbert space *H*, e.g., $H = \mathbb{K}^d$, where $\mathbb{K} = \mathbb{C}$ or $\mathbb{K} = \mathbb{R}$.

- Any spanning set of vectors in \mathbb{K}^d is a *frame* for \mathbb{K}^d .
- $F \subseteq \mathbb{K}^d$ is A-tight if

$$\forall x \in \mathbb{K}^d, \ A \|x\|^2 = \sum_{n=1}^N |\langle x, e_n \rangle|^2$$

(A=1 defines Parseval frames).

• F is unit norm if each $||e_n|| = 1$.

• Bessel map
$$-L: H \longrightarrow \ell^2(\mathbb{Z}_N)$$
,
 $x \longmapsto \{\langle x, e_n \rangle\}.$

• Frame operator $-S = L^*L : H \longrightarrow H$.

Tight frames and applications

Theorem $\{e_n\}_{n=1}^N \subseteq \mathbb{K}^d$ is an A-tight frame for $\mathbb{K}^d \iff$

$$S = L^*L = AI : \mathbb{K}^d \longrightarrow \mathbb{K}^d.$$

Tight frames and applications

Theorem $\{e_n\}_{n=1}^N \subseteq \mathbb{K}^d$ is an *A*-tight frame for $\mathbb{K}^d \iff$

$$S = L^*L = AI : \mathbb{K}^d \longrightarrow \mathbb{K}^d.$$

- Robust transmission of data over erasure channels such as the Internet. [Casazza, Goyal, Kelner, Kovačević]
- Multiple antenna code design for wireless communications. [Hochwald, Marzetta, T. Richardson, Sweldens, Urbanke]
- Multiple description coding. [Goyal, Heath, Kovačević, Strohmer, Vetterli]
- Quantum detection. [Chandler Davis, Eldar, Forney, Oppenheim]

Finite unit norm tight frames (FUN-TFs)

• If $\{e_n\}_{n=1}^N$ is a finite unit norm tight frame (A-FUN-TF) for \mathbb{K}^d , then A = N/d.

Finite unit norm tight frames (FUN-TFs)

- If $\{e_n\}_{n=1}^N$ is a finite unit norm tight frame (A-FUN-TF) for \mathbb{K}^d , then A = N/d.
- Let {e_n} be an A-unit norm TF for any separable Hilbert space H. A ≥ 1, and A = 1 ⇔ {e_n} is an ONB for H (Vitali).

Finite unit norm tight frames (FUN-TFs)

- If $\{e_n\}_{n=1}^N$ is a finite unit norm tight frame (A-FUN-TF) for \mathbb{K}^d , then A = N/d.
- Let {e_n} be an A-unit norm TF for any separable Hilbert space H. A ≥ 1, and A = 1 ⇔ {e_n} is an ONB for H (Vitali).
- The geometry of finite tight frames:
 - The vertices of platonic solids are FUN-TFs.
 - Points that constitute FUN-TFs do not have to be equidistributed, e.g., Grassmanian frames.
 - FUN-TFs can be characterized as minimizers of a "frame potential function" (with Fickus) analogous to

Coulomb's Law.

Frame force and potential energy

$$F: S^{d-1} \times S^{d-1} \setminus D \longrightarrow \mathbb{R}^d$$
$$P: S^{d-1} \times S^{d-1} \setminus D \longrightarrow \mathbb{R},$$

where

 $P(a,b) = p(||a - b||), \qquad p'(x) = -xf(x)$

Frame force and potential energy

$$F: S^{d-1} \times S^{d-1} \setminus D \longrightarrow \mathbb{R}^d$$
$$P: S^{d-1} \times S^{d-1} \setminus D \longrightarrow \mathbb{R},$$

where

$$P(a,b) = p(||a - b||), \qquad p'(x) = -xf(x)$$

$$CF(a,b) = (a-b)/||a-b||^3, \qquad f(x) = 1/x^3$$

Frame force and potential energy

$$F: S^{d-1} \times S^{d-1} \setminus D \longrightarrow \mathbb{R}^d$$
$$P: S^{d-1} \times S^{d-1} \setminus D \longrightarrow \mathbb{R},$$

where

 $P(a,b) = p(||a - b||), \qquad p'(x) = -xf(x)$

• Coulomb force

$$CF(a,b) = (a-b)/||a-b||^3, \quad f(x) = 1/x^3$$

• Frame force
$$FF(a,b) = \langle a,b \rangle (a-b), \qquad f(x) = 1-x^2/2$$

• Total potential energy for the frame force $TFP(\{x_n\}) = \sum_{m=1}^{N} \sum_{n=1}^{N} |\langle x_m, x_n \rangle|^2$

Characterization of FUN-TFs

For the Hilbert space $H = \mathbb{R}^d$ and N, consider

$$\{x_n\}_1^N \in S^{d-1} \times \dots \times S^{d-1}$$

and

$$TFP(\{x_n\}) = \sum_{m=1}^{N} \sum_{n=1}^{N} |\langle x_m, x_n \rangle|^2.$$

Theorem Let $N \leq d$. The minimum value of TFP, for the frame force and N variables, is N; and the *minimizers* are precisely the orthonormal sets of N elements for \mathbb{R}^d .

Theorem Let $N \ge d$. The minimum value of *TFP*, for the frame force and *N* variables, is N^2/d ; and the *minimizers* are precisely the FUN-TFs of *N* elements for \mathbb{R}^d .

Characterization of FUN-TFs

For the Hilbert space $H = \mathbb{R}^d$ and N, consider

$$\{x_n\}_1^N \in S^{d-1} \times \dots \times S^{d-1}$$

and

$$TFP(\{x_n\}) = \sum_{m=1}^{N} \sum_{n=1}^{N} |\langle x_m, x_n \rangle|^2.$$

Theorem Let $N \leq d$. The minimum value of TFP, for the frame force and N variables, is N; and the *minimizers* are precisely the orthonormal sets of N elements for \mathbb{R}^d .

Theorem Let $N \ge d$. The minimum value of *TFP*, for the frame force and *N* variables, is N^2/d ; and the *minimizers* are precisely the FUN-TFs of *N* elements for \mathbb{R}^d .

Problem Find these FUN-TFs analytically, effectively, and computationally.

Imaging equation

• The MR signal (or FID or echo) measured for imaging is

$$S(t) = S(k(t)) = S(k_x(t), k_y(t), k_z(t))$$

$$= \int \int \int \rho(x, y, z) \exp[-2\pi i < (x, y, z)],$$

$$(k_x(t), k_y(t), k_z(t)) >]e^{-t/T_2} dx dy dz$$

where

$$k_x(t) = \gamma \int_0^t G_x(u) du.$$

 $G_x(t)$ is an x-directional time varying gradient and ρ is the spin density function.

Imaging equation

 The MR signal (or FID or echo) measured for imaging is

$$S(t) = S(k(t)) = S(k_x(t), k_y(t), k_z(t))$$

$$= \int \int \int \rho(x, y, z) \exp[-2\pi i < (x, y, z)],$$

$$(k_x(t), k_y(t), k_z(t)) >]e^{-t/T_2} dx dy dz$$

where

$$k_x(t) = \gamma \int_0^t G_x(u) du.$$

 $G_x(t)$ is an x-directional time varying gradient and ρ is the spin density function.

- The imaging equation is a consequence of Bloch's equation for transverse magnetization.
- The imaging equation is a physical Fourier transformer.

Spiral echo planar imaging (SEPI)

• Design gradients G as input to the MR process resulting in the imaging equation.

• Set

 $G_x(t) = \eta \cos \xi t - \eta \xi t \sin \xi t$

 $G_y(t) = \eta \sin \xi t + \eta \xi t \cos \xi t.$

Then $k_x(t) = \gamma \eta t \cos \xi t$ and $k_y(t) = \gamma \eta t \sin \xi t$. k_x and k_y yield the Archimedean spiral

 $A_c = \{ (c\theta \cos 2\pi\theta, c\theta \sin 2\pi\theta) : \theta \ge 0 \} \subseteq \widehat{\mathbb{R}}^2, \\ \theta = \theta(t) = (1/2\pi)\xi t, \ c = (1/\theta)\gamma \eta = 2\pi\gamma\eta/\xi.$

Spiral echo planar imaging (SEPI)

• Design gradients G as input to the MR process resulting in the imaging equation.

• Set

 $G_x(t) = \eta \cos \xi t - \eta \xi t \sin \xi t$

 $G_y(t) = \eta \sin \xi t + \eta \xi t \cos \xi t.$

Then $k_x(t) = \gamma \eta t \cos \xi t$ and $k_y(t) = \gamma \eta t \sin \xi t$. k_x and k_y yield the Archimedean spiral

 $A_c = \{ (c\theta \cos 2\pi\theta, c\theta \sin 2\pi\theta) : \theta \ge 0 \} \subseteq \widehat{\mathbb{R}}^2, \\ \theta = \theta(t) = (1/2\pi)\xi t, \ c = (1/\theta)\gamma \eta = 2\pi\gamma\eta/\xi.$

- S takes values on A_c .
- Spiral scanning gives high speed data acquisition at the "Nyquist rate".
- Rectilinear scanning is expensive at the corners.

Fourier frames for $L^2(E)$

Let $E \subseteq \mathbb{R}^d$ be closed. The *Paley-Wiener* space PW_E is

$$PW_E = \left\{ \varphi \in L^2(\widehat{\mathbb{R}}^d) : \operatorname{supp} \varphi^{\vee} \subseteq E \right\},$$

where

$$\varphi^{\vee}(x) = \int_{\widehat{\mathbb{R}}^d} \varphi(\gamma) e^{2\pi i x \cdot \gamma} d\gamma.$$

Fourier frames for $L^2(E)$

Let $E \subseteq \mathbb{R}^d$ be closed. The *Paley-Wiener* space PW_E is

$$PW_E = \left\{ \varphi \in L^2(\widehat{\mathbb{R}}^d) : \operatorname{supp} \varphi^{\vee} \subseteq E \right\},$$

where

$$\varphi^{\vee}(x) = \int_{\widehat{\mathbb{R}}^d} \varphi(\gamma) e^{2\pi i x \cdot \gamma} d\gamma.$$

Definition Given $\Lambda \subseteq \widehat{\mathbb{R}}^d$ and $E \subseteq \mathbb{R}^d$ with finite Lebesgue measure. Let $e_{-\lambda}(x) = e^{-2\pi i x \cdot \lambda}$. $\{e_{-\lambda} : \lambda \in \Lambda\}$ is a *frame* for $L^2(E)$ if

 $\forall \varphi \in PW_E, A \|\varphi\|_{L^2(\widehat{\mathbb{R}}^d)} \leq \sum_{\lambda \in \Lambda} |\varphi(\lambda)|^2 \leq B \|\varphi\|_{L^2(\widehat{\mathbb{R}}^d)}.$

In this case we say that $\Lambda \subseteq \widehat{\mathbb{R}}^d$ is a Fourier frame for $L^2(E) \subseteq L^2(\mathbb{R}^d)$.

Fourier frames for $L^2(E)$

Let $E \subseteq \mathbb{R}^d$ be closed. The *Paley-Wiener* space PW_E is

$$PW_E = \left\{ \varphi \in L^2(\widehat{\mathbb{R}}^d) : \operatorname{supp} \varphi^{\vee} \subseteq E \right\},$$

where

$$\varphi^{\vee}(x) = \int_{\widehat{\mathbb{R}}^d} \varphi(\gamma) e^{2\pi i x \cdot \gamma} d\gamma.$$

Definition Given $\Lambda \subseteq \widehat{\mathbb{R}}^d$ and $E \subseteq \mathbb{R}^d$ with finite Lebesgue measure. Let $e_{-\lambda}(x) = e^{-2\pi i x \cdot \lambda}$. $\{e_{-\lambda} : \lambda \in \Lambda\}$ is a *frame* for $L^2(E)$ if

 $\forall \varphi \in PW_E, A \|\varphi\|_{L^2(\widehat{\mathbb{R}}^d)} \leq \sum_{\lambda \in \Lambda} |\varphi(\lambda)|^2 \leq B \|\varphi\|_{L^2(\widehat{\mathbb{R}}^d)}.$

In this case we say that $\Lambda \subseteq \widehat{\mathbb{R}}^d$ is a *Fourier* frame for $L^2(E) \subseteq L^2(\mathbb{R}^d)$.

Definition $\Lambda \subseteq \widehat{\mathbb{R}}^d$ is *uniformly discrete* if there is r > 0 such that

$$\forall \lambda, \gamma \in \Lambda, \qquad |\lambda - \gamma| \ge r.$$

A theorem of Beurling

Theorem Let $\Lambda \subseteq \widehat{\mathbb{R}}^d$ be uniformly discrete, and define

$$\rho = \rho(\Lambda) = \sup_{\zeta \in \widehat{\mathbb{R}}^d} \operatorname{dist}(\zeta, \Lambda),$$

where dist (ζ, Λ) is Euclidean distance between ζ and Λ , and $B(0, R) \subseteq \mathbb{R}^d$ is closed ball centered at $0 \in \mathbb{R}^d$ with radius R. If $R\rho < 1/4$, then Λ is a Fourier frame for $PW_{B(0,R)}$.

A theorem of Beurling

Theorem Let $\Lambda \subseteq \widehat{\mathbb{R}}^d$ be uniformly discrete, and define

$$\rho = \rho(\Lambda) = \sup_{\zeta \in \widehat{\mathbb{R}}^d} \operatorname{dist}(\zeta, \Lambda),$$

where dist (ζ, Λ) is Euclidean distance between ζ and Λ , and $B(0, R) \subseteq \mathbb{R}^d$ is closed ball centered at $0 \in \mathbb{R}^d$ with radius R. If $R\rho < 1/4$, then Λ is a Fourier frame for $PW_{B(0,R)}$.

Remark The assertion of Beurling's theorem implies

 $\forall f \in L^2(B(0,R)), \qquad f(x) = \sum_{\lambda \in \Lambda} a_\lambda(f) e^{2\pi i x \cdot \lambda}$

in $L^{2}(B(0, R))$, where

$$\sum_{\lambda \in \Lambda} |a_{\lambda}(f)|^2 < \infty.$$

An MRI problem and mathematical solution

Given any R > 0 and c > 0. Consider the Archimedean spiral A_c .

We can show how to construct a finite interleaving set $B = \bigcup_{k=1}^{M-1} A_k$ of spirals

 $A_{k} = \left\{ c\theta e^{2\pi i (\theta - k/M)} : \theta \ge 0 \right\}, \quad k = 0, 1, \dots, M-1,$ and a uniformly discrete set $\Lambda_{R} \subseteq B$ such that Λ_{R} is a Fourier frame for $PW_{B(0,R)}$. Thus, all of the elements of $L^{2}(B(0,R))$ will have a decomposition in terms of the Fourier frame $\{e_{\lambda} : \lambda \in \Lambda_{R}\}.$

An MRI problem and mathematical solution

Given any R > 0 and c > 0. Consider the Archimedean spiral A_c .

We can show how to construct a finite interleaving set $B = \bigcup_{k=1}^{M-1} A_k$ of spirals

 $A_{k} = \left\{ c\theta e^{2\pi i (\theta - k/M)} : \theta \ge 0 \right\}, \quad k = 0, 1, \dots, M-1,$ and a uniformly discrete set $\Lambda_{R} \subseteq B$ such that Λ_{R} is a Fourier frame for $PW_{B(0,R)}$. Thus, all of the elements of $L^{2}(B(0,R))$ will have a decomposition in terms of the Fourier frame $\{e_{\lambda} : \lambda \in \Lambda_{R}\}.$

Method Combine Beurling's theorem and trigonometry.

Problem Although Λ_R is constructible, this mathematical solution must be effectively finitized and implemented to be of any use.

A first algorithm for implementation

- Given N > 0, e.g., N = 256, let $f \in L^2([0, 1]^2)$.
- Assume *f* is piecewise constant (from pixel information) on

 $[m/N, (m+1)/(N+1)) \times [n/N, (n+1)/N),$ where $m, n \in \{0, 1, ..., N-1\}.$

• Write f lexicographically as $\{f_{a_k}\}$.

A first algorithm for implementation

- Given N > 0, e.g., N = 256, let $f \in L^2([0, 1]^2)$.
- Assume f is piecewise constant on $[m/N, (m+1)/(N+1)) \times [n/N, (n+1)/N),$ where $m, n \in \{0, 1, ..., N-1\}.$
- Write f lexicographically as $\{f_{a_k}\}$.
- The Fourier transform of $f \in L^2(\mathbb{R}^2)$ is

$$\widehat{f} = \sum_{k=0}^{N^2-1} f_{a_k} H_{a_k},$$
 where $e(\lambda) = e^{-2\pi i \lambda}$ and

$$H_{m,n}(\lambda,\gamma) = \frac{-1}{4\pi^2\lambda\gamma} e(\frac{m\lambda+n\gamma}{N})(e(\frac{\lambda}{N})-1)(e(\frac{\gamma}{N})-1).$$

Problem Reconstruct $\{f_{a_k}\}$ from given \hat{f}_{α_m} , where $\alpha_m = (\lambda_m, \gamma_m)$, $k = 0, 1, ..., N^2 - 1$, m = 0, 1, ..., M - 1, and $M \ge N^2$.

The role of finite frames in implementation

Let $H = \mathbb{K}^{N^2}$ and take $M \ge N^2$. Given $\{a_k : k = 0, 1, \dots, N^2 - 1\}$, let $\alpha = (\lambda, \gamma) \in \mathbb{R}^2$, and choose α_m , $m = 0, 1, 2, \dots, M - 1$.

The role of finite frames in implementation

Let $H = \mathbb{K}^{N^2}$ and take $M \ge N^2$. Given $\{a_k : k = 0, 1, \dots, N^2 - 1\}$, let $\alpha = (\lambda, \gamma) \in \mathbb{R}^2$, and choose α_m , $m = 0, 1, 2, \dots, M - 1$.

• Let
$$x_m = (H_{a_0}(\alpha_m), H_{a_1}(\alpha_m), \dots, H_{a_{N^2-1}}(\alpha_m)).$$

• Define
$$L : H \longrightarrow \ell^2(\mathbb{Z}_M) = \mathbb{K}^M$$
,
 $f \longmapsto \{ \langle f, x_m \rangle \}_{m=0}^{M-1}$.

• Equivalently,
$$L = (H_{a_k}(\alpha_m)), M \times N^2$$
.

The role of finite frames in implementation

Let $H = \mathbb{K}^{N^2}$ and take $M \ge N^2$. Given $\{a_k : k = 0, 1, \dots, N^2 - 1\}$, let $\alpha = (\lambda, \gamma) \in \widehat{\mathbb{R}}^2$, and choose α_m , $m = 0, 1, 2, \dots, M - 1$.

• Let
$$x_m = (H_{a_0}(\alpha_m), H_{a_1}(\alpha_m), \dots, H_{a_{N^2-1}}(\alpha_m)).$$

• Define
$$L : H \longrightarrow \ell^2(\mathbb{Z}_M) = \mathbb{K}^M$$
,
 $f \longmapsto \{ \langle f, x_m \rangle \}_{m=0}^{M-1}$.

- Equivalently, $L = (H_{a_k}(\alpha_m)), M \times N^2$.
- $\{x_m\}_{m=0}^{M-1}$ frame for H implies L is a Bessel map and $S = L^*L$, an $N^2 \times N^2$ matrix, where L^* is the adjoint of L. S is the frame operator.
- S "reduces" dimensionality since $M \ge N^2$.
- The finite frame decomposition of f is $f = S^{-1}L^*(Lf).$

Logic for empirical evaluation of algorithm

- Given high resolution image I, e.g., 1024×1024 .
- Downsample I (room for "creativity") to I_N , $N \times N$, e.g., N = 128,256.
- Therefore, I_N is the optimal, available image at $N \times N$ level for comparison purposes.

Logic for empirical evaluation of algorithm

- Given high resolution image *I*, e.g., 1024×1024.
- Downsample I (room for "creativity") to I_N , $N \times N$, e.g., N = 128,256.
- Therefore, I_N is the optimal, available image at $N \times N$ level for comparison purposes.
- Calculate $\hat{I} = \sum I_{a_k} H_{a_k}$ (10⁶ terms per α_m).
- Take $\hat{I}(\alpha_m)$, $m = 0, 1, ..., M 1 \ge N^2 1$.
- Set $LI = \hat{I}, M \times 1$
- Implementation gives $\tilde{I} = S^{-1}L^*\hat{I}$.
- Compare $I_N \tilde{I}$, $N \times N$.

Optimal $N \times N$ approximant

Let $Q = [0, 1]^2$ and set

 $S_N = \left\{ f(x,y) \in L^2(Q) : f \sim \{f_{a_k} : k = 0, \dots, N^2 - 1\} \right\}$ **Problem** Find the optimal S_N approximant for $f \in L^2(Q)$.

Optimal $N \times N$ approximant

Let $Q = [0, 1]^2$ and set

 $S_N = \left\{ f(x, y) \in L^2(Q) : f \sim \{ f_{a_k} : k = 0, \dots, N^2 - 1 \} \right\}$ **Problem** Find the optimal S_N approximant for $f \in L^2(Q)$.

Solution The minimizer of $||f - g||_2, g \in \mathcal{S}_N$ is

 $f_a(x,y) = \sum A(f)_{a_k} \mathbf{1}_{a_k}(x,y),$

where $A(f)_{a_k}$ is the average of f over the a_k square, $k = 0, 1, \dots, N^2 - 1$.

Asymptotic evaluation of algorithm

• Given $f \in L^2(Q)$, fix N (N = 128, 256), and assume we know \hat{f} in k-space.

• Recall
$$\mathcal{S}_N = \left\{ g \in L^2(Q) : g \sim \{g_{a_k}\} \right\}.$$

• Take
$$K, M$$
, and
 $\{\alpha_m : m = 0, \dots, M - 1\} \subseteq [-K, K]^2 \subseteq \widehat{\mathbb{R}}^2.$

• Denote N^2 data reconstructed by the algorithm from $\{\widehat{f}(\alpha_m)\}$ by

$$\tilde{f} = \tilde{f}_{M,K,\{\alpha_m\}} \in \mathcal{S}_N.$$

•
$$\lim \tilde{f} = \sum_{1}^{N^2 - 1} A(f)_{a_k} \mathbf{1}_{a_k}.$$

- The limit as $M, K \longrightarrow \infty$ must be explained.
- Implementation of the Fourier frame algorithm approaches optimal S_N approximant.

First Order $\Sigma\Delta$

A quantization problem

Qualitative Problem Obtain *digital* representations for class X, suitable for storage, transmission, recovery.

A quantization problem

Qualitative Problem Obtain *digital* representations for class X, suitable for storage, transmission, recovery.

Quantitative Problem Find dictionary $\{e_n\} \subseteq X$:

1. Sampling

 $\forall x \in X, x = \sum x_n e_n, x_n \in \mathbb{K} (\mathbb{R} \text{ or } \mathbb{C})$ [Continuous range \mathbb{K} is not digital.]

2. Quantization. Construct finite alphabet ${\mathcal A}$ and

 $Q: X \to \{ \sum q_n e_n : q_n \in \mathcal{A} \subseteq \mathbb{K} \}$ such that $|x_n - q_n|$ and/or ||x - Qx|| small.

A quantization problem

Qualitative Problem Obtain *digital* representations for class X, suitable for storage, transmission, recovery.

Quantitative Problem Find dictionary $\{e_n\} \subseteq X$:

1. Sampling

 $\forall x \in X, x = \sum x_n e_n, x_n \in \mathbb{K} (\mathbb{R} \text{ or } \mathbb{C})$ [Continuous range \mathbb{K} is not digital.]

2. Quantization. Construct finite alphabet ${\cal A}$ and

$$Q: X \to \{ \sum q_n e_n : q_n \in \mathcal{A} \subseteq \mathbb{K} \}$$

such that $|x_n - q_n|$ and/or ||x - Qx|| small.

Methods

- 1. Fine quantization, e.g., PCM. Take $q_n \in \mathcal{A}$ close to given x_n . Reasonable in 16-bit (65,536 levels) digital audio.
- 2. Coarse quantization, e.g., $\Sigma\Delta$. Use fewer bits to exploit redundancy of $\{e_n\}$ when sampling expansion is not unique.

Quantization

 $\mathcal{A}_{K}^{\delta} = \{(-K+1/2)\delta, (-K+3/2)\delta, \dots, (-1/2)\delta, (1/2)\delta, \dots, (K-1/2)\delta\}$

Quantization

Quantization

Setting

Let $x \in \mathbb{R}^d$, $||x|| \leq 1$. Suppose $F = \{e_n\}_{n=1}^N$ is a unit norm tight frame for \mathbb{R}^d . Thus, we have

$$x = \frac{d}{N} \sum_{n=1}^{N} x_n e_n$$

with $x_n = \langle x, e_n \rangle$. Note: A = N/d, and $|x_n| \leq 1$.

Goal Find a "good" quantizer, given

$$\mathcal{A}_{K}^{\delta} = \{(-K + \frac{1}{2})\delta, (-K + \frac{3}{2})\delta, \dots, (K - \frac{1}{2})\delta\}.$$

Setting

Let $x \in \mathbb{R}^d$, $||x|| \leq 1$. Suppose $F = \{e_n\}_{n=1}^N$ is a unit norm tight frame for \mathbb{R}^d . Thus, we have

$$x = \frac{d}{N} \sum_{n=1}^{N} x_n e_n$$

with $x_n = \langle x, e_n \rangle$. Note: A = N/d, and $|x_n| \le 1$.

Goal Find a "good" quantizer, given

$$\mathcal{A}_{K}^{\delta} = \{(-K + \frac{1}{2})\delta, (-K + \frac{3}{2})\delta, \dots, (K - \frac{1}{2})\delta\}.$$

Example Consider the alphabet $\mathcal{A}_1^2 = \{-1, 1\}$, and $E_7 = \{e_n\}_{n=1}^7$, with $e_n = (\cos(\frac{2n\pi}{7}), \sin(\frac{2n\pi}{7}))$.

PCM

Replace $x_n \leftrightarrow q_n = \underset{q \in \mathcal{A}_K^{\delta}}{\arg \min} |x_n - q|.$ Then $\tilde{x} = \frac{d}{N} \sum_{n=1}^{N} q_n e_n$ satisfies $\|x - \tilde{x}\| \leq \frac{d}{N} \|\sum_{n=1}^{N} (x_n - q_n) e_n\|$ $\leq \frac{d}{N} \frac{\delta}{2} \sum_{n=1}^{N} \|e_n\| = \frac{d}{2} \delta$

Not good!

PCM

Replace
$$x_n \leftrightarrow q_n = \underset{q \in \mathcal{A}_K^{\delta}}{\operatorname{argmin}} |x_n - q|.$$

Then $\tilde{x} = \frac{d}{N} \sum_{n=1}^{N} q_n e_n$ satisfies
 $||x - \tilde{x}|| \leq \frac{d}{N} ||\sum_{n=1}^{N} (x_n - q_n) e_n||$
 $\leq \frac{d}{N} \frac{\delta}{2} \sum_{n=1}^{N} ||e_n|| = \frac{d}{2} \delta$

Not good! Bennett's "white noise assumption"

Assume that $(\eta_n) = (x_n - q_n)$ is a sequence of independent, identically distributed random variables with mean 0 and variance $\frac{\delta^2}{12}$. Then the mean square error (MSE) satisfies

MSE =
$$E ||x - \tilde{x}||^2 \le \frac{d}{12A} \ \delta^2 = \frac{(d\delta)^2}{12N}$$

- 1. Bennett's "white noise assumption" is not rigorous, and not true in certain cases.
- 2. The MSE behaves like C/A. In the case of $\Sigma \Delta$ quantization of bandlimited functions, the MSE is $O(A^{-3})$ (Gray, Güntürk and Thao, Bin Han and Chen). PCM does not utilize redundancy efficiently.
- 3. The MSE only tells us about the average performance of a quantizer.

- 1. Bennett's "white noise assumption" is not rigorous, and not true in certain cases.
- 2. The MSE behaves like C/A. In the case of $\Sigma \Delta$ quantization of bandlimited functions, the MSE is $O(A^{-3})$ (Gray, Güntürk and Thao, Bin Han and Chen). PCM does not utilize redundancy efficiently.
- 3. The MSE only tells us about the average performance of a quantizer.

Example (continued):

Let $x = (\frac{1}{3}, \frac{1}{2})$, $E_7 = \{(\cos(\frac{2n\pi}{7}), \sin(\frac{2n\pi}{7}))\}_{n=1}^7$. Consider quantizers with $\mathcal{A} = \{-1, 1\}$.

- 1. Bennett's "white noise assumption" is not rigorous, and not true in certain cases.
- 2. The MSE behaves like C/A. In the case of $\Sigma \Delta$ quantization of bandlimited functions, the MSE is $O(A^{-3})$ (Gray, Güntürk and Thao, Bin Han and Chen). PCM does not utilize redundancy efficiently.
- 3. The MSE only tells us about the average performance of a quantizer.

Example (continued):

Let $x = (\frac{1}{3}, \frac{1}{2})$, $E_7 = \{(\cos(\frac{2n\pi}{7}), \sin(\frac{2n\pi}{7}))\}_{n=1}^7$. Consider quantizers with $\mathcal{A} = \{-1, 1\}$.

- 1. Bennett's "white noise assumption" is not rigorous, and not true in certain cases.
- 2. The MSE behaves like C/A. In the case of $\Sigma \Delta$ quantization of bandlimited functions, the MSE is $O(A^{-3})$ (Gray, Güntürk and Thao, Bin Han and Chen). PCM does not utilize redundancy efficiently.
- 3. The MSE only tells us about the average performance of a quantizer.

Example (continued):

Let $x = (\frac{1}{3}, \frac{1}{2})$, $E_7 = \{(\cos(\frac{2n\pi}{7}), \sin(\frac{2n\pi}{7}))\}_{n=1}^7$. Consider quantizers with $\mathcal{A} = \{-1, 1\}$.

$\Sigma \Delta$ quantizers for finite frames

Let $F = \{e_n\}_{n=1}^N$ be a frame for \mathbb{R}^d , $x \in \mathbb{R}^d$.

Define $x_n = \langle x, e_n \rangle$.

Fix the ordering p, a permutation of $\{1, 2, \ldots, N\}$.

Quantizer alphabet \mathcal{A}_K^{δ}

Quantizer function $Q(u) = \underset{q \in \mathcal{A}_{K}^{\delta}}{\operatorname{arg\,min}} |u - q|$

$\Sigma \Delta$ quantizers for finite frames

Let $F = \{e_n\}_{n=1}^N$ be a frame for \mathbb{R}^d , $x \in \mathbb{R}^d$.

Define $x_n = \langle x, e_n \rangle$.

Fix the ordering p, a permutation of $\{1, 2, \ldots, N\}$.

Quantizer alphabet \mathcal{A}_K^{δ}

Quantizer function $Q(u) = \underset{q \in \mathcal{A}_{K}^{\delta}}{\operatorname{arg\,min}} |u - q|$

Define the first-order $\Sigma \Delta$ quantizer with ordering p and with the quantizer alphabet \mathcal{A}_{K}^{δ} by means of the following recursion.

$$u_n - u_{n-1} = x_{p(n)} - q_n$$

 $q_n = Q(u_{n-1} + x_{p(n)})$

where $u_0 = 0$ and n = 1, 2, ..., N.

Stability

The following stability result is used to prove error estimates.

Proposition If the frame coefficients $\{x_n\}_{n=1}^N$ satisfy

 $|x_n| \le (K - 1/2)\delta, \quad n = 1, \cdots, N,$

then the state sequence $\{u_n\}_{n=0}^N$ generated by the first-order $\Sigma \Delta$ quantizer with alphabet \mathcal{A}_K^δ satisfies

$$|u_n| \leq \frac{\delta}{2}, \quad n = 1, \cdots, N.$$

Stability

The following stability result is used to prove error estimates.

Proposition If the frame coefficients $\{x_n\}_{n=1}^N$ satisfy

 $|x_n| \leq (K-1/2)\delta, \quad n=1,\cdots,N,$

then the state sequence $\{u_n\}_{n=0}^N$ generated by the first-order $\Sigma \Delta$ quantizer with alphabet \mathcal{A}_K^δ satisfies

$$|u_n| \leq \frac{\delta}{2}, \quad n = 1, \cdots, N.$$

• The first-order $\Sigma\Delta$ scheme is equivalent to

$$u_n = \sum_{j=1}^n x_{p(j)} - \sum_{j=1}^n q_j, \quad n = 1, \cdots, N.$$

• Stability results lead to tiling problems for higher order schemes.

Error estimate

Definition Let $F = \{e_n\}_{n=1}^N$ be a frame for \mathbb{R}^d , and let p be a permutation of $\{1, 2, \ldots, N\}$. We define the *variation* σ of F with respect to p by

$$\sigma(F,p) = \sum_{n=1}^{N-1} \|e_{p(n)} - e_{p(n+1)}\|.$$

Error estimate

Definition Let $F = \{e_n\}_{n=1}^N$ be a frame for \mathbb{R}^d , and let p be a permutation of $\{1, 2, \ldots, N\}$. We define the *variation* σ of F with respect to p by

$$\sigma(F,p) = \sum_{n=1}^{N-1} \|e_{p(n)} - e_{p(n+1)}\|.$$

Theorem Let $F = \{e_n\}_{n=1}^N$ be an *A*-FNTF for \mathbb{R}^d . The approximation

$$\tilde{x} = \frac{d}{N} \sum_{n=1}^{N} q_n e_{p(n)}$$

generated by the first-order $\Sigma\Delta$ quantizer with ordering p and with the quantizer alphabet \mathcal{A}_K^δ satisfies

$$||x - \tilde{x}|| \leq \frac{(\sigma(E, p) + 1)d}{N} \frac{\delta}{2}.$$

Order is important

Let E_7 be the FUN-TF for \mathbb{R}^2 given by the 7th roots of unity. Randomly select 10,000 points in the unit ball of \mathbb{R}^2 . Quantize each point using the $\Sigma \Delta$ scheme with alphabet $\mathcal{A}_4^{1/4}$.

Order is important

Let E_7 be the FUN-TF for \mathbb{R}^2 given by the 7th roots of unity. Randomly select 10,000 points in the unit ball of \mathbb{R}^2 . Quantize each point using the $\Sigma\Delta$ scheme with alphabet $\mathcal{A}_4^{1/4}$.

The figures show histograms for $||x - \tilde{x}||$ when the frame coefficients are quantized in their natural order (histogram on left)

*x*₁, *x*₂, *x*₃, *x*₄, *x*₅, *x*₆, *x*₇

and in the order (histogram on right) given by

$$x_1, x_4, x_7, x_3, x_6, x_2, x_5.$$

 $E_N = \{e_n^N\}_{n=1}^N, e_n^N = (\cos(2\pi n/N), \sin(2\pi n/N)).$ Let $x = (\frac{1}{\pi}, \sqrt{\frac{3}{17}}).$

$$x = \frac{d}{N} \sum_{n=1}^{N} x_n^N e_n^N, \quad x_n^N = \langle x, e_n^N \rangle.$$

Let \tilde{x}_N be the approximation given by the 1st order $\Sigma \Delta$ quantizer using the alphabet $\{-1, 1\}$ and the natural ordering p.

The figure shows a log-log plot of $||x - \tilde{x}_N||$.

Improved estimates

 $E_N = \{e_n^N\}_{n=1}^N$, Nth roots of unity FUN-TFs for \mathbb{R}^2 .

Let $x \in \mathbb{R}^d$, $||x|| \leq (K - 1/2)\delta$.

Quantize
$$x = \frac{d}{N} \sum_{n=1}^{N} x_n^N e_n^N, \quad x_n^N = \langle x, e_n^N \rangle$$

using 1st order $\Sigma \Delta$ scheme with alphabet \mathcal{A}_K^{δ} .

Improved estimates

 $E_N = \{e_n^N\}_{n=1}^N$, Nth roots of unity FUN-TFs for \mathbb{R}^2 .

Let
$$x \in \mathbb{R}^d$$
, $||x|| \le (K - 1/2)\delta$.
Quantize $x = \frac{d}{N} \sum_{n=1}^N x_n^N e_n^N$, $x_n^N = \langle x, e_n^N \rangle$

using 1st order $\Sigma \Delta$ scheme with alphabet \mathcal{A}_K^{δ} .

Theorem If N is even and large then

$$||x - \tilde{x}|| \lesssim \frac{\delta \log N}{N^{5/4}}.$$

If N is odd and large then

$$\frac{\delta}{N} \lesssim ||x - \widetilde{x}|| \leq \frac{(2\pi + 1)d}{N} \frac{\delta}{2}.$$

Improved estimates

 $E_N = \{e_n^N\}_{n=1}^N$, Nth roots of unity FUN-TFs for \mathbb{R}^2 .

Let $x \in \mathbb{R}^d$, $||x|| \leq (K - 1/2)\delta$.

Quantize $x = \frac{d}{N} \sum_{n=1}^{N} x_n^N e_n^N, \quad x_n^N = \langle x, e_n^N \rangle$

using 1st order $\Sigma \Delta$ scheme with alphabet \mathcal{A}_K^{δ} .

Theorem If N is even and large then

$$||x - \widetilde{x}|| \lesssim \frac{\delta \log N}{N^{5/4}}.$$

If N is odd and large then

$$rac{\delta}{N} \lesssim ||x - \widetilde{x}|| \leq rac{(2\pi + 1)d}{N} rac{\delta}{2}$$

- The proof uses the analytic number theory approach developed by Sinan Güntürk.
- The theorem is true more generally, but additional technical assumptions are needed.

Harmonic frames

Zimmermann and Goyal, Kelner, Kovačević, Thao, Vetterli.

• $H = \mathbb{C}^d$. An harmonic frame $\{e_n\}_{n=1}^N$ for H is defined by the rows of the Bessel map L which is the complex N-DFT $N \times d$ matrix with N - d columns removed.

Harmonic frames

Zimmermann and Goyal, Kelner, Kovačević, Thao, Vetterli.

- $H = \mathbb{C}^d$. An harmonic frame $\{e_n\}_{n=1}^N$ for H is defined by the rows of the Bessel map L which is the complex N-DFT $N \times d$ matrix with N d columns removed.
- $H = \mathbb{R}^d$, d even. The harmonic frame $\{e_n\}_{n=1}^N$ is defined by the Bessel map L which is the $N \times d$ matrix whose nth row is

$$e_n^N = \sqrt{\frac{2}{d}} \left(\cos(\frac{2\pi n}{N}), \sin(\frac{2\pi n}{N}), \dots, \\ \cos(\frac{2\pi (d/2)n}{N}), \sin(\frac{2\pi (d/2)n}{N}) \right)$$

• Harmonic frames are FUN-TFs.

Harmonic frames

Zimmermann and Goyal, Kelner, Kovačević, Thao, Vetterli.

- $H = \mathbb{C}^d$. An harmonic frame $\{e_n\}_{n=1}^N$ for H is defined by the rows of the Bessel map L which is the complex N-DFT $N \times d$ matrix with N d columns removed.
- $H = \mathbb{R}^d$, d even. The harmonic frame $\{e_n\}_{n=1}^N$ is defined by the Bessel map L which is the $N \times d$ matrix whose nth row is

$$e_n^N = \sqrt{\frac{2}{d}} \left(\cos(\frac{2\pi n}{N}), \sin(\frac{2\pi n}{N}), \dots, \\ \cos(\frac{2\pi (d/2)n}{N}), \sin(\frac{2\pi (d/2)n}{N}) \right)$$

- Harmonic frames are FUN-TFs.
- Let E_N be the harmonic frame for \mathbb{R}^d and let p_N be the identity permutation. Then

$$\forall N, \ \sigma(E_N, p_N) \leq \pi d(d+1).$$

Error estimate for harmonic frames

Theorem Let E_N be the harmonic frame for \mathbb{R}^d with frame bound N/d. Consider $x \in \mathbb{R}^d$, $||x|| \leq 1$, and suppose the approximation \tilde{x} of x is generated by a first-order $\Sigma \Delta$ quantizer as before. Then

$$||x - \tilde{x}|| \le \frac{d^2(d+1) + d}{N} \frac{\delta}{2}.$$

Error estimate for harmonic frames

Theorem Let E_N be the harmonic frame for \mathbb{R}^d with frame bound N/d. Consider $x \in \mathbb{R}^d$, $||x|| \leq 1$, and suppose the approximation \tilde{x} of x is generated by a first-order $\Sigma \Delta$ quantizer as before. Then

$$||x - \tilde{x}|| \le \frac{d^2(d+1) + d}{N} \frac{\delta}{2}.$$

• Hence, for harmonic frames (and all those with bounded variation),

$$\mathsf{MSE}_{\Sigma\Delta} \leq \frac{C_d}{N^2} \ \delta^2.$$

Error estimate for harmonic frames

Theorem Let E_N be the harmonic frame for \mathbb{R}^d with frame bound N/d. Consider $x \in \mathbb{R}^d$, $||x|| \leq 1$, and suppose the approximation \tilde{x} of x is generated by a first-order $\Sigma \Delta$ quantizer as before. Then

$$||x - \tilde{x}|| \le \frac{d^2(d+1) + d}{N} \frac{\delta}{2}.$$

• Hence, for harmonic frames (and all those with bounded variation),

$$\mathsf{MSE}_{\Sigma\Delta} \leq \frac{C_d}{N^2} \ \delta^2.$$

• This bound is clearly superior asymptotically to

$$\mathsf{MSE}_{\mathsf{PCM}} = \frac{(d\delta)^2}{12N}$$

$\Sigma \Delta$ and "optimal" PCM

The digital encoding

$$\mathsf{MSE}_{\mathsf{PCM}} = \frac{(d\delta)^2}{12N}$$

in PCM format leaves open the possibility that decoding (reconstruction) could lead to

$$\label{eq:massessed} \begin{array}{l} \text{``MSE}_{\mathsf{PCM}}^{\mathsf{opt}} \text{''} \ll O(\frac{1}{N}). \end{array}$$
 Goyal, Vetterli, Thao (1998) proved
$$\begin{array}{l} \text{``MSE}_{\mathsf{PCM}}^{\mathsf{opt}} \text{''} \sim \frac{\tilde{C}_d}{N^2} \delta^2. \end{array}$$

Theorem The first order $\Sigma\Delta$ scheme achieves the asymptotically optimal MSE_{PCM} for harmonic frames.

