Waveform design and Sigma-Delta quantization

John J. Benedetto Norbert Wiener Center, Department of Mathematics University of Maryland, College Park

http://www.norbertwiener.umd.edu

Norbert Wiener Center

Outline and collaborators

- 1. CAZAC waveforms
- 2. Finite frames
- 3. Sigma-Delta quantization theory and implementation
- 4. Sigma-Delta quantization number theoretic estimates

Collaborators: Jeff Donatelli (waveform design); Matt Fickus (frame force); Alex Powell and Özgür Yilmaz ($\Sigma - \Delta$ quantization); Alex Powell, Aram Tangboondouangjit, and Özgür Yilmaz ($\Sigma - \Delta$ quantization and number theory).

Processing

CAZAC waveforms

Definition of CAZAC waveforms

A *K*-periodic waveform $u : \mathbb{Z}_K = \{0, 1, \dots, K-1\} \to \mathbb{C}$ is Constant Amplitude Zero Autocorrelation (CAZAC) if,

for all $k \in \mathbb{Z}_K, |u[k]| = 1$, (CA)

and, for $m = 1, \ldots, K - 1$, the *autocorrelation*

$$A_u[m] = \frac{1}{K} \sum_{k=0}^{K-1} u[m+k]\overline{u}[k]$$
 is 0. (ZAC)

The crosscorrelation of $u, v : \mathbb{Z}_K \to \mathbb{C}$ is

$$C_{u,v}[m] = \frac{1}{K} \sum_{k=0}^{K-1} u[m+k]\overline{v}[k]$$

Properties of CAZAC waveforms

- $u \text{ CAZAC} \Rightarrow u$ is broadband (full bandwidth).
- There are different constructions of different CAZAC waveforms resulting in different behavior vis à vis Doppler, additive noises, and approximation by bandlimited waveforms.
- $u CA \iff DFT$ of u is ZAC off dc. (DFT of u can have zeros)
- $u \text{ CAZAC} \iff \text{DFT of } u \text{ is CAZAC}.$
- User friendly software: http://www.math.umd.edu/~jjb/cazac

Examples of CAZAC Waveforms

$$\begin{split} &K = 75: u(x) = \\ &(1,1,1,1,1,1,e^{2\pi i \frac{1}{15}},e^{2\pi i \frac{2}{15}},e^{2\pi i \frac{1}{5}},e^{2\pi i \frac{4}{15}},e^{2\pi i \frac{1}{3}},e^{2\pi i \frac{7}{15}},e^{2\pi i \frac{3}{5}},\\ &e^{2\pi i \frac{11}{15}},e^{2\pi i \frac{13}{15}},1,e^{2\pi i \frac{1}{5}},e^{2\pi i \frac{2}{5}},e^{2\pi i \frac{3}{5}},e^{2\pi i \frac{4}{5}},1,e^{2\pi i \frac{4}{15}},e^{2\pi i \frac{8}{15}},e^{2\pi i \frac{4}{5}},\\ &e^{2\pi i \frac{16}{15}},e^{2\pi i \frac{1}{3}},e^{2\pi i \frac{2}{3}},e^{2\pi i},e^{2\pi i \frac{4}{3}},e^{2\pi i \frac{5}{3}},1,e^{2\pi i \frac{2}{5}},e^{2\pi i \frac{4}{5}},e^{2\pi i \frac{6}{5}},\\ &e^{2\pi i \frac{8}{5}},1,e^{2\pi i \frac{7}{15}},e^{2\pi i \frac{14}{15}},e^{2\pi i \frac{7}{5}},e^{2\pi i \frac{28}{15}},e^{2\pi i \frac{1}{3}},e^{2\pi i \frac{13}{15}},e^{2\pi i \frac{7}{5}},e^{2\pi i \frac{29}{15}},\\ &e^{2\pi i \frac{37}{15}},1,e^{2\pi i \frac{3}{5}},e^{2\pi i \frac{6}{5}},e^{2\pi i \frac{9}{5}},e^{2\pi i \frac{12}{5}},1,e^{2\pi i \frac{2}{3}},e^{2\pi i \frac{4}{3}},e^{2\pi i \frac{2}{5}},e^{2\pi i \frac{8}{3}},\\ &e^{2\pi i \frac{1}{3}},e^{2\pi i \frac{16}{15}},e^{2\pi i \frac{9}{5}},e^{2\pi i \frac{38}{15}},e^{2\pi i \frac{49}{15}},1,e^{2\pi i \frac{4}{5}},e^{2\pi i \frac{12}{5}},e^{2\pi i \frac{13}{5}},e^{2\pi i \frac{12}{5}},e^{2\pi i \frac{13}{5}},e^{2\pi i \frac{12}{5}},e^{2\pi i \frac{13}{5}},e^{2\pi i \frac{12}{5}},e^{2\pi i \frac{13}{5}},e^{2\pi i \frac{16}{5}},\\ &1,e^{2\pi i \frac{13}{15}},e^{2\pi i \frac{26}{15}},e^{2\pi i \frac{13}{5}},e^{2\pi i \frac{51}{15}},e^{2\pi i \frac{49}{15}},e^{2\pi i \frac{49}{15}},e^{2\pi i \frac{19}{15}},e^{2\pi i \frac{11}{5}},e^{2\pi i \frac{47}{15}},e^{2\pi i \frac{61}{15}},e^{2\pi i \frac{61}{15}},e^{2\pi i \frac{61}{15}},e^{2\pi i \frac{13}{15}},e^{2\pi i \frac{13}{15}},e^{2\pi i \frac{16}{15}},e^{2\pi i \frac{61}{15}},e^{2\pi i \frac{13}{15}},e^{2\pi i \frac{16}{15}},e^{2\pi i \frac{61}{15}},e^{2\pi i \frac{6$$

Autocorrelation of CAZAC K = 75

Perspective

Sequences for coding theory, cryptography, and communications (synchronization, fast start-up equalization, frequency hopping) include the following in the periodic case:

- Gauss, Wiener (1927), Zadoff (1963), Schroeder (1969), Chu (1972), Zhang and Golomb (1993)
- Frank (1953), Zadoff and Abourezk (1961), Heimiller (1961)
- Milewski (1983)
- Björck (1985) and Golomb (1992).

and their generalizations, both periodic and aperiodic, with some being equivalent in various cases.

Finite ambiguity function

Given K-periodic waveform, $u : \mathbb{Z}_K \to \mathbb{C}$ let $e_j[k] = e^{\frac{-2\pi i k j}{K}}$.

• The ambiguity function of $u, A : \mathbb{Z}_K \times \mathbb{Z}_K \to \mathbb{C}$ is defined as

$$A_u[m,j] = C_{u,ue_j}[m] = \frac{1}{K} \sum_{k=0}^{K-1} u[k+m]\overline{u}[k]e^{\frac{2\pi i k j}{K}}$$

■ Analogue ambiguity function for $u \leftrightarrow U$, $||u||_2 = 1$, on \mathbb{R} :

$$A_u(t,\gamma) = \int_{\widehat{\mathbb{R}}} U(\omega - \frac{\gamma}{2}) \overline{U(\omega + \frac{\gamma}{2})} e^{2\pi i t(\omega + \frac{\gamma}{2})} d\omega$$
$$= \int u(s+t) \overline{u(s)} e^{2\pi i s \gamma} ds.$$

Wiener CAZAC ambiguity, K = 100, j = 2

Rationale and theorem

Different CAZACs exhibit different behavior in their ambiguity plots, according to their construction method. Thus, the ambiguity function reveals localization properties of different constructions.

Theorem 1 Given K odd, $\zeta = e^{\frac{2\pi i}{K}}$, and $u[k] = \zeta^{k^2}$, $k \in \mathbb{Z}_K$ $1 \le k \le K - 2$ odd implies

$$A[m,k] = e^{\pi i (K-k)^2/K}$$
 for $m = \frac{1}{2}(K-k)$, and 0 elsewhere

 $2 \le k \le K - 1 even implies$

$$A[m,k] = e^{\pi i (2K-k)^2/K}$$
 for $m = \frac{1}{2}(2K-k)$, and 0 elsewhere

Viener CAZAC ambiguity, K = 100, j = 9

Wiener CAZAC ambiguity, K = 100, j = 4

Wiener CAZAC ambiguity, K = 101, j = 4

Viener CAZAC ambiguity, K = 100, j = 5

Viener CAZAC ambiguity, K = 101, j = 5

Viener CAZAC ambiguity, K = 101, j = 5

Finite frames

Frames

Frames $F = \{e_n\}_{n=1}^N$ for *d*-dimensional Hilbert space *H*, e.g., $H = \mathbb{K}^d$, where $\mathbb{K} = \mathbb{C}$ or $\mathbb{K} = \mathbb{R}$.

Any spanning set of vectors in \mathbb{K}^d is a *frame* for \mathbb{K}^d .

 $\ \, {} { \ \, { \ \, { \ \, { \ \, { \ \, { \ \, { \ \, { \ \, { \ \, { \ \, { \ \, { \ \, { \ \, { \ \, } } } } } } } } } F \subseteq \mathbb{K}^d} \ { \ \, { \ \, { \ \, { \ \, { \ \, { \ \, { \ \, } } } } } } } f f } \\$

$$\forall x \in \mathbb{K}^d, A ||x||^2 = \sum_{n=1}^N |\langle x, e_n \rangle|^2$$

- If $\{e_n\}_{n=1}^N$ is a finite unit norm tight frame (FUN-TF) for ℝ^d, with frame constant A, then A = N/d.
- ▶ Let $\{e_n\}$ be an A-unit norm TF for any separable Hilbert space H. $A \ge 1$, and $A = 1 \Leftrightarrow \{e_n\}$ is an ONB for H (*Vitali*).

Properties and examples of FUN-TFs

- Frames give redundant signal representation to compensate for hardware errors, to ensure numerical stability, and to minimize the effects of noise.
- Thus, if certain types of noises are known to exist, then the FUN-TFs are constructed using this information.
- Orthonormal bases, vertices of Platonic solids, kissing numbers (sphere packing and error correcting codes) are FUN-TFs.
- The vector-valued CAZAC FUN-TF problem: Characterize $u: \mathbb{Z}_K \longrightarrow \mathbb{C}^d$ which are CAZAC FUN-TFs.

Recent applications of FUN-TFs

- Robust transmission of data over erasure channels such as the internet [Casazza, Goyal, Kelner, Kovačević]
- Multiple antenna code design for wireless communications [Hochwald, Marzetta, T. Richardson, Sweldens, Urbanke]
- Multiple description coding [Goyal, Heath, Kovačević, Strohmer, Vetterli]
- Quantum detection [Bölcskei, Eldar, Forney, Oppenheim, Kebo, B]
- Grassmannian "min-max" waveforms [Calderbank, Conway, Sloane, et al., Kolesar, B]

DFT FUN-TFs

• $N \times d$ submatrices of the $N \times N$ DFT matrix are FUN-TFs for \mathbb{C}^d . These play a major role in finite frame $\Sigma \Delta$ -quantization.

$$N = 8, d = 5 \qquad \frac{1}{\sqrt{5}} \begin{bmatrix} * & * & \cdot & * & * & * & \cdot \\ * & * & \cdot & * & * & * & * & \cdot \\ * & * & \cdot & * & * & * & * & \cdot \\ * & * & \cdot & * & * & * & * & \cdot \\ * & * & \cdot & * & * & * & * & \cdot \\ * & * & \cdot & * & * & * & * & \cdot \\ * & * & \cdot & * & * & * & * & \cdot \\ * & * & \cdot & * & * & * & * & \cdot \end{bmatrix}$$
$$m = 1, \dots, 8.$$

Sigma-Delta Super Audio CDs - but not all authorities are fans.

Characterization of FUN-TFs

For the Hilbert space $H = \mathbb{R}^d$ and N, consider $\{x_n\}_1^N \in S^{d-1} \times ... \times S^{d-1}$ and

$$TFP(\{x_n\}) = \sum_{m=1}^{N} \sum_{n=1}^{N} |\langle x_m, x_n \rangle|^2.$$

- **Proof Theorem** Let $N \leq d$. The minimum value of TFP, for the frame force and N variables, is N; and the *minimizers* are precisely the orthonormal sets of N elements for \mathbb{R}^d .
- Theorem Let $N \ge d$. The minimum value of *TFP*, for the frame force and *N* variables, is N^2/d ; and the *minimizers* are precisely the FUN-TFs of *N* elements for \mathbb{R}^d .
- **Problem** Find FUN-TFs analytically, effectively, computationally.

Sigma-Delta quantization – theory and implementation

Given u_0 and $\{x_n\}_{n=1}$

 $u_n = u_{n-1} + x_n - q_n$ $q_n = Q(u_{n-1} + x_n)$

First Order $\Sigma\Delta$

A quantization problem

Qualitative Problem Obtain *digital* representations for class X, suitable for storage, transmission, recovery.

Quantitative Problem Find dictionary $\{e_n\} \subseteq X$:

1. Sampling [continuous range \mathbb{K} is not digital]

$$\forall x \in X, \ x = \sum x_n e_n, \ x_n \in \mathbb{K} \ (\mathbb{R} \text{ or } \mathbb{C}).$$

2. Quantization. Construct finite alphabet ${\cal A}$ and

$$Q: X \to \{\sum q_n e_n : q_n \in \mathcal{A} \subseteq \mathbb{K}\}$$

such that $|x_n - q_n|$ and/or ||x - Qx|| small.

Methods Fine quantization, e.g., PCM. Take $q_n \in A$ close to given x_n . Reasonable in 16-bit (65,536 levels) digital audio.

Coarse quantization, e.g., $\Sigma\Delta$. Use fewer bits to exploit redundancy.

Quantization

$$\mathcal{A}_{K}^{\delta} = \{ (-K+1/2)\delta, (-K+3/2)\delta, \dots, (-1/2)\delta, (1/2)\delta, \dots, (K-1/2)\delta \}$$

 $Q(u) = \arg\min\{|u-q| : q \in \mathcal{A}_K^\delta\} = q_u$

PCM

Replace $x_n \leftrightarrow q_n = \arg\{\min |x_n - q| : q \in \mathcal{A}_K^{\delta}\}$. Then $\tilde{x} = \frac{d}{N} \sum_{n=1}^N q_n e_n$ satisfies

$$||x - \tilde{x}|| \le \frac{d}{N} ||\sum_{n=1}^{N} (x_n - q_n)e_n|| \le \frac{d}{N} \frac{\delta}{2} \sum_{n=1}^{N} ||e_n|| = \frac{d}{2} \delta.$$

Not good!

Bennett's "white noise assumption"

Assume that $(\eta_n) = (x_n - q_n)$ is a sequence of independent, identically distributed random variables with mean 0 and variance $\frac{\delta^2}{12}$. Then the mean square error (MSE) satisfies

$$\mathsf{MSE} = E ||x - \tilde{x}||^2 \le \frac{d}{12A} \ \delta^2 = \frac{(d\delta)^2}{12N}$$

$\mathcal{A}_1^2 = \{-1, 1\}$ and E_7

 $\mathcal{A}_1^2 = \{-1, 1\}$ and E_7

 $\mathcal{A}_1^2 = \{-1, 1\}$ and E_7

 $\mathcal{A}_1^2 = \{-1, 1\}$ and E_7

$\Sigma\Delta$ quantizers for finite frames

Let $F = \{e_n\}_{n=1}^N$ be a frame for \mathbb{R}^d , $x \in \mathbb{R}^d$. Define $x_n = \langle x, e_n \rangle$. Fix the ordering p, a permutation of $\{1, 2, \dots, N\}$. Quantizer alphabet \mathcal{A}_K^{δ} Quantizer function $Q(u) = \arg\{\min |u - q| : q \in \mathcal{A}_K^{\delta}\}$ Define the *first-order* $\Sigma \Delta$ *quantizer* with ordering p and with the quantizer alphabet \mathcal{A}_K^{δ} by means of the following recursion.

$$u_n - u_{n-1} = x_{p(n)} - q_n$$

 $q_n = Q(u_{n-1} + x_{p(n)})$

where $u_0 = 0$ and n = 1, 2, ..., N.

Sigma-Delta quantization – background

- History from 1950s.
- Treatises of Candy, Temes (1992) and Norsworthy, Schreier, Temes (1997).
- PCM for finite frames and $\Sigma \Delta$ for PW_{Ω} : Bölcskei, Daubechies, DeVore, Goyal, Güntürk, Kovačevič, Thao, Vetterli.
- Solution Of $\Sigma \Delta$ and finite frames: Powell, Yılmaz, and B.
- Subsequent work based on this ∑ ∆ finite frame theory: Bodman and Paulsen; Boufounos and Oppenheim; Jimenez and Yang Wang; Lammers, Powell, and Yılmaz.
- Genuinely apply it.

Stability

The following stability result is used to prove error estimates.

Proposition If the frame coefficients $\{x_n\}_{n=1}^N$ satisfy

$$|x_n| \le (K - 1/2)\delta, \quad n = 1, \cdots, N,$$

then the state sequence $\{u_n\}_{n=0}^N$ generated by the first-order $\Sigma\Delta$ quantizer with alphabet \mathcal{A}_K^{δ} satisfies $|u_n| \leq \delta/2, n = 1, \dots, N$.

• The first-order $\Sigma\Delta$ scheme is equivalent to

$$u_n = \sum_{j=1}^n x_{p(j)} - \sum_{j=1}^n q_j, \quad n = 1, \cdots, N.$$

Stability results lead to tiling problems for higher order schemes.

Error estimate

Definition Let $F = \{e_n\}_{n=1}^N$ be a frame for \mathbb{R}^d , and let p be a permutation of $\{1, 2, \dots, N\}$. The *variation* $\sigma(F, p)$ is

$$\sigma(F,p) = \sum_{n=1}^{N-1} \|e_{p(n)} - e_{p(n+1)}\|.$$

Theorem Let $F = \{e_n\}_{n=1}^N$ be an A-FUN-TF for \mathbb{R}^d . The approximation

$$\tilde{x} = \frac{d}{N} \sum_{n=1}^{N} q_n e_{p(n)}$$

generated by the first-order $\Sigma\Delta$ quantizer with ordering p and with the quantizer alphabet \mathcal{A}_K^{δ} satisfies

$$||x - \tilde{x}|| \le \frac{(\sigma(F, p) + 1)d}{N} \frac{\delta}{2}.$$

Harmonic frames

Zimmermann and Goyal, Kelner, Kovačević, Thao, Vetterli.

- $H = \mathbb{C}^d$. An *harmonic frame* $\{e_n\}_{n=1}^N$ for *H* is defined by the rows of the Bessel map *L* which is the complex *N*-DFT *N* × *d* matrix with *N* − *d* columns removed.

$$e_n^N = \sqrt{\frac{2}{d}} \left(\cos(\frac{2\pi n}{N}), \sin(\frac{2\pi n}{N}), \dots, \cos(\frac{2\pi (d/2)n}{N}), \sin(\frac{2\pi (d/2)n}{N}) \right).$$

- Harmonic frames are FUN-TFs.
- Let E_N be the harmonic frame for \mathbb{R}^d and let p_N be the identity permutation.
 Then

$$\forall N, \ \sigma(E_N, p_N) \le \pi d(d+1).$$

Error estimate for harmonic frames

Theorem Let E_N be the harmonic frame for \mathbb{R}^d with frame bound N/d. Consider $x \in \mathbb{R}^d$, $||x|| \leq 1$, and suppose the approximation \tilde{x} of x is generated by a first-order $\Sigma \Delta$ quantizer as before. Then

$$||x - \tilde{x}|| \le \frac{d^2(d+1) + d}{N} \frac{\delta}{2}.$$

Hence, for harmonic frames (and all those with bounded variation),

$$\mathsf{MSE}_{\Sigma\Delta} \le \frac{C_d}{N^2} \ \delta^2.$$

This bound is clearly superior asymptotically to

$$\mathsf{MSE}_{\mathsf{PCM}} = \frac{(d\delta)^2}{12N}.$$

$\Sigma\Delta$ and "optimal" PCM

The digital encoding

$$\mathsf{MSE}_{\mathsf{PCM}} = \frac{(d\delta)^2}{12N}$$

in PCM format leaves open the possibility that decoding (consistent nonlinear reconstruction, with additional numerical complexity this entails) could lead to

"MSE^{opt}_{PCM}"
$$\ll O(\frac{1}{N}).$$

Goyal, Vetterli, Thao (1998) proved

"MSE^{opt}_{PCM}"
$$\sim \frac{\tilde{C}_d}{N^2} \delta^2$$
.

Theorem The first order $\Sigma\Delta$ scheme achieves the asymptotically optimal MSE_{PCM} for harmonic frames.

Even – odd

$$E_N = \{e_n^N\}_{n=1}^N, e_n^N = (\cos(2\pi n/N), \sin(2\pi n/N)).$$
 Let $x = (\frac{1}{\pi}, \sqrt{\frac{3}{17}}).$

$$x = \frac{d}{N} \sum_{n=1}^{N} x_n^N e_n^N, \quad x_n^N = \langle x, e_n^N \rangle.$$

Let \tilde{x}_N be the approximation given by the 1st order $\Sigma \Delta$ quantizer with alphabet $\{-1, 1\}$ and natural ordering. log-log plot of $||x - \tilde{x}_N||$.

Improved estimates

 $E_N = \{e_n^N\}_{n=1}^N$, Nth roots of unity FUN-TFs for \mathbb{R}^2 , $x \in \mathbb{R}^2$, $||x|| \le (K - 1/2)\delta$.

Quantize
$$x = \frac{d}{N} \sum_{n=1}^{N} x_n^N e_n^N, \quad x_n^N = \langle x, e_n^N \rangle$$

using 1st order $\Sigma\Delta$ scheme with alphabet \mathcal{A}_{K}^{δ} . **Theorem** If N is even and large then $||x - \widetilde{x}|| \leq B_{x} \frac{\delta \log N}{N^{5/4}}$. If N is odd and large then $A_{x} \frac{\delta}{N} \leq ||x - \widetilde{x}|| \leq B_{x} \frac{(2\pi+1)d}{N} \frac{\delta}{2}$.

- The proof uses a theorem of Güntürk (from complex or harmonic analysis); and Koksma and Erdös-Turán inequalities and van der Corput lemma (from analytic number theory).
- The Theorem is true for harmonic frames for \mathbb{R}^d .

Sigma-Delta quantization–number theoretic estimates

Proof of Improved Estimates theorem

If N is even and large then ||x - x̃|| ≤ B_x δ log N/N^{5/4}.
If N is odd and large then A_x δ/N ≤ ||x - x̃|| ≤ B_x (2π+1)d/N⁵/2.
∀N, {e^N_n}^N_{n=1} is a FUN-TF.

$$x - \tilde{x}_N = \frac{d}{N} \left(\sum_{n=1}^{N-2} v_n^N (f_n^N - f_{n+1}^N) + v_{N-1}^N f_{N-1}^N + u_N^N e_N^N \right)$$
$$f_n^N = e_n^N - e_{n+1}^N, \quad v_n^N = \sum_{j=1}^n u_j^N, \quad \tilde{u}_n^N = \frac{u_n^N}{\delta}$$

Koksma Inequality

Discrepancy

The discrepancy D_N of a finite sequence x_1, \ldots, x_N of real numbers is $D_N = D_N(x_1, \ldots, x_N) = \sup_{0 \le \alpha < \beta \le 1} \left| \frac{1}{N} \sum_{n=1}^N \mathbb{1}_{[\alpha,\beta)}(\{x_n\}) - (\beta - \alpha) \right|,$ where $\{x\} = x - \lfloor x \rfloor$.

Koksma Inequality

 $g: [-1/2, 1/2) \rightarrow \mathbb{R}$ of bounded variation and $\{\omega_j\}_{j=1}^n \subset [-1/2, 1/2) \Longrightarrow$

$$\left|\frac{1}{n}\sum_{j=1}^{n}g(\omega_j) - \int_{-\frac{1}{2}}^{\frac{1}{2}}g(t)dt\right| \leq \operatorname{Var}(g)\operatorname{Disc}\left(\{\omega_j\}_{j=1}^{n}\right).$$

Erdös-Turán Inequality

$$\exists C > 0, \forall K, \operatorname{Disc}\left(\{\widetilde{u}_n^N\}_{n=1}^j\right) \le C\left(\frac{1}{K} + \frac{1}{j}\sum_{k=1}^K \frac{1}{k} \left|\sum_{n=1}^j e^{2\pi i k \widetilde{u}_n^N}\right|\right).$$

To approximate the exponential sum.

Approximation of Exponential Sum

(1) Güntürk's Proposition

 $\begin{aligned} \forall N, \exists X_N \in \mathcal{B}_{\Omega/N} \\ \text{such that } \forall n = 0, \dots, N, \\ X_N(n) &= u_n^N + c_n \frac{\delta}{2}, \ c_n \in \mathbb{Z} \\ \text{and } \forall t, \left| X'_N(t) - h\left(\frac{t}{N}\right) \right| \leq B \frac{1}{N} \end{aligned}$

(2) Bernstein's Inequality

If $x \in \mathcal{B}_{\Omega}$, then $\|x^{(r)}\|_{\infty} \leq \Omega^{r} \|x\|_{\infty}$

$$\mathbf{\mathfrak{B}}_{\Omega} = \{ T \in A'(\widehat{\mathbb{R}}) : \operatorname{supp} T \subseteq [-\Omega, \Omega] \}$$

 $\mathcal{M}_{\Omega} = \{h \in \mathcal{B}_{\Omega} : h' \in L^{\infty}(\mathbb{R}) \text{ and all zeros of } h' \text{ on } [0,1] \text{ are simple} \}$

We assume $\exists h \in \mathcal{M}_{\Omega}$ such that $\forall N$ and $\forall 1 \leq n \leq N, \ h(n/N) = x_n^N$.

Approximation of Exponential Sum

(1) Güntürk's Proposition

 $\begin{aligned} \forall N, \exists X_N \in \mathcal{B}_{\Omega/N} \\ \text{such that } \forall n = 0, \dots, N, \\ X_N(n) &= u_n^N + c_n \frac{\delta}{2}, \ c_n \in \mathbb{Z} \\ \text{and } \forall t, \left| X'_N(t) - h\left(\frac{t}{N}\right) \right| \leq B \frac{1}{N} \end{aligned}$

(2) Bernstein's Inequality

If $x \in \mathcal{B}_{\Omega}$, then $\|x^{(r)}\|_{\infty} \leq \Omega^{r} \|x\|_{\infty}$

$$\mathbf{\mathcal{B}}_{\Omega} = \{ T \in A'(\widehat{\mathbb{R}}) : \operatorname{supp} T \subseteq [-\Omega, \Omega] \}$$

 $\mathcal{M}_{\Omega} = \{h \in \mathcal{B}_{\Omega} : h' \in L^{\infty}(\mathbb{R}) \text{ and all zeros of } h' \text{ on } [0,1] \text{ are simple} \}$

We assume $\exists h \in \mathcal{M}_{\Omega}$ such that $\forall N$ and $\forall 1 \leq n \leq N, \ h(n/N) = x_n^N$.

Van der Corput Lemma

▶ Let a, b be integers with a < b, and let f satisfy $f'' \ge \rho > 0$ on [a, b] or $f'' \le -\rho < 0$ on [a, b]. Then

$$\Big|\sum_{n=a}^{b} e^{2\pi i f(n)}\Big| \le \Big(\Big|f'(b) - f'(a)\Big| + 2\Big)\Big(\frac{4}{\sqrt{\rho}} + 3\Big).$$

$$\left|\sum_{n=1}^{j} e^{2\pi i k \widetilde{u}_{n}^{N}}\right| \leq B_{x} N^{\alpha} + B_{x} \frac{\sqrt{k} N^{1-\frac{\alpha}{2}}}{\sqrt{\delta}} + B_{x} \frac{k}{\delta}.$$

Choosing appropriate α and K

Putting $\alpha = 3/4, K = N^{1/4}$ yields

$$\exists \widetilde{N} \text{ such that } \forall N \ge \widetilde{N}, \operatorname{Disc}\left(\{\widetilde{u}_n^N\}_{n=1}^j\right) \le B_x \frac{1}{N^{\frac{1}{4}}} + B_x \frac{N^{\frac{3}{4}} \log(N)}{j}$$

Conclusion

 $\forall n = 1, \dots, N, |v_n^N| \le B_x \delta N^{\frac{3}{4}} \log N$

Norbert Wiener Center